
Received August 16, 2019, accepted September 9, 2019, date of publication September 17, 2019, date of current version October 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941968

Multi-Dimensional Space–Time Shift Keying
for Wireless Communications
GUANGTAO ZHENG 1,2 AND MING JIANG 1, (Senior Member, IEEE)
1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
2Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA

Corresponding author: Ming Jiang (jiangm7@mail.sysu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1802300, in part
by the General Project of National Natural Science Foundation of China under Grant 61771499, in part by the Guangdong Provincial Key
Research and Development Project under Grant 2018B010114001, and in part by the Key Research and Development Program on
Industrial Technologies of Guangzhou City under Grant 201902010053.

ABSTRACT In this paper, we introduce the concept of multi-dimensional (MD) space-time shift
keying (STSK) for improving conventional STSK schemes, while still maintaining the general STSK
structure for backward compatibility. Firstly, we design two transmission modes for three-dimensional
(3-D) STSK schemes, referred to as R2 3-D STSK and R3 3-D STSK, with the incorporation of 3-D
constellations. In addition, we devise a joint optimization mechanism utilizing the modified simplified
conjugate gradient (SCG) algorithm to enhance the achievable system performance of R3 3-D STSK, through
a harmonized design of the constellation and the dispersion matrix set. Furthermore, we derive the optimal
combinations of the 3-D constellation coordinates for R2 3-D STSK bymaximizing the minimal determinant
of the difference matrices. Then, we extend 3-D STSK to the MD STSK family, offering a flexible and
efficient performance enhancement mechanism for STSK systems. Extensive simulation results are provided
to show the tradeoffs among link performance, diversity order and signal dimensionality of the proposedMD
STSK scheme, illustrating a good way to upgrade conventional STSK systems.

INDEX TERMS Coordinate combination, joint optimization, multi-dimensional constellation,
multiple-input multiple-output, space-time shift keying.

I. INTRODUCTION
The space-time shift keying (STSK) [1], [2] modulation
scheme is a multiple-input multiple-output (MIMO) [3]
technique which may meet the rapidly growing demand for
high-rate wireless communications over dispersive fading
channels. Exploiting the spatial degree of freedom (DOF),
STSK provides a flexible system design method that strikes
for an efficient tradeoff between multiplexing and diversity.
At the receiver, codeword detection based on the low-
complexity single-stream maximum likelihood (ML) princi-
ple may be possible [4], since there exists no inter-channel
interference (ICI), which in contrast is observed in many
multi-stream MIMO systems, such as space division mul-
tiplexing (SDM), etc. Furthermore, a generalized STSK
(G-STSK) scheme was proposed in [5], extending the STSK
concept to a wider framework that subsumes diverse MIMO
arrangements, such as linear dispersion code (LDC) [6], [7],
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spatial modulation (SM) [8], Bell Laboratories layered space-
time (BLAST) [9] and orthogonal space-time block codes
(OSTBCs) [10], thus making the STSK family an attractive
candidate technology for advanced MIMO applications.

Generally speaking, the selection of both a constellation
and a dispersion matrix set (DMS) affects the overall per-
formance of STSK systems. On the one hand, from the
constellation perspective, it is known that under the same
normalized average power, a constellation having a larger
minimum Euclidean distance (MED) typically offers better
link robustness for a system communicating over the additive
Gaussian white noise (AWGN) channel [11]. Furthermore,
three-dimensional (3-D) constellations are capable of pro-
viding improved MED and hence better performance when
compared with their conventional two-dimensional (2-D)
counterparts. The 3-D constellations have been used in opti-
cal communications [12] and were introduced in orthogo-
nal frequency division multiplexing (OFDM) based wireless
communications [13]. Since then, various 3-D constellations
were proposed for advanced wireless applications [13]–[17].
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FIGURE 1. Examples of 16-ary 3-D constellations: 16CIC [14] and
16RCIC [15].

Fig. 1a and Fig. 1b show two examples of 16-ary 3-D con-
stellations, namely the cube-in-cube (CIC) [14] and rotated
CIC (RCIC) [15] arrangements, where sl (l = 1, · · · ,L;
L = 16) denotes a constellation signal point. The construc-
tion of high-order 3-D constellations was also proposed [18],
while symbol error probabilities of various constellations
were analyzed [18], [19]. Furthermore, inspired by 3-D con-
stellations, N -D constellations were developed for further
increasing the reliability of link transmissions [11], [20].

On the other hand, several methods have been proposed for
optimizing theDMS [4]. However, optimizing theDMS alone
may not be the ultimate solution, since the achievable perfor-
mance of STSK systems also depends on a few other aspects,
for example the signal constellation used. This inspired a
proposal of joint optimization on both the signal constellation
and the DMS [21], which exploits additional DOF attainable
by harmonized designs of the constellation and the DMS, and
thus provides an enhanced performance.

Recently, under the concept of multi-functional MIMO
[22], various schemes, for example the multi-set STSK [23],
hierarchical multi-functional layered SM [24], multi-
dimensional index modulation [25], etc., tend to explore
multiple dimensions to achieve a tradeoff among throughput,
error performance and diversity. However, these schemes
typically require nontrivial architectural changes and/or the
employment of new devices such as the fast antenna switch-
ing units, thus raising cost and backward compatibility
issues.

Based on this background, in this paper, both multi-
dimensional (MD) constellations and the joint optimization
mechanism are exploited to form the newMD STSK scheme.
The proposed MD STSK approach improves the achievable
performance of conventional STSK systems without chang-
ing their general structure, thus ensures maximum backward
compatibility with existing applications. Specifically, our
main contributions include:

1) Given an STSK system, our approach uses reduced-
sized DMSs and 3-D constellation symbols with a
time division multiplexing (TDD) approach to trade
for a better symbol error rate (SER). Specifically,
two implementation options, namely the Rate-3 (R3)
and Rate-2 (R2) schemes, are suggested for achieving
different design tradeoffs among various parameters
of 3-D STSK systems.

2) Based on themaximal discrete-input continuous-output
memoryless channel (DCMC) capacity criterion,
we modify the existing simplified conjugate gradi-
ent (SCG) aided joint optimization method, such that
it becomes applicable to the proposed R3 3-D STSK
systems. Through the resultant new 3-D joint optimiza-
tion (3DJO) algorithm, the signal constellation and
the DMS used in 3-D STSK systems can be jointly
optimized, yielding an improved system performance
compared with that of the systems dispensing with
3DJO.

3) To our best knowledge, the optimization for STSK
systems is conventionally conducted from the DMS or
symbol aspect. However, we prove that optimization
from the coordinate perspective is also possible and
helpful by developing a new algorithm referred to as the
optimal coordinate combination search (OCCS). The
new OCCS technique optimizes the 3-D coordinates’
combinations through maximizing the minimal deter-
minant of the so-called difference matrices for R2 3-D
STSK systems.

4) Furthermore, we extend the 3-D STSK framework to
the N -dimensional (N -D) case, where we have N > 3.
This results in the generalized N -D STSK framework,
where the aforementioned 3DJO algorithm is also
extended to its N -D version. We show that when set up
with the same size of STSK codeword or equivalently
the same STSK structure, higher-dimensional STSK
schemes outperform their lower-dimensional counter-
parts in terms of error rates, favorably under the same
STSK structure and spectral efficiency (SE).

5) Last but not least, assuming the same SE and STSK
structure, we provide extensive simulation results
which help to offer many insights into the new schemes
and to reveal their benefits as well as design tradeoffs,
through comparisons among diverse configurations
and/or with conventional STSK systems.

The rest of the paper is organized as follows. The 3-D
STSK concept is presented in Section II, where two transmis-
sion modes, R2 and R3, are first introduced in Section II-A.
Then the 3-D STSK framework is proposed in Section II-B,
followed by our analysis on the error rate and the DCMC
capacity of 3-D STSK in Section II-C and Section II-D,
respectively. In Section III, the two optimization algorithms,
namely 3DJO and OCCS, are detailed. Next, we extend the
3-D framework to the MD scenario in Section IV, resulting
in the generalized MD STSK systems and the MD joint opti-
mization (MDJO) technique. Further, a complexity analysis
is given in Section IV-C, while extensive simulation results
are provided in Section V to demonstrate the benefits and
design tradeoffs of the proposed MD STSK systems. Finally,
we conclude our work in Section VI.

For readers’ convenience, we summarize the main
notations used in this paper as follows. Bold upper (lower)
variables denote matrices (vectors); ⊗ represents Kronecker
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product; tr[·] stands for the trace operation; (·)T and (·)H

refer to the transpose and Hermitian transpose operations,
respectively; (·):,v (or (·)v,:) indicates the selection of the vth

column (or row) of a givenmatrix; ‖ · ‖ denotes the Frobenius
norm; E[·] is the expectation operation; Re{·} is defined as
getting the real part of a complex number; d·e represents the
operation of rounding a float number to the larger and nearest
integer.

II. 3-D STSK: CONCEPT AND PRINCIPLES
In this section, we first introduce two 3-D signal transmission
modes, and then discuss the proposed 3-D STSK framework
corresponding to its two transmission modes.

A. 3-D SIGNAL TRANSMISSION MODES
We define two 3-D signal transmission modes as the R3 mode
and the R2 mode [26], respectively. In the R3 mode, a 3-D
symbol duration TR3

s is divided into three equal-sized time
slots, each having a duration of TR3

s /3. One time slot accom-
modates one real-valued coordinate, denoted by xl , yl or zl ,
of a 3-D symbol selected from a size-L 3-D constellation. The
discrete vectorized transmitted symbol therefore becomes

sl = [kxxl, kyyl, kzzl], l ∈ {1, · · · ,L}, (1)

where kx , ky and kz are normalization factors having the value
of unity.

In contrast, in the R2 mode, the 3-D symbol duration
TR2
s is divided into two equal-sized time slots, each having

a duration of TR2
s /2. In the first time slot, two out of the

three real-valued coordinates of a 3-D constellation symbol
are combined to form a 2-D complex symbol for quadrature
transmissions, while the remaining coordinate is transmitted
in the next consecutive time slot as a real symbol. This results
in the so-called transformed 3-D constellation symbol

śl = [kxxl + jkyyl, kzzl], (2)

where we set kx = ky =
√
3/4 and kz =

√
3/2 to even

the average transmitted symbol power in each of the two
time slots. This is beneficial for power amplifier (PA) imple-
mentation. Obviously, there exist a total of 6 transformed
3-D constellations that correspond to the 6 coordinate com-
binations, respectively. In Section III-B, we will demonstrate
how to optimize the design, from the coordinate perspective,
of enhanced 3-D STSK schemes.

Note that assuming the same time slot duration of Ts =
TR2
s /2 = TR3

s /3 or equivalently the same system band-
width, the R3 and R2 modes require three-fold and two-
fold transmission time in comparison to the conventional 2-D
signal transmission mode, respectively. The increased trans-
mission time per 3-D symbol results in a smaller dispersion
matrix (DM) size based on the same STSK structure. We will
show in Section V that the above designs together help to sig-
nificantly improve the achievable link performances against
the 2-D counterpart, when the joint optimization approach is
employed.

FIGURE 2. The illustration of the proposed 3-D STSK module.

B. 3-D STSK FRAMEWORK
The proposed 3-D STSK module is illustrated in Fig. 2. The
input information bit sequence of sizeBI = B1+B2 is divided
into two portions. The first B1 bits are used to select one DM
out of the predefined DMS denoted by {Aq|q = 1, · · · ,Q},
whereQ = 2B1 denotes the cardinality of the DMS. Different
from the conventional STSK design [1], the remaining B2
bits are mapped to one of L = 2B2 constellation symbols
sl (l = 1, · · · ,L) by a 3-D mapper. The selected constel-
lation symbol is then dispersed through space and time by
the selected DM Aq through Kronecker product, resulting
in a 3-D STSK codeword Sq,l . Each row and each column
of Sq,l correspond to a transmit antenna and a time slot
of duration Ts, respectively. In fact, the 3-D STSK module
shown in Fig. 2 can be implemented by a look-up table (LUT),
where the STSK codewords are indexed by the BI input bits.
Thus, the proposed 3-D STSK process can be seamlessly
integrated with the general STSK transmitter.

For convenience, we denote the configuration of a pro-
posed 3-D STSK system as (Nt ,Nr ,TB,Q,R), where Nt
is the number of transmit antennas, Nr is the number of
receive antennas, TB is the number of columns in a DM
satisfying T = TBR, where T is an integer denoting the
time duration of a STSK codeword normalized to Ts, and
R = {2, 3} denotes the 3-D STSK transmission mode.
Fig. 3 shows an example of the R3 3-D STSK transmitter
with configuration (3, 2, 2, 16, 3), employing the 3-D 16CIC
mapper of [14]. This configuration shares the same structure
as the conventional STSK of (3, 2, 6, 16, 1), where the last
parameter R = 1 refers to the 2-D case. Note that all DMs are
dimensioned 3-by-2, and the resultant STSK codeword is a
3-by-6 matrix.

As seen in Fig. 3, the ith STSK codeword can be generated
by the dispersion operation

S(i) = S(i)q,l = A(i)
q ⊗ s(i)l , (3)

where we have A(i)
q ∈ CNt×TB , s(i)l ∈ �, and � is a 3-D

constellation symbol set. Note that each of the Q prede-
fined DMs, A(i)

q (q = 1, · · · ,Q), should satisfy the power
constraint of tr[A(i)

q · (A
(i)
q )H ] = TB [1]. Note that the columns

of a STSK codeword are transmitted from the first to the last,
for example from 1 to 6 in the specific 3-D STSK configu-
ration example of Fig. 3. However, in order to facilitate our
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FIGURE 3. Exemplification of the 16CIC-aided 3-D STSK(3,2,2,16,3)
scheme, where a pair of two columns (accommodated by boxes of the
same line style) in the big codeword matrix S3,6 belongs to
S(i )[v ], v ∈ {1, . . . ,R}, as formulated in (4).

analysis next, we reform (3) as

S(i)[v] = s(i)l [v]A(i)
q , v = 1, . . . ,R, (4)

where s(i)l [v] is the vth element of a R2 or R3 3-D symbol.
Then, the received signal can be represented by

Y(i)[v] = H(i)[v]S(i)[v]+ Z(i)[v], v = 1, . . . ,R, (5)

where H(i)[v] ∈ CNr×Nt is the channel matrix with each
element having a zero mean and unit variance of independent
and identically distributed (i.i.d.) complex Gaussian distri-
bution CN (0, 1). We assume that the channel is frequency-
flat Rayleigh fading and that H(i)[v] = H(i) (v = 1, . . . ,R)
remains unchanged during one codeword duration. The vari-
able Z(i)[v] ∈ CNr×TB in (5) denotes the AWGN matrix with
each element following the distribution CN (0,N0), where
N0 is the complex noise variance for each time slot Ts. By
applying the vec(·) operation [1] to (5), we have

Y(i)[v] = H(i)χ (K(i)):,v + Z(i)[v], v = 1, . . . ,R, (6)

where

Y(i)[v] = vec(Y(i)[v]) ∈ CNrTB×1, (7)

H(i) = I⊗H(i) ∈ CNrTB×NtTB , (8)

Z(i)[v] = vec(Z(i)[v]) ∈ CNrTB×1, (9)

χ = [vec(A1), · · · , vec(AQ)] ∈ CNtTB×Q, (10)

and I is the (TB × TB)-dimensional identity matrix.
Furthermore, K(i) = K(i)

q,l ∈ CQ×R in (6) is the equivalent
transmit signal matrix defined by

K(i) =

 0 · · · 0
0 · · · 0
0 · · · 0︸ ︷︷ ︸
q−1

x(i)l
y(i)l
z(i)l

0 · · · 0
0 · · · 0
0 · · · 0


︸ ︷︷ ︸

Q−q

T

, (11)

for R3 3-D STSK, and

K(i) =
[
0 · · · 0
0 · · · 0︸ ︷︷ ︸
q−1

√
3/4(x(i)l + jy

(i)
l )

√
3/2 z(i)l

0 · · · 0
0 · · · 0

]
︸ ︷︷ ︸

Q−q

T

, (12)

for R2 3-D STSK, respectively, where [x(i)l , y
(i)
l , z

(i)
l ] refer to

the coordinates of the l th 3-D symbol. Note that for each 3-D
symbol duration, there exist a total number ofQ ·L legitimate
transmit signal matricesK(i)

q,l (q = 1, · · · ,Q; l = 1, · · · ,L).
On the receiver side of the proposed 3-D STSK system,

the optimal maximum likelihood (ML) detector is employed.
Assuming perfect channel state information (CSI), the trans-
mitted 3-D symbol and the selected DM can be jointly
estimated by

(q̂, l̂) = arg min
q,l

R∑
v=1

‖ Y(i)[v]−H(i)χ (K(i)):,v ‖
2

= arg min
q,l

R∑
v=1

‖ Y(i)[v]− s(i)l [v]
(
H(i)χ

)
:,q
‖
2
. (13)

C. PAIRWISE ERROR PROBABILITY
In this section, the upper bound of the pairwise error proba-
bility (PEP) of the 3-D STSK system is analyzed. We define

D =
r∏

n=1

λn, (14)

as the difference matrix distance (DMD), where λn
(n = 1, · · · , r) and r are the nonzero eigenvalues and the rank
of matrix A = 11H , respectively. The difference matrix 1
is defined by

1 = Sq,l − Sq′,l′ = Aq ⊗ sl − Aq′ ⊗ sl′ , (15)

where q, q′ ∈ {1, · · · ,Q} and l, l ′ ∈ {1, · · · ,L}. For notation
brevity, we have ignored the 3-D STSK codeword index i
in (15). Moreover, depending on the relations between l, l ′, q
and q′, there can be three categories of symbol errors in 3-D
STSK systems, namely E1, E2 and E3, defined by

E1 = {l 6= l ′, q = q′},

E2 = {l = l ′, q 6= q′},

E3 = {l 6= l ′, q 6= q′}. (16)

Inspired by [27], the upper bound of PEP of a 3-D STSK
codeword Sq,l at a high signal-to-noise ratio (SNR) may be
derived as

P(Sq,l → Sq′,l′ ) ≤
( 1
4N0

)−rNr
· D−Nr . (17)

Note from (17) that given a fixed Nr , the PEP’s upper bound
depends on r and D. Based on the rank-and-determinant
design criterion [28], in most cases the Nt × Nt matrix A is
full rank, thus we have r = Nt . This implies that the achiev-
able symbol error performance of the 3-D STSK system is
dominated by the value of DMD.

Furthermore, given that A is full rank, D can be equiv-
alently written as (18), as shown at the top of the next
page according to [29] and with the aid of (16). Therefore,
the parameters employed by (18), namely both the MED and
the constellation symbol’s power ρl defined by

ρl = slsHl = ‖sl‖
2, l = 1, · · · ,L, (19)
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D =


[(sl − sl′ )(sl − sl′ )H ]Nt det(AqAH

q ), for E1
(slsHl )

Nt det[(Aq − Aq′ )(Aq − Aq′ )H ], for E2
det[(Aq ⊗ sl − Aq′ ⊗ sl′ )(Aq ⊗ sl − Aq′ ⊗ sl′ )H ], for E3

(18)

can be used as two key performance indicators for the pro-
posed STSK system, as to be revealed in Section V.

D. DCMC CAPACITY
The DCMC capacity is restricted to a given type of constella-
tions, and it is different from Shannon capacity which is based
on continuous-input continuous-output memoryless (CCMC)
channels. The DCMC capacity defined for MIMO chan-
nels in conjunction with MD constellations can be found
in [30]. Moreover, the DCMC capacity of a conventional
STSK scheme is developed in [2] as

CDCMC

=
1
TB

max
p(K1,1),··· ,p(KQ,L )

∑
q,l

∫
∞

−∞

· · ·

∫
∞

−∞

p(Y|Kq,l)

· p(Kq,l) log2

 p(Y|Kq,l)∑
q′,l′

p(Y|Kq′,l′ )p(Kq′,l′ )

dY (bit/symbol),

(20)

where the conditional probability for 2-D constellations is
formulated by

p(Y|Kq,l) =
1

(πN0)NrTB
exp

−
∥∥∥Y−HχKq,l

∥∥∥2
N0

 . (21)

Assume that all legitimate symbols for transmissions are
equiprobable, then we have p(Kq,l) =

1
Q·L (q =

1, · · · ,Q; l = 1, · · · ,L). Next, through replacing the inte-
gration in (20) by expectation, we can obtain

CDCMC =
1
TB

[
log2 (Q · L)−

1
Q · L

]

·

∑
q,l

E

log2
∑
q′,l′

exp
(
9
q′,l′

q,l

)∣∣Kq′,l′

. (22)

Thanks to a compatible signal structure, the DCMC capac-
ity of the proposed 3-D STSK system can be computed by
using its 2-D version given in (22), with the variable 9q′,l′

q,l
modified as (23), as shown at the top of the next page.
Depending on the value of R, the signal matrix Kq,l in (23)
associated with the 3-D STSK mode should follow the defi-
nition in (11) or (12). Note that the derived DCMC capacity
will be exploited for the optimization process in Section III.

III. 3-D STSK OPTIMIZATION
Based on the new 3-D STSK framework introduced in
Section II, we now propose two optimization algorithms

for improving the achievable performances of 3-D STSK
systems.

A. 3-D JOINT OPTIMIZATION
Recall from (18) that both the signal constellation and the
DMS affect the DMD, and thus have an impact on the sys-
tem’s performance. Joint optimization on both domains helps
to exploit maximal DOF from these aspects for potential
performance enhancements. The joint optimization algorithm
for 2-D STSK in terms of maximizing the DCMC capac-
ity based on the SCG principle [21] can achieve a good
tradeoff between convergence speed and computational com-
plexity [31]. Inspired by the approach targeting 2-D constel-
lations [21], in the sequel we extend it to 3-D STSK systems
as the new 3-D joint optimization (3DJO) algorithm.

More specifically, we first randomly generate NRD
constellations and the corresponding DMSs, and then
compute the DCMC capacity for each DMS-constellation
pair (DCP). Naturally, the DCP yielding the maximal
capacity will be identified, which includes the initial can-
didate DMS χ (1) defined in (10) and the initial candi-
date constellation �(1). Next, we calculate the gradients
F(1, 1) = ∇χCDCMC(χ (1), �(1)) ∈ CNtTB×Q and J(1, 1) =
∇�CDCMC(χ (1), �(1)) ∈ C3×L , where the numbers in the
round brackets of F(1, 1) and J(1, 1) denote the DMS index
and the constellation index, respectively.Moreover, we define
the gradient operators ∇χ =

[
∂

∂[(χ ):,1]
· · ·

∂
∂[(χ ):,Q]

]
and ∇� =[

∂
∂[(�):,1]

· · ·
∂

∂[(�):,L ]

]
.

Then, we set the initial search directions, namely D(1) =
F(1, 1) from the DMS aspect, and G(1) = J(1, 1) from the
constellation aspect. During the iterative processing proce-
dure, based on a finite positive step µ, new constellations and
DMSs are simultaneously generated towards the iteratively
updated search directions and then normalized. An averaging
window of size Lc, where Lc is a positive integer, is used
for facilitating the termination of the iterative search. After
the algorithm terminates, the DMS and the constellation gen-
erated in the final iteration are considered as the final joint
solution. The 3DJO algorithm is outlined in Algorithm 1.

If we define ∇χ [m] = ∂
∂[(χ ):,m]

and ∇�[k] = ∂
∂[(�):,k ]

, then
according to [21], the theoretical value of ∇χ [m]CDCMC is

∇χ [m]CDCMC

=−
1

TBQL
E
[ Q∑
q=1

L∑
l=1

∑Q
q′=1

∑L
l′=1 exp(9

q′,l′

q,l )∇χ [m]9
q′,l′

q,l

ln 2 ·
∑Q

q′=1

∑L
l′=1 exp(9

q′,l′
q,l )

]
.

(24)
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9
q′,l′

q,l =
1
N0

R∑
v=1

{
−

∥∥∥Hχ[(Kq,l):,v − (Kq′,l′ ):,v
]
+ Z[v]

∥∥∥2 + ∥∥∥Z[v]∥∥∥2}

=
1
N0

Nr∑
i=1

R∑
v=1

{
−

∥∥∥(Hχ )i,:[(Kq,l):,v − (Kq′,l′ ):,v
]
+ (Z[v])i,:

∥∥∥2 + ∥∥∥(Z[v])i,:∥∥∥2} (23)

Algorithm 1 3-D Joint Optimization (3DJO) Algorithm

1: Input: χ (1), �(1), D(1), G(1), µ > 0, ε > 0, Lc ∈ Z+,
β(1) = ‖F(1, 1)‖ + ‖J(1, 1)‖, i = 1

2: repeat
3: χ (i+ 1) = χ (i)+ µD(i)
4: [χ (i+ 1)]:,q =

√
TB

[χ (i+1)]:,q
‖[χ (i+1)]:,q‖

(q = 1, · · · ,Q)
5: �(i+ 1) = �(i)+ µRe{G(i)}
6: �(i+ 1) =

√
L �(i+1)
‖�(i+1)‖

7: φi =
‖F(i+1,i+1)‖2

‖F(i,i+1)‖2
8: D(i+ 1) = φiD(i)+ F(i+ 1, i+ 1)
9: ψi =

‖J(i+1,i+1)‖2

‖J(i,i+1)‖2
10: G(i+ 1) = ψiG(i)+ J(i+ 1, i+ 1)
11: β(i+ 1) = ‖F(i+ 1, i+ 1)‖ + ‖J(i+ 1, i+ 1)‖
12: i = i+ 1
13: if i < 2Lc then
14: goto 3
15: end if
16: until ε > 1

Lc

∣∣∣∑i
k=i−Lc+1 β(k)−

∑i−Lc
k=i−2Lc+1

β(k)
∣∣∣

17: Output: Joint solution {χ (i), �(i)}

In (24), note that the theoretical gradients ∇χ [m]9
q′,l′

q,l

(m = 1, · · · ,Q) for 3-D STSK, where 9
q′,l′

q,l is defined
in (23) with R = 3, need to be computed first by

∇χ [m]9
q′,l′

q,l

= −
1
N0

3∑
v=1

∇χ [m]

{
Hχ

[
(Kq,l):,v − (Kq′,l′ ):,v

]
+ Z[v]

}H
×

{
Hχ

[
(Kq,l):,v − (Kq′,l′ ):,v

]
+ Z[v]

}
= −

2
N0

3∑
v=1

[
(Kq,l)H:,v − (Kq′,l′ )

H
:,v

]
:,m

H
H

×

{
Hχ

[
(Kq,l):,v − (Kq′,l′ ):,v

]
+ Z[v]

}
. (25)

Through a similar way as (24), the value of ∇�[k]CDCMC can
be derived, where ∇�[k]9

q′,l′

q,l (k = 1, · · · ,L) is given by

∇�[k]9
q′,l′

q,l = −
2
N0

{
δk,l(Hχ ):,q − δk,l′ (Hχ ):,q′

}H
×

{
Hχ (Kq,l −Kq′,l′ )+ Z

}
, (26)

and δk,l is defined as

δk,l =

{
1, k = l
0, k 6= l.

(27)

As seen in Line 16 of Algorithm 1, a small positive parame-
ter ε is exploited in the termination criterion of 3DJO. In order
to track the convergence of 3DJO, a sliding window of size
2Lc is invoked, where the block of the latest Lc values of β,
and the preceding block of the same size, are respectively
averaged and the difference between them is calculated. If the
difference is smaller than ε, convergence is detected and the
3DJO algorithm terminates. The computational complexity
of Algorithm 1 measured in terms of the number of real
multiplications, is on the order of O(NrTBRQ3L2(L + Q +
NtTB)NmcNth), where Nmc is the number of Monte Carlo
samples used to approximate the expectation in (24), and Nth
is the maximum number of iterations.

Furthermore, it is worth mentioning that Algorithm 1 is
only applicable to R3 3-D STSK for the following reasons.
The search direction G(i) associated with the constellation
aspect is generally complex-valued, while the constellation
�(i) to be optimized is either real (R3 mode) or partly real
(R2 mode). Thus, gradient projection is naturally needed in
order to match the data types ofG(i) and�(i) in Algorithm 1.
For R3 3-D STSK systems, the constellation �(i) contains
real symbols only, hence theRe{·} operation seen in Line 5 of
Algorithm 1 is invoked to forceG(i) to be real. This operation
may be considered as projecting the search direction G(i)
onto a lower-dimensional space without diverging from the
original direction.

However, in R2 3-D STSK systems where transformed
constellations exemplified in (2) are used, the first and second
rows of�(i) are complex and real, respectively. If the gradient
projection operation only forces the second row of G(i) to be
real while keeping the first row of complex data unchanged,
the overall search direction may become somewhat rotated,
which might result in some divergence of the optimization
process. Hence, the 3DJO algorithm may not be directly
applicable to R2 3-D STSK as to R3 3-D STSK.

Nonetheless, in fact the jointly optimized DCP generated
by 3DJO for R3 3-D STSK, can also be employed in R2
3-D STSK for performance enhancements, as evidenced in
Section V. Having said that, we further introduce the so-
called OCCS algorithm designed particularly for R2 3-D
STSK, as detailed next.

B. OPTIMAL COORDINATE COMBINATION SEARCH
Recall that in R2 3-D STSK, the transformed constellation
symbols are created by combining the coordinates of 3-D
symbols in a given 3-D constellation, as indicated by (2).
More explicitly, for any given 3-D constellation to be used in
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Algorithm 2 Optimal Coordinate Combination
Search (OCCS) Algorithm
1: Input: C, NC and i = 1
2: repeat
3: Select C(i), and for all legitimate values of l, l ′, q and

q′, compute all possible sets:
2 = { D | E1 or E2 or E3 }, where Ej (j = 1, 2, 3) are
defined in (16) and D is computed using (14)

4: Dmin(i) = min(2)
5: i = i+ 1
6: until i > NC
7: mDmin = arg

i
{max[Dmin(i)]}

8: Output: Optimal coordinate combination C(mDmin )

TABLE 1. The minimal DMD values Dmin computed for coordinate
combinations upon all values of q and l , using 3-D constellations
16CIC [14] and 16RCIC [15] in R2 3-D STSK.

R2 3-D STSK, the values of ρl defined in (19) and the MED
may vary subjected to the specific transformed constellation
employed, or equivalently to the arbitrary legitimate coor-
dinate combinations representing the transformed symbols.
Hence, we opt to minimize the PEP upper bound of (17),
which is affected by the DMD, as discussed in Section II-C.
This clue therefore inspires us tomaximize theminimal DMD
through appropriate selection of coordination combinations
for R2 3-D STSK, yielding the proposed OCCS algorithm
described by Algorithm 2, where Dmin is the minimal DMD,
C is the set of all coordinate combinations suggesting how the
coordinates are combined with each other, and NC is the car-
dinality of C. The computational complexity of Algorithm 2
is on the order of O(Q2L2TBRN 4

t N !), where N = 3 is the
constellation dimensionality.

As an example, in Table 1 we summarize the results com-
puted for a R2 3-D STSK system employing the 16CIC [14]
and 16RCIC [15] constellations of Fig. 1. Note that in the
coordinate combinations seen in Table 1, the power normal-
ization factors {kx , ky, kz} mentioned in Section II-A are not
shown for notation simplicity.

From Table 1, we can see that for 16CIC, the values of
Dmin are the same for all coordinate combinations. This is
expected, since the structure of this specific 3-D constella-
tion is symmetric from the perspectives of coordinate axes
−→x , −→y and −→z , as seen in Fig. 1. In contrast, note that for
the 16RCIC-aided R2 3-D STSK, the minimal DMD values
associated with combinations (x + jy, z) and (y + jx, z) are

larger than those associated with other combinations. This
fact indicates that these two specific combinations are the
best in terms of the DMD criterion under the given R2 3-D
STSK configuration. It also implies that the proposed OCCS
algorithm is beneficial for 3-D constellations having irregular
or asymmetric structures. Numerical results validating our
arguments based on Table 1 are provided in Section V. Note
however that OCCS does not apply to R3 3-D STSK systems,
where no transformed constellation can be applied.

IV. EXTENSION TO MD STSK
In this section, the proposed 3-D STSK framework, the 3DJO
as well as the OCCS techniques are extended and generalized
to MD STSK systems, followed by the complexity analysis.

A. MD STSK FRAMEWORK
MD STSK employs an N -D constellation. We reuse the nota-
tion of (Nt ,Nr ,TB,Q,R) to represent MD STSK configura-
tions. Similar to 3-D STSK which supports two transmission
modes of R2 and R3, in MD STSK we have two transmission
modes of RN and RdN2 e. More explicitly, the RN scheme
divides the N -D symbol duration TRN

s into N equal-sized
time slots, each accommodating one coordinate of a specific
N -D symbol. In contrast, the RdN2 e scheme combines two
coordinates of the N -D symbol into a transformed complex
constellation symbol. If N is odd, then the last time slot will
be allocated the only remaining coordinate as a real symbol,
otherwise each time slot will be allocated a complex symbol
formed by a coordinate pair. Each time slot has the same
duration Ts, thus an N -D symbol will require N -fold and
approximately N

2 -fold of transmission time for RN and RdN2 e
modes, respectively, as compared to a 2-D symbol. Here we
omit the mathematical model of N -D STSK, since it can be
readily extended from 3-D STSK.

Furthermore, the formulas for computing the DCMC
capacity ofMDSTSK are consistent with (22) and (23).More
specifically, in (23), we may set R = N and R = dN2 e for
computing the DCMC capacity of RN and RdN2 e N -D STSK
systems, respectively.

B. OPTIMIZED MD STSK
Thanks to the similar signal structure, the OCCS algorithm
developed for R2 3-D STSK in Section III-B can be directly
applied to RdN2 eN -D STSKwith appropriately selected coor-
dinate combinations.

On the other hand, the 3DJO algorithm of Section III-A can
be extended to the so-called MD joint optimization (MDJO)
algorithm without significant changes. To elaborate further,
Algorithm 1 can be readily reused in RN N -D STSK and in
RdN2 eN -D STSKwithN being even, where in the latter case,
�(i) seen in Algorithm 1 becomes a pure complex matrix and
thus Line 5 of Algorithm 1 should be changed to

�(i+ 1) = �(i)+ µG(i). (28)

When N is odd in RdN2 e N -D STSK, for similar reasons as
the R2 3-D STSK case, MDJO is not directly applicable.
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However, the N -D constellations optimized by MDJO tar-
geting the RN mode can also be used for improving the
performance of RdN2 e mode, where OCCS can always be
enabled for achieving additional gains.

Concerning the proposed MDJO algorithm for RN
(N = 4, 5, 6, · · · ) and RdN2 e (N = 4, 6, 8, · · · ) systems,

where we have R = N and R = N
2 respectively, ∇m9

q′,l′

q,l
of (25) should be generalized to

∇χ [m]9
q′,l′

q,l = −
2
N0

R∑
v=1

[
(Kq,l)H:,v − (Kq′,l′ )

H
:,v

]
:,m

H
H

×

[
Hχ [(Kq,l):,v − (Kq′,l′ ):,v]+ Z[v]

]
. (29)

C. COMPLEXITY ANALYSIS
Assuming that the ML detection is invoked at the receiver,
the computational complexity per bit measured by the number
of real multiplications in conventional 2-D STSK can be
derived by [1]

C2D =
NrTBQ(4NtTB + 6L)

log2(QL)
, (30)

where 4NtTBNrTBQ real multiplications are needed for com-
puting H(i)χ , 4NrTBQL real multiplications are needed for
computing s(i)l [v]

(
H(i)χ

)
, and 2NrTBQL real multiplica-

tions are needed for computing the vector norm in (13) with
R = 1 for the 2-D case.
Note that we have assumed that one complex multiplica-

tion and one computation of the absolute value of a complex
number are equivalent to four and two real multiplications,
respectively. Thus, given a 2-D constellation, the term s(i)l [v]χ
can be computed offline, since it is invariant to CSI. This
computation takes 4NtTBQL real multiplications once for all,
since we can store the offline results in an LUT for later
use. Additionally, another 4NtTBNrTBQ and 2NrTBQL real
multiplications are needed for computing s(i)l [v]

(
H(i)χ

)
and

the vector norm, respectively.
For the N -D case, the computational complexity for the

repeated process is the same as that in the 2-D case, given that
the STSK codewords have the same period. To build the LUT,
2NtT BQLN = 2NtTBQL real multiplications are needed for
RN MD STSK, where T B = TB/N is the number of columns
in a DM for RN . For the RdN2 e case, with the time slot T̃B
satisfying dN2 eT̃B = TB, we have the following two cases:

1) if N is odd, then a number of 4Nt T̃BbN/2cQL +
2Nt T̃BQL = 4NtTBQL−2Nt T̃BQL real multiplications
are needed.

2) ifN is even, the required number of real multiplications
is 4NtTBQL.

In the MD STSK family, the computational complexity
varies, though the RN -based schemes have lower complex-
ities than the RdN2 e-based counterparts. In any case, the pro-
posed MD STSK scheme operates as an enhancement to
conventional 2-D STSK systems, imposing little additional
computational complexity for signal detection.

FIGURE 4. SER performance comparison of various coordinate
combinations for R2 3-D STSK system employing 16CIC or 16RCIC.

V. PERFORMANCE RESULTS
In this section, link-level performance results of 3-D/N -D
STSK systems with various configurations are provided and
compared with their conventional 2-D counterparts. The
design tradeoff between time diversity, link performance
and constellation dimensionality is also discussed. Since
many of the parameters employed by the STSK systems
are mutually dependent, some of them, such as the con-
stellation size, the numbers of transmit and receive anten-
nas, and the cardinality of DMS are fixed for all schemes
investigated, in order to facilitate fair comparisons between
various schemes and/or configurations. Furthermore, the ML
detector and i.i.d. frequency-flat Rayleigh fading channels
with perfect CSI are assumed.

As our first investigation, Fig. 4 shows the impact from
the OCCS algorithm in an example 3-D STSK(3,2,2,16,2)
system, where the 3-D constellation 16CIC or 16RCIC given
in Fig. 1 is employed. As expected, it is observed from
Fig. 4 that all coordinate combinations for 16CIC provide
a similar performance because of the symmetric structure
of the specific constellation. In contrast, it reveals that the
coordinate combinations (x+ jy, z) and (y+ jx, z) produce the
best SER performance for 16RCIC, which complies with our
theoretical analysis in Section III-B. Such results prove that
the additional new DOF extracted from the coordinate aspect
indeed helps to further improve the achievable performance
of 3-D STSK systems for selected 3-D constellations. In the
remaining part of this section, we will use the coordinate
combination of (x + jy, z) to generate the results for the R2
3-D STSK system employing 16CIC or 16RCIC.

Next, in Fig. 5 we compare the SER performances of 3-D
STSK and conventional 2-D STSK systems using 16-ary
constellations, namely the popular 2-D 16-ary quadrature
amplitude modulation (16QAM) and 3-D 16CIC/16RCIC.
The configurations for all schemes yielding the same SE
of 4/3 bps/Hz are detailed in Table 2. The DMS for each
scheme was obtained by random search according to the
rank-and-determinant criterion [28]. Fig. 5 shows that given
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FIGURE 5. Performance comparison of 2-D STSK and 3-D STSK systems in
terms of SER.

TABLE 2. Configurations for 2-D/3-D STSK without joint optimization.

the same constellation, the R2-aided scheme outperforms the
R3 arrangement. Furthermore, at the same SE of 4/3 bps/Hz,
employing the 3-D 16RCIC constellation helps to improve
the system’s link robustness in comparison to the conven-
tional 2-D scheme under low-to-medium SNRs below 10 dB.
However, note that all the 3-D schemes in Fig. 5 do not
employ the 3DJO algorithm in Section III-A. This in fact
limits their achievable system performances, especially for
R3 16CIC 3-D STSK, which performs even worse than the
2-D scheme.

Hence, in a further study, we evaluate the performances
of the STSK systems supporting the proposed 3DJO, MDJO
and/or OCCS algorithms. As an example, we set N = {3, 4}
in theN -D STSK schemes and fix the size of constellations to
16, while assuming an SE of 4/3 bps/Hz or 2 bps/Hz. Detailed
configurations are given in Table 3, where the conventional

FIGURE 6. Performance comparison of 3-D STSK and 4-D STSK systems in
terms of SER.

joint optimization approach [21] is applied to the 2-D STSK
benchmark.

Recall from Section IV-B that MDJO is only applicable to
RN , or to RdN2 e with N being even. In both cases, MDJO
is referred to as direct-MDJO (dMDJO), which is applicable
to all N -D STSK schemes in Table 3, except the R2 3-D
STSK scheme which is unable to exploit MDJO due to its
specific asymmetric structure, as pointed out in Section IV-B.
Nonetheless, we apply the 3-D DCP optimized through
MDJO and invoke OCCS in R2 3-D STSK, where such a
combination is referred to as indirect MDJO with OCCS
(iMDJO-OCCS). More specifically, in the MDJO algorithm
we setNRD = 100,µ = 5, Lc = 15 and ε = 0.001. In order to
avoid local convergence, φi and ψi were set to 0 after every
10 iterations, such that only the current gradients are used
for updating the constellation andDMS. Through preliminary
tests, interestingly, we found that the performances of various
MD DCPs generated by MDJO are not very sensitive to a
wide range of SNR values. Hence, in full simulations we
opted for optimizing the MD DCPs with a fixed SNR value
of 0 dB for all STSK configurations invoking MDJO.

Based on Table 3, we plot the SER performances of various
STSK schemes in Fig. 6. We can see that for the same
targeted SE of 4/3 or 2 bps/Hz, the optimized MD STSK
significantly outperforms the optimized 2-D STSK. These
results imply that given the same STSK codeword duration,

TABLE 3. Configurations for 2-D/3-D/4-D STSK with joint optimization.
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TABLE 4. Comparison of MED and ρmin values of various 3-D constellations assuming the SE of 4/3 bps/Hz.

FIGURE 7. Performance comparison of 3-D STSK and 4-D STSK systems in
terms of SER over a 28GHz mmW channel.

trading the time diversity for signal dimensionality can help
to achieve a better link performance for STSK. For example,
in both 3-D STSK(3,2,2,16,3) and 2-D STSK(3,2,6,16,1),
the STSK codeword matrices have the same dimension of
3× 6, yielding the same STSK codeword duration. However,
a 3-D STSK(3,2,2,16,3) codeword is produced by a 3-D
symbol and a 3 × 2 DM, while a 2-D STSK(3,2,6,16,1)
codeword is generated by a 2-D complex symbol and a larger
3 × 6 DM. As a result, 3-D STSK(3,2,2,16,3) outperforms
2-D STSK(3,2,6,16,1), as evidenced in Fig. 6.

On the other hand, performance improvements may be
achieved, when we trade for higher time diversity by com-
bining the coordinates of signal points in high dimensional
constellations through the proposed OCCS technique. As evi-
denced from Fig. 6, 3-D STSK(3,2,3,16,2) outperforms 3-D
STSK(3,2,2,16,3), and 4-D STSK(3,2,2,16,2) outperforms
4-D STSK(3,2,1,16,4), respectively. Note that as mentioned
in Section IV-B, dMDJO cannot be directly applied to R2
3-D schemes. However, with OCCS, we can not only achieve
such performance gains dispensing with dMDJO, but also
save the offline efforts for DCP optimization. From Fig. 6,
it is shown that performances of R2 4-D dMDJO and R2 4-D
iMDJO-OCCS are very similar. This implies that with the aid
of OCCS, we may directly apply the coordinate-combined
version of the specific DCP which is optimized for R4 4-D,
to the R2 4-D scheme without resorting to dMDJO.

Moreover, Fig. 6 shows that under a similar STSK
configuration, increasing the constellation’s dimension from
3-D to 4-D yields a better performance.More explicitly, when
MDJO is invoked, R2 4-D STSK outperforms R2 3-D STSK.
However, note that R4 4-D STSK performs worse than its

2-D counterpart when SNR exceeds 10 dB. This phenomenon
suggests that there exists some optimal tradeoff between time
diversity and signal dimensionality in MD STSK systems,
which requires further studies.

Recall from the end of Section II-C that both the MED and
the minimum 3-D symbol power, which we define here as
ρmin = minl(ρl) with ρl (l = 1, · · · ,L) given by (19), affect
the overall performance of STSK systems. As an example,
we summarize both metrics for the 3-D 16CIC/16RCIC and
3-D dMDJO/iMDJO-OCCS R2 constellations in Table 4,
where all schemes have the same SE of 4/3 bps/Hz. From the
table, we observe that under the same transmission mode R,
the new constellations generated by the proposed optimiza-
tion algorithms typically have larger MED and ρmin values
than the conventional 16CIC/16RCIC constellations. This
in turn brings the performance benefits of our proposed
schemes, as exhibited by the simulation results. Therefore,
wemay conclude that given a fixed STSK codeword duration,
the proposed MD STSK schemes offer a beneficial way to
strike for an effective tradeoff among various design param-
eters, such as the signal dimensionality, the targeted link
performance as well as time diversity.

In addition, in Fig. V we plot the SER performance over
the more realistic millimeter wave (mmW) channel model
offered by the NYUSIM simulator [32], where uniform linear
arrays with 3 transmit antennas and 2 receive antennas are
used.We assume a carrier frequency of 28GHz under the non-
line-of-sight (NLOS) environment with the distance between
the transmitter and the receiver ranging from 10m to 200m.
Other parameters remain to be their default values set by
the channel model. It is observed from Fig. V that although
our proposed scheme is not specifically optimized for oper-
ations in such an environment, it still performs better than
the reference arrangements. Further designs of new schemes
optimized for mmW channels with the aid of wideband tech-
nologies, such as OFDM, will be part of our future endeavors.

VI. CONCLUSION
In this paper, a MD constellation aided STSK frame-
work exploiting different transmission modes was proposed.
Furthermore, two optimization algorithms, namely MDJO
and OCCS, were designed to improve the attainable perfor-
mances of MD STSK. Both theoretical analyses and simu-
lation results were provided. It was shown that the proposed
scheme outperformed conventional 2-D STSK systems and
could strike for a beneficial tradeoff among various design
parameters, such as the signal dimensionality, the targeted
link performance as well as time diversity, thanks to its
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optimized DCP. Our future work will consider an adaptive
mechanism switching between different STSK configura-
tions, in an attempt to approach the optimal tradeoff with
respect to the various aspects.
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