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ABSTRACT Breast cancer identification is the first and foremost step in the journey of proper diagnosis
and treatment of this disease. Therefore, many medical examinations and applications are devised and used
including different approaches for breast imaging. For medical image analysis, nonparametric algorithm
has been used. This work focuses on improving breast cancer recognition in mammogram images using
a nonparametric approach based on image pixel intensities (IBCNP). A nonparametric approach is a new
expression to deal with uncertainty. In this paper, the nonparametric approach is used to solve the uncertainty
in breast cancer detection; uncertainty means no one knows for sure how to detect breast cancer without
imaging, which creates an uncertainty for the oncologists. This paper investigates the feasibility of applying
the nonparametric approach in mammography (x-ray breast imaging) to detect and hence diagnose and treat
breast cancer. Analysing breast images is a very complicated process and requires distinguishing normal and
malignant pixel intensities. Maximizing the shared data between image pixel intensities and the desired areas
(infected region) is defined as the identification problem, subject to a constraint on the total size of the desired
area borders. As part of this research, a comparative study was conducted on the proposed algorithm, Breast
Cancer Cells Infestation based on a set of partial differential equations (PDEs), Incoherent Motion in Breast
Cancer (IMBC), Global Dynamics of a Breast Cancer Competition Model using five simple differential
equations (SDFs), and Estimation of Intensity Using Nonparametric Method (EINP) techniques. These five
techniques of medical image segmentation are applied to 156 different mammogram images to obtain the
exact measurement of the efficiency of the identification process. This process uses multiple performance
metrics such as the overall mammogram image quality (Q), the dice similarity coefficient (DSC), Peak signal-
to-noise ratio (PSNR) metric, Haussdorff Distance (HD), and probability of tumor detection (PTD). This
paper assumes lack of knowledge of the probability densities in relation to pixel intensities of an image
within a given area. It proposes an estimation of non-parametric density that formulates the theoretical data
optimization problem by applying curve evolutionmethods and deriving the correlated gradient flows. It uses
level-set techniques to achieve the resulting evolution. The algorithm was applied to 156 sets of different
mammogram images from twelve groups with both malignant and/or normal. The experimental findings
showed that the proposed algorithm is 94.937% accurately effective in breast cancer detection.

INDEX TERMS Mammograms image, pixel intensities, nonparametric technique, breast cancer detection.

I. INTRODUCTION
Breast cancer is considered as one of the main health con-
cerns amongst women around the world. Prevalence of breast
cancer has increased lately. This issue is particularly critical

The associate editor coordinating the review of this manuscript and
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given inadequate public health awareness. Recent statis-
tics [1] show that breast cancer is one of the top causes
of malignant-related deaths amongst women at the age of
40-70 years. Therefore, it is crucial to best utilize imaging
systems and laboratory analysis in order to accurately identify
breast cancer. When a breast cancer is detected early, there
is a higher chance for proper treatment. Hence, it is highly
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important that new effective methods are introduced and
developed to detect and investigate breast cancer in early
stages. Accurate identification of breast cancer tissues in
early stages leads to increase survival rate and save many
people live.

In the first stage of diagnosis, a very critical procedure
in image analysis is sampling that is present in multiple
implementations, like format identification, object discovery,
and categorization in medical imaging. Image sampling has
many methods in order to enhance the quality, and it has
multiple uses categorized by an assortment of functions con-
cerned by the intensity of pixels. In such method, distinct
objects have distinct oscillation disseminations that they are
distinguished according to the regular and average divergence
of each dissemination.

Several research groups attempted to develop a math-
ematical model for breast cancer (Abernathy et al. [2],
Cho et al. [3], Knútsdóttir et al. [4], and Simmons et al. [5]).
Simmons, Alex, Pamela Burrage, Sunil, and Kevin presented
a brief survey of breast cancer, and mathematical modelling
and simulation roles in separating apart the underlying bio-
physical procedures [5]. Knútsdóttir et al. introduced a set of
partial differential equations (PDEs) to determine the aggre-
gation conditions [4]. In that work, the authors used cell-
based discrete 3D simulation to track the movement and fates
of individual cells through aggregation. The linear stability
analysis of the PDE model shows that a reduction in chemo-
taxis density, and chemical secretion of cells or an increase
in chemical degradation in the model could prevent the cells
spontaneous aggregation. Discrete model simulations show
that the ratio of tumor cells tomacrophages in aggregates rises
when the epidermal growth factor (EGF) secretion parameter
is improved. Cho et al. compared the sampling strategies and
fitting methods, including the implementation of enhanced b-
value selection for optimized estimation of intra voxel inco-
herent indication parameters in breast cancer [3].

Abernathy introduced a system of five simple differential
equations (SDFs) that take into account population dynam-
ics of tumor cells, cancer stem-cells, and healthy ones [2].
To ensure the determination of the cancer in the absence of
the immune cells, the author obtained adequate conditions on
the values of the parameters, and when the immune response
is included, elimination of the cancer occurs.

Colom et al. presented a non-parametric technique that
estimates noise depending on the intensity and frequency
of an image [6]. The noise model was evaluated on image
pixels and can be used consistently in all pixel-based noise
reduction techniques. The technique was applied to cases
where the image noise pattern in scanned photos and JPEG
images were not allowed. The image noise model and its
evaluation method were validated by comparing the approx-
imations with the true-ground curve associated with the
raw and JPEG images. De-noising experiments on digitized
images have confirmed the effectiveness of the evaluation
technique. Diamantas et al. introduced a technique based on
a single static camera to solve the problem of background

subtraction [7]. In addition to the practical sharpness of fore-
ground motion objects, background scenes were an important
stage in tracking and classifying objects in dynamic and
complex environments.

The technique is based on the sequential average of the dis-
tinct pixels on a small learning sample and the pixel density
modeling with a log-Normal intensity function that gives the
greatest convulsions of the divergence among the background
pixels. Schwartz proposed a technique for capturing changes
in aerial images taken at different times in a scene, possibly
with dissimilar cameras and from different points of view.
This is a crucial stage for computer vision and other image
processing applications such as visual surveillance, remote
sensing and civil infrastructure [8]. Unlike most pixel-based
approaches, that study combines contextual data and core
density evaluations to model and recognize changes in the
image areas.

Image segmentation is done based on different tech-
niques (Ronneberger et al. [9], Farag et al. [10], and
Salem et al. [11]). Segmentation methods which can be clas-
sified based on functions applied to the intensity value of
the pixel in the desired image exist. The main concept of
these techniques is that different frequency distributions of
different objects can be distinguished according to mean and
standard deviation (Chini et al. [12], Zhou et al. [13], and
Niu et al. [14]).
A network and training strategy are based on the inten-

sive use of data development to make data more efficient is
presented in (Ronneberger et al. [9] and Jordan et al. [15]).
The architecture has a narrowing path to capture context,
and a symmetrical extension path allows accurate position.
A computerized bottom-up technique was introduced for
pancreas identification in calculated tomography images,
Farag et al. [10] and Taruttis and Ntziachristos [16]). The
technique generates cascade of hierarchical data dissemina-
tion by categorizing image areas on dissimilar resolutions
and (segments) super pixels. It introduces a partition-based
hierarchical approach, which transforms the parameters of
the distribution of two classes to different sizes of tiles [12].
In order to resolve the problem of geographic stability,
a global reference control scheme was introduced to filter
incorrect matches for copy recognition because it ignores the
global reference information of local institutions [13].

A new regional model of division of objects or struc-
tures in images was demonstrated in a window based on a
local intensity differences spatial distances to improve seg-
mentation results [14]. The technique uses local similarity
factor to extract the object margin while ensuring certain
noise robustness [17]. Spatial pattern recognition and char-
acterization of Ni concentrations was presented using digital
image processing for signs of Ni Topasol concentrations in
Europe [15], where moving average smoothing was applied
to the TIN-interpolated grid model to remove small irreg-
ularities. Emerging technology and recent biological and
emerging advances and potential clinical applications were
displayed in [16].
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There are many other techniques for image segmen-
tation, such as artificial neural networks, Mumford-Shah
(global optimization techniques), Region of Interested Grow-
ing (edge-based detection), and nonparametric approaches
based on curve evaluation technique.

Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, T. x (18)
presented an overview of Machine learning (ML) and Deep
Learning (DL) approaches with particular application for
breast cancer, which has a significant impact on the diagnos-
tic abilities of the Computer-Aided Design (CAD) systems.
They have used the Science databases, MEDLINE, Springer,
and Google Scholar in literature survey regarding Breast
Cancer Detection and Diagnosis Using Mammographic data.
In addition, they have captured studies in deep learning for the
past 5 years that have used mammogram dataset (18). In the
study, they found that heterogeneous breast densities make
masses more challenging to identify and classify compared
with calcifications (18).

Li, H., Mendel, K. R., Lan, L., et al., (19) discussed the
classification of breast cancer in digital mammography. In the
study, they focused on improving breast lesion classifica-
tion with digital mammography by using automatic lesion
segmentation and radiomic analysis. They applied radiomic
texture analysis to normal areas of interest in mammogram to
evaluate the mammographic parenchymal patterns (19).The
area under the receiver operating characteristic curve is used
to calculate the classification performance of Bayesian arti-
ficial neural network classifier for differentiating between
malignant and benign lesion (19).

Junior, G. B., da Rocha, S. V., et al., (20) discussed breast
cancer detection in mammography using geostatistics, spatial
diversity, and concave geometry. In their work, six radiolog-
ical features were selected (spiculation, margin sharpness,
size, roundness of all tumor characteristics and asymmetry
and beta power of the parenchymal feature set) over 50% of
the time during of the selection process of the characteristics
in the set of combined characteristics (20). They evaluated the
detection rate of each entity extraction using the Bearer vector
device in theMini-Mammographic Database (MIAS), Digital
Database for Screening Mammography (DDSM) databases,
with 74 and 621 mammograms respectively, which contain
at least one mass region. The classification performance is
calculated by using the detection rate of malignant tissue and
false-positive rate for MIAS and DDSM database (20).

In this paper, an improved non-parametric method is used
to discover breast cancers in medical images, with the pres-
ence of very limited information about the demographical
attributes of the interesting discovery districts. The pro-
posed approach includes the mutual information and non-
parametric density assessment, regarding the computation of
bar-chart, variations, averages to determine the covariation
arrays. The medical image under consideration is split into
multiple unclassified zones with distinct densities, which are
not known a priori, the issue related to nonparametric density
assessments is interpreted. Using curve assessment to set
quantity of curves amongst the unclassified zones afterwards,

with every curve splitting the region of the image into two
zones: internal zone and external zone. Then, the mutual
information is calculated. The energy function is computed
as multiphase zone is calculated, and the inclination drift
calculation of the image boundary is viewed to check the
location. Finally, the sampled medical image is obtained.

The proposed nonparametric approach is an accurate and
reliable technique. The resulting topographies were pro-
cessed using the method proposed by the paper, and then
compared with other methods. Such comparison showed that
the suggested algorithm is more accurate and faster. When
applied to many sets, the algorithm spotted the exact location
and size of breast cancer.

This paper is organized as follows: Section II presents
basic information of the proposed approach. Section III
shows curve evaluation approach that is based on energy
function optimization, Section IV illustrates the multiphase
mammogram segmentation technique, the regions of inter-
est segmentation using level-set functions and the perfor-
mance evaluation of mammogram segmentation methods.
The experimental results are presented in section V, using
medical images with real data and distribution varieties.
Section VI presents the case study of the proposed technique
to the medical images while the discussions of results shown
in section VII. Section VIII illustrates the performance eval-
uation and comparative results. Finally, Section IX concludes
the paper.

II. SEGMENTATION OF BREAST REGION IN
MAMMOGRAM
A. MAMMOGRAM BOUNDARY IDENTIFICATION
The proposed technique segments the image under test into
sets of regions based on pixel intensity levels in foreground
and background. The mammogram image is divided into n-
regions according to intensity levels for each region, where
G1,G2, . . . ,Gn signify the real unidentified areas, and the
intensity value at pixel y, signified by G(y), is pulled from
the ui if ui ∈ Gi, where uis are unidentified densities.
The target of segmenting the mammogram image by curve
estimation is to move a set of curves

{
EC1, . . . , ECm

}
(con-

sistently, a level- set functions {Q1, . . . ,Qm}) so that these
curvatures divide the mammogram domain into the real areas
G1,G2, . . . ,Gn. Each curvature Ci divides the mammogram
domain into two regions: the region inside the curve and
outside the curve. Consequently, the M-set of level func-
tions will segment mammogram image into 2m zones, each
of which is represented by marking of the M-set of level
functions in that section. For instance, if m = 2, the four
regions G++,G+−,G−+,G−− are as shown in Fig. 1.
The image pixel intensities is submitted as redundant zones

procedure F (y) with pixel index as a collection of multiple
topologically different elements based on intensity levels for
each region, as shown in Fig.2. The N-area image sampling
and the curve development approach are used to draw a
curve EC touching the boundary between Gi and Gj, the
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FIGURE 1. The areas G++,G+−, G−+, G−− divided by the curves( EC1,
EC2).

FIGURE 2. Explanation of n-regions, and the associated distributions
(Gmn, umn).

internal area of the curve G+ intersects at Gi and the external
area intersects at Gj. EC s function of t , time ingredient that
can be ignored, EC = EC(t). This splitting of the image region
produces a binary-label L EC (y) :G → {L+,L−}, which is an
ingredient of the mammogram region G to a set of two labels
{L+,L−}. L EC (x) = L+ if y∈Gi and L EC (y) = L− if y ∈ Gj.

B. MAMMOGRAM INTENSITY RECOGNITION
This section introduces the mutual data (MD) between the
label and the image intensity and discusses its properties.
Given the areas divided by the curves C ,

{
ECi
}m
i=1

, every
pixel in the mammogram is signified by y label, L − C .(y).
Also, a label LC :G→

{
Ls(i+),Ls(i−)

}
.

LC (y) = Ls(i+) if y ∈ Gs(i+), 1 ≤ i ≤ 2m−1 (1)

LC (y) = Ls(i−) if y ∈ Gs(i−), 2m−1 + 1 ≤ i ≤ 2m (2)

where s (i+) is the ith element in the set-level {L++···+, · · · ,
L+−···−} and s (i−) is the ith element in the set-level L++···+
· · · , L+−···−} . The proposed technique uses nonparametric
approach to categorize image pixels into sets of areaswith dif-
ferent intensity level. This method can identify the defected
areas in mammogram by calculating the value of m depends
on the number of high-intensity regions in the mammo-
gram image. For example, if m=3, then there are eigh areas
G+−−,G++−,G+−+,G+−−,G−++,G−+−,G−−+ G−−− as
shown in Fig. 3.

FIGURE 3. Explanation of the curves and intersection between them.

A pixel Y in G is randomly selected such that Y is a regu-
larly circulated random position in the mammogram domain
and the label L EC (y) is a random parameter that is based
on the curvature EC [21]–[24]. The values Ls(i+) and Ls(i−)

are taken with probability
∣∣Gs(i+)∣∣ / |G| and ∣∣Gs(i−)∣∣ / |G|,

respectively, where
∣∣Gs(i+)∣∣ signifies the area of the section

Gs(i+). Furthermore, the mammogram intensity G (Y ) is a
random parameter that is based on the real sections Gi, and
has the following density [21], [25]:

uG(y)(w) =
∑n

i=1
Pr (Y ∈Gi)uF(Y )|Y∈Gi (w) =

∑n

i=1

|Gi|
|G|

ui(w)

(3)

where w is a pretext for the densities. PF(Y ) is a combination
of uis due to the randomness of the pixel position Y . The
improbability of a pixel position being in Gi, signifies the
improbability of the intensity assumed at the pixel position.
The label L EC (Y ) includes some data about the previous
improbability, specifically Y , being inGi orGj. Subsequently,
the label L EC (Y ) can precisely decide whether Y ∈ Gi if less
improbability G(Y ) is developed, or additional details con-
cerning F (Y ) the description will have. The reciprocal data
M
(
F (Y ) :L EC (Y )

)
is used as a criterion of segmentation [26].

The mutual data is formally considered as

M
(
F (Y ) :L EC (Y )

)
= k (F (Y ))− k

(
F (Y ) |L EC (Y )

)
= k (F (Y ))−

2m∑
i=1

Pr
(
L EC (Y ) = Ls(i+)

)
× k

(
F (Y ) |L EC (Y ) = Ls(i+)

)
×

∑2m

i=2m−1+1
Pr
(
L EC (Y ) = Ls(i−)

)
× k

(
F (Y ) |L EC (Y ) = Ls(i−)

)
(4)

where k(W ) is the difference in entropy of a random variable
W with support S and is calculated by:
k (W ) = −

∫
S uW (w) log uW (w)dw [27], [28]. Three

entropies in equation (2) are functions of uF(Y ),
uF (Y )|L EC (Y ) = Ls(i+) and uF(Y )|L EC (Y )=Ls(i+) , respectively.
The two restricted distributions are determined as follows

uF(Y )|L EC (Y )=Ls(i+) (w)

=

n∑
i=1

Pr
(
Y ∈ Gi |L EC (Y ) = Ls(i+)

)
uF(Y )|A∈Gi,L EC (Y )=Ls(i+)

(w)

=

n∑
i=1

∣∣Gs(i+) ∩ Gi∣∣∣∣Gs(i+)∣∣ ui (w) (5)

uF(Y )|L EC (Y )=Ls(i−) (w)
n∑
i=1

Pr
(
Y ∈ Gi |L EC (Y ) = Ls(i−)

)
uF(Y )|Y∈Gi,L EC (Y )=Ls(i−)

(w)

=

n∑
i=1

∣∣Gs(i−) ∩ Gi∣∣∣∣Gs(i−)∣∣ ui (w) (6)

Each dependent entropy calculates the heterogeneity
degree in each zone given by the curve EC . The more similar
the segmented regions, the greater the shared data, and the
restricted entropies, which is a qualified property for segmen-
tation [27], [28]. The mutual data is exploited if and only
if it is the true segmentation, if, Gs(i+)= Gi,Gs(i−)= Gj (or,
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equivalently Gs(i−)= Gi,Gs(i+)= Gj). Practically, we cannot
calculate the mutual data M

(
F (Y ) : L EC (Y )

)
because the

above computations included in the sections Gi and Gj, and
pixel intensities ui and uj are unknown to us [16], [ 18], [25].
In energy functionality, mutual data should be weighted

by the image area to represent the over-all mutual data
between the label and the image, since M

(
F (Y ) ;L EC (P)

)
matches to the influence of one pixel to the over-all infor-
mation. The subsequent energy is computed by

E
(
EC
)
= − |G| M̂

(
F (Y ) ;L EC (Y )

)
+ a

∮
EC
ds (7)

where
∮
EC ds is the total curve length and a is a scalar factor.

III. CURVE EVALUATION APPROACH BASED ON ENERGY
FUNCTION OPTIMIZATION
This section presents the derivation of the formula for the
curve evaluation to lessen the energy function. First, the eval-
uation of the restricted entropy conditions is illustrated using
the Parzen intensity evaluations based on non-parametric
[25], [29]. Then, the gradient flow for E

(
EC
)
is determined.

A. DIFFERENTIAL ENTROPY EVALUATION
Equation (4) is used to estimate the differential entropies.
Since k̂(G (Y )) in equation (4) is independent of the curvature
size, we see:

k̂
(
F (Y ) |L EC (Y ) = Ls(i+)

)
= −

1∣∣Gs(i+)∣∣
∫
Gs(i+)

log ûs(i+) (F (Y )) dy

= −
1∣∣Gs(i+)

∣∣
∫
Gs(i+)

log

(
1∣∣Gs(i+)

∣∣
∫
Gs(i+)

V (F (y)

− F(ŷ)
)
dŷ

)
dy (8)

It was found that k
(
F (Y ) |L EC (Y ) = Ls(i+)

)
contains the

predictable value of the approach of
us(i+) , uF(Y )|L EC (Y )=Ls(i+) , and using the kernel (w) =(
1
/
√
2πb2

)
e
−w2/

2b2 , where b is a scalar factor

k̂
(
F (Y ) |L EC (Y ) = Ls(i−)

)
= −

1∣∣Gs(i−)∣∣
∫
Gs(i−)

log ûs(i+) (F (Y ))

= −
1∣∣Gs(i−)∣∣

∫
Gs(i−)−

log

(
1∣∣Gs(i−)∣∣

∫
Gs(i−)

V (F (y)

− F(ŷ)
)
dŷ

)
dy (9)

Consequently, equations (8) and (9) have nested region
integrals. This work assumes an object inside a larger one so
that the desired region is an integral of the form

E
(
EC (t)

)
=

∫
G
f (ε (y, t)) du (10)

where ε (y, t) =
∫
G g(y, ŷ)dŷ and g does not based on EC

[21], [30], G is the range within the curvature EC . Therefore,
the integral of the area declines more quickly and is given by

∂ EC
∂t
= −

[
f
(
ε
(
EC
))
+

∫
G
f ′ (ε (y)) g(y, EC)dy

]
En (11)

where En is the unit vector outwardly. Note that f (ε (y, t)) in
equation (10) depends on the curve length EC .

B. MUTUAL DATA EVALUATION USING
NONPARAMETRIC TECHNIQUE
The nonparametric estimation of the reciprocal information
in the form of overlapping zone, as in equations (8) and (9),
is possible to easily assess using the overall energy function
(gradient-flow) E

(
EC
)
of equation (7). The E

(
EC
)
is written

as:

E
(
EC
)
= − |G| k̂ (F (Y ))+ E−

(
EC
)
+ E+

(
EC
)
+ a

∮
EC
ds

(12)

where the components E−
(
EC
)
and E+

(
EC
)
are given by

E−
(
EC
)
=

∑2m

i=2m−1+1
Es(i−)

(
EC
)
;

E+
(
EC
)
=

∑2m−1

i=1
Es(i+)

(
EC
)
.

Es(i+)
(
EC
)
= |G|Pr

(
L EC (Y )= Ls(i+)

)
× k

(
F (Y ) |L EC (Y ) = Ls(i+)

)
= −

∫
Gs(i+)

log

(
1∣∣Gs(i+)∣∣

∫
Gs(i+)

V (F (y)

− F(ŷ)
)
dŷ

)
dy

Subsequently, 1/
∣∣Gs(i+)∣∣ is based on the curvature, E+ are

separated into two integrals. The gradient flow for E+ is
computed as:

Es(i+) = E1
s(i+) + E

2
s(i+) (13)

where

E1
s(i+) = −

∫
Gs(i+)

log
∣∣Gs(i+)∣∣ dy = − ∣∣Gs(i+)∣∣ Log ∣∣Gs(i+)∣∣ ,

and

E2
s(i+) =

∫
Gs(i+)

log

(∫
Gs(i+)

V
(
F (y)− F

(
EC
))

dŷ

)
dy.

The gradient flow for E2
s(i+) is ∇ ECE

2
s(i+), given by:

∇ ECE
1
s(i+) = −∇ EC

∣∣Gs(i+)∣∣ log ∣∣Gs(i+)∣∣−∇ EC ∣∣Gs(i+)∣∣
=
(
1+ log

∣∣Gs(i+)∣∣) En (14)

∇ ECE
1
+ =

∑2m−1

i=1

(
1+ log

∣∣Gs(i+)∣∣) En.
∇ ECE+ = ∇ ECE

1
+ +∇ ECE

2
+ (15)
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where

∇ ECE+ =
∑2m−1

i=1

[
− 1+ log us(i+)

(
F( EC)

)
+

1∣∣Gs(i+)∣∣
∫
Gs(i+)

V (F (y)− F( EC))
ûs(i+)(F (y))

dy

]
En,

∇ ECE− =
∑2m

i=2m−1+1

[
1− log us(i−)

(
F( EC)

)
−

1∣∣Gs(i−)∣∣
∫
Gs(i−)

V (F (y)− F( EC))
ûs(i−)(F (y))

dy

]
En.

Then the gradient flow for E
(
EC
)
of (12) is obtainable as

follows:

∂ EC
∂t
=

∑2m−1

i=1

[
log us(i+)

(
F( EC)

)
+

1∣∣Gs(i+)∣∣
∫
Gs(i+)

V (F (y)− F( EC))
ûs(i+)(F (y))

dy

]
En

−

∑2m

i=2m−1+1

[
log us(i−)

(
F( EC)

)
+

1∣∣Gs(i−)∣∣
∫
Gs(i−)

V (F (y)− F( EC))
ûs(i−)(F (y))

dy

]
En− akEn

(16)

where −akEn is the gradient-flow for the length of the curva-
ture and k is the curve dimensions [21], [30].

In each iteration, the number of calculation takes pixels
O(A (|G+| + |G−|) + |G+|2 + |G−|2 + A (|G+| + |G−|) ∼
O
(
(number of pixels)2

)
[21], where A is the total pixels on

the curvature (the narrow-band size) [21], [30]. The cal-
culation of the first term at the set of pixels along the
curvature takes O (A(|G+| + |G−|)) time, the second term
takes O

(
|G+|2

)
time to calculate and store û+ (F (y)) for all

y ∈ G+ and the computation of the integration at the set of
points on the curvature takes O(M |R+|) time. Also, the third
term takes O(|G+|2 +M |R+|) [25], [31].
To reduce the computational complexity time, fast Gauss

transform (FGT) can be used to calculate density estimates
based on B pixels information in the form of u (y) =
(1/B)

∑B
i=1 V (y− yi) at A different pixels in O (c(A+ B))

time instead ofO (AB) time and c is the number of accuracies
which are created with the desired accuracy of the proposed
approach [21], [28]. IfB pixels fromG+ is chosen to calculate
û+ and select another B pixels from G−, the computational
process in every iteration is O(c(A + B + B) + c (B+ B) +
c (A+ B)+c (B+ B)+c (A+ B)) by using the FGT in case of
two region, if there are m curves so 2m of regions are found.
The complexity will be more complicated. In equation (16)
the calculation of integration of the second and the third part
takes O (c(A+ B)) time. B is selected as a linear function of
A due to the narrow band size. The differentiable of the equa-
tion (16) is div

(
(g(y, y)∇Ql/

∣∣∇Ql ∣∣) ∣∣∇Ql ∣∣ changed from the

FIGURE 4. The algorithm of non-parametric approach based on image
pixel intensities.

bend of the curvature flow, where Ql is the proper set of level
function [9].

A log-LA is the first part of the differentiable equation (16)
which is equivalent to the supposition that the intensity of
the detected mammogram F( EC) at a specified pixel on the
active border goes to the back-ground region, G − −. or the
foreground region,G−+ based upon the existing estimations
of the distributions, u − +. and u−. The integrations of the
pixels on the contour using log-LA term to identify which of
the regions are in the desired image are identical.

IV. MULTIPHASE MAMMOGRAM
SEGMENTATION TECHNIQUE
This section introduces the proposed segmentation technique
to the mammogram images with more than two objects
(infected areas). In this approach, m level-set functions are
used to segment the mammogram into 2m regions, and the
equation of the resulting estimation curve is established to be
a real generalization of nonparametric region rivalry as shown
in Fig. 4.

A. REGIONS OF INTEREST SEGMENTATION USING
LEVEL-SET FUNCTIONS
The patient image (mammogram) is segmented into 2m

regions based on m level-set functions. After many attempts
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(trial and error), the image intensity is divided to three
nonparametric zones based on Oncologists and Radiologists
experience. They say that the infected area always has high-
intensity pixels in the mammogram images. Assume that the
mammogram registered with 255 gray level, the first zone has
0-132 of grey level (GL), the second zone has 119-200 GL,
and the third zone has184-255 GL. Each zone is divided to
N unknown areas (more than 3 areas) and the nonparametric
approach is applied on these zones to detect the breast cancer
tumor. As one can see in Fig. 3, there are three intersection
regions between zone 1 with zone 2, zone 2 with zone 3,
and zone 1 with zone 3. These intersections are important to
remove any noise or anything else between segmented zones.
Also, to improve the borderlines detection among segmented
regions which leads to enhanced breast cancer recognition in
mammogram images based on curve evaluation.

To explain the main idea of the nonparametric approach let
m = 2 in each zone, then, by equation (16), there are 2m = 4
conditional entropies to evaluate, namely

M̂
(
F (Y ) |L EC (Y ) = G++

)
, . . . ,M̂

(
F (Y ) |L EC (Y )=G−−

)
.

We calculate these estimations in a way analogous to
what we have done in the case of two regions. For instance,
M̂
(
F (Y ) |L EC (Y ) = G++

)
is determined by

M̂
(
F (Y ) |L EC (Y ) = G++

)
= −

1
|G++|

∫
G++

log û++ (F (y)) dy

−
1
|G++|

∫
G++

log
(

1
|G++|

∫
G++

(
V
(
F (y)

− F
(
ŷ
))
dŷ
)
dy (17)

And the other entropy parameters are found in a simi-
lar manner. By utilizing the proposed multiphase technique,
the first dissimilarity of the energy function E(C) in the
equation (13) is calculated as follows:

∂ EC1

∂t
= En1

αk1 + H (Q2

(
EC1

))log
û++

(
F
(
EC1

))
û−+

(
F
(
EC1

))
+

1
|G++|

∫
G++

K
(
F (y)− F

(
EC1

))
û++F (y)

dy

+
1
|G−+|

∫
G−+

K
(
F (y)− F

(
EC1

))
û−+ (F (y))

dy


+

1− H
(
Q2

(
EC1

))log
û−+

(
F
(
EC1

))
û−−

(
F
(
EC1

))


+
1
|G−+|

∫
G+−

K
(
F (y)− F

(
EC1

))
û± (F (y))

dy

−
1
|G−−|

∫
G−−

K (F (y)− F( EC1))
û−−(F (y))

dy

 (18)

∂ EC2

∂t
= En2

αk2 + H (Q1

(
EC2

))log
û++

(
F
(
EC2

))
û−+

(
F
(
EC2

))
+

1
|G++|

∫
G++

K
(
F (y)− F

(
EC2

))
û++F (y)

dy

+
1
|G∓|

∫
G∓

K
(
F (y)− F

(
EC2

))
û∓ (F (y))

dy


+

1− H
(
Q2

(
EC2

))log
û−+

(
F
(
EC2

))
û−−

(
F
(
EC2

))


+
1
|G+−|

∫
G+−

K
(
F (y)− F

(
EC2

))
û± (F (y))

dy

−
1
|G−−|

∫
G−−

K
(
F (y)− F

(
EC2

))
û−− (F (y))

dp

 (19)

The log-LA found in equations (18) and (19) checks the
assumption that the density of the resulted mammogram
F( ECi) at an identified pixel on the active borderline of the
curve ECi belongs to one area or another. As shown in Fig. 4,
ECi defines either the boundary betweenG++ andG−+, or the
boundary between G+− and G−−, when EC1 localizes inside
or outside curvature EC2, respectively. Equation (18) shows
the regional competition between areas adjacent to curvature
EC1. Likewise, equation (19) shows the joined pixels among
areas adjacent to curvature EC2. For the intersection areas the
pixels are ranked according to nonparametric memberships to
decide which zone they belong to, so the tumor is easily found
and the noise and distortion are removed from the image
under consideration. This gives the ability to scan the medical
image many times especially in the intersection areas.

B. PERFORMANCE EVALUATION OF MAMMOGRAM
SEGMENTATION METHODS
To evaluate the performance of the proposed technique for the
segmentation of mammogram images, the similarity is calcu-
lated by using Q, DSC, PSNR, HD, and PTD metrics. The
segmented mammogram images resulting from the proposed
technique and the segmented mammogram images produced
by all other techniques cited in this paper are compared.

1) THE OVERALL IMAGE QUALITY
There are considerable parameters used to evaluate the seg-
mentation performance comparison between the introduced
method and the other segmentation approaches. It is recog-
nized that individual areas in an image do not gather identical
quantity of attention. In this paper we assumed that the total
quality of the mammogram image Q is

Q =

∑
i wiyi∑
i wi

(20)
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Which is defined as the weighted local quality yi of a
region Ai with the corresponding local saliency wi. There
are many models of saliency discussed with different IQMs
to improve prediction performance [30], [32]. Also, some
parameters are famous like Dice Similarity Coefficient
(DSC), peak signal-to-noise ratio (PSNR) metric, Haussdorff
Distance (HD), and probability of tumor detection (PTD).

2) DICE SIMILARITY COEFFICIENT
The dice similarity coefficient (DSC) is used as a numerical
substantiation metric to verify the reproducibility of breast
cancer identification and the spatial overlap accuracy of the
automated segmentation probabilistic of ROIs in mammo-
gram images with both malignant and/or normal tissues. The
Dice Similarity coefficient is a mathematical tool to deter-
mine which pixels represent a tumor tissue. Given two areas
B1,B2 where B1 is the area inside C1 and B2 is the area inside
C2, and the two areas differ in position but have the same
circular shape [30], then DSC ∈ [0, 1], is defined as:

DSC =
2 (B1∩B2)
B1 + B2

(21)

The value of one for DSC means full consent and zero
means no overlap at all.

3) PEAK SIGNAL-TO-NOISE RATIO (PSNR) METRIC
Peak signal-to-noise ratio (PSNR) metric is used to mea-
sure the quality of breast cancer recognition in mammogram
images using different techniques [30]. PSNR defined as the
ratio between the maximum possible value of a signal and the
variable noise capacity (power of the changing noise) which
affects the quality of its representation. Since many signals
have an immersive dynamic range, the PSNR is usually rep-
resented in logarithmic decibels.

Therefore, to measure the ratio between the power of dis-
torting noise and maximum value of pixel intensity PSNR is
used. The PSNR is presented as terms of the logarithmic:

PSNR = 10 log

(
(MI )2

D(B1,B2)

)
(22)

where the maximum intensity value of the image is MI,
D(B1,B2) = 1

m

∑m
i=1

(
Xi − X̄i

)2, Xi is the vector of pixel
density of the pixel actually expected. X̄i is a vector of m
points on all pixels produced unintentionally.

4) HUSSDORFF DISTANCE
The Haussdorff distance is used to measure the distance
between the two subsections of the measuring space. The HD
distance is the smallest distance between each point on the
other side of the segment. This means that the side of one area
of interest (ROIs) at each point refers to the smallest distance
on the other side of the area of interest and the higher the
distance HD of those values.

Therefore, the HD is used to define the smallest dis-
tance on the other side of desired area (infected region in

mammogram) and the longest distance HD of these values.

HD = max

{
sup
x∈A∗

inf
y∈A∗

D (x, y), sup
y∈A∗

inf
x∈A∗

D (x, y)

}
(23)

where D (x, y) = |x − y|.

5) MEAN-VARIANCE STANDARD DEVIATION AND EXPECTED
VALUE OF BREAST CANCER DETECTION PROBABILITIES
Let x1, x2, · · · ,xs be a set of dissimilar random variables
(a quantity having a numerical value for each patient of a
group), the mean-value of the random variable x outlines
where the density is positioned:

µ =
x1 + x2+ · · ·+xN

s
=

1
s

∑s

i=1
xi (24)

Since the proposed method is applied to registered mam-
mogram images (2D-greylevels), including nine sets of breast
cancer images. Therefore, the pooled mean is as follows:

µ =
∑s

i=1
xifi (x) (25)

where S defines the number of elements in the segmented
mammogram. In addition, the variance is used to signify a
measure of changeability of the variable in the resulted image
as follow:

σ 2
=

∑S

i=1
(x − µx)2 fi (x) (26)

6) PROBABILITY OF TUMOR DETECTION
The probability of tumor detection (PTD) is used to mea-
sure the segmentation accuracy of the proposed tech-
nique (IBCNP) compared to the segmentation accuracy
obtained from PDEs, IMBC, SDFs, and EINP. These tech-
niques are applied to patient’s images to get the probability
of tumor detection in the original images (mammograms with
high noise).

The metric PTD is used to calculate the possibility of
tumor-detected cases among 159 cases used in this research.

PTD =
Detected cases

sum of all possiblecases
× 100 (27)

FIGURE 5. The curve evolution on a mammogram image for set#1.

V. EXPERIMENTAL RESULTS
To test the proposed approach, a set of 156 real mammogram
images were obtained from 9 different sets of patients with
different sizes, dimensions, and types of breast cancer are
used. In all sets, the regularization parameters in equations (9)
or (13), were exclusively chosen and categorized based on the
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FIGURE 6. The curve evolution on a mammogram image for set#2.

FIGURE 7. The curve evolution on a mammogram image for set#3.

FIGURE 8. The curve evolution on a mammogram image for set#4.

FIGURE 9. The curve evolution on a mammogram image for set#5.

FIGURE 10. The curve evolution on a mammogram image for set#6.

FIGURE 11. The curve evolution on a mammogram image for set#7.

value of qualitative estimation in segmenting mammogram.
In sets where information is available about breast cancer in
the mammogram, it is probable to get a suitable distribution
function of datasets as an integral equal to a desired value
based on the recognized features of cancer tissue borders
combined with the signal to noise ratio (SNR) of the seg-
mented mammograms. To illustrate the proposed technique,
Figs. 5-13 demonstrate the results of the segmentation for sets
1-9 where the foreground (desired object) and background
have Gaussian distributions with different mean-values and

FIGURE 12. The curve evolution on a mammogram image for set#8.

FIGURE 13. The curve evolution on a mammogram image for set#9.

equal variance. Generally, up to 64 % of mass can be iden-
tified during mammography examination. These types of
modalities include a topological retraction where the white-
area is within the grey-area and not only the complicated
borders. The proposed multi-phase identification technique
can overcome current problems such as the topological prob-
lems, recognition of the white-area, the background, and
the grey-area. Fig. 5(a)-13(a) show initial images with both
infected and healthy regions. For this type of mammogram
with a simple initialization, it leads to several iterations and a
few sets of unterminated curvature at a limited optimal. The
multiple configuration power is that all regions are achieved,
and the curvature estimation happens entirely. Fig. 5(b)-13(b)
present boundaries between infected region (Gi) and healthy
region (Gj) in mammogram. The boundary of infected and
healthy regions is detected after the proposed method has
been applied to the mammogram images of the first set.
The boundary of infected and healthy regions is detected
using the nonparametric algorithm based on image pixel
intensities to identify any of the pixels from healthy tissues
and that containing malignant tissues. The main advantage
of the proposed method is that it describes infected area in
efficient borderlines and is relatively unaffected by mam-
mogram noise. Therefore, the pixels at which mammogram
intensities change sharply are typically grouped into sets of
curved borderline segments. Fig. 5(c)-13(c) show segmented
ROI (region of interested or infected region) with bound-
ary after applying the proposed algorithm. A pixel in the
infected region (Gi) of (Gmn, umn) is linked to the pixel at
(Gmn, umn) if both pixel intensity and direction criteria of
the energy function E(C) are satisfied. This means that EC1
localizes inside curvature EC2. So, automatic initialization of
one mass (segmented-ROI) has been detected with boundary
in mammograms as shown in Fig. 5(c)-13(c). Fig. 5(d)-13(d)
provide the Log-AL results of the ROI for all ninth sets, which
decides whether the detected mass is normal or malignant.
For each pixel in the Cartesian mammogram plane the value
of the Log-AL is calculated for various values of the gradient-
flow (akEn) for the length of the curvature and the curve
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FIGURE 14. Histogram results of the gradient flow terms for the objects
in mammogram images of Figures 5 to 13.

FIGURE 15. Results of the proposed method for the first set of samples:
(a) Initial image with both malignant and/or normal; (b) the object with
density i1; (c) segmented image with boundary; (d) the background with
density i2.

dimensions (k) using the log-based in equations (18) and (19).
The histograms achieved by the Log-AL indicate that all the
values obtained during the curve evaluation process with
the datasets have limited range between −2.7 and 3.8. This
technique assumes that there are collinear pixels lying on a
line between foreground and background, this leads to the
resulting curve has borderline which intersects at (Gmn, umn)
in the parametric domain, which precisely recognizes the
malignant mass in the mammogram.

VI. CASE STUDY
The proposed technique is applied to many different patient
images with both malignant and/or normal tissues to show its
capability in the identification process. The existing results
were acquired using an improved nonparametric approach
based on image pixel intensities for 156 real data sets.
To exemplify the introduced method, the presented tech-
nique is applied to many of the mammogram images with
normal and abnormal tissues as already described in this
research. This algorithm uses the log-based in equations (18)
and (19) in the analysis process. To show the importance
of using the three expressions in equation (16), all the data
obtained is summarized during the curve estimation process
with the datasets. Fig.14 shows histogram results of the gra-
dient flow terms for the objects in mammogram images of
Figs. 5 to13. Their histograms in Fig.14 show its importance
in calculations. Fig. 14 (a) presents histograms achieved by
the first term of the log-based in equation (16) of data.
It is found that values of first terms are often close to
1 and are of limited value (especially between −2 and 3.5).
Fig. 14(b) shows histograms resulted from the difference
between the second term and the third term of log-based
in equation (16). Consequently, both terms have a limited
range, their variances also have a limited value (especially
between –2.7 and +3.8). Lastly, Fig. 14(c) shows a his-

FIGURE 16. Results of the proposed method for the second set of
samples: (a) Initial image with both malignant and/or normal; (b) the
object with density i1; (c) segmented image with boundary; (d) the
background with density i2.

FIGURE 17. Results of the proposed method for the third set of samples:
(a) Initial image with both malignant and/or normal; (b) the object with
density i1; (c) segmented image with boundary; (d) the background with
density i2.

FIGURE 18. Results of the proposed method for the fourth set of
samples: (a) Initial image with both malignant and/or normal; (b) the
object with density i1; (c) segmented image with boundary; (d) the
background with density i2.

FIGURE 19. Results of the proposed method for the fifth set of samples:
(a) Initial image with both malignant and/or normal; (b) the object with
density i1; (c) segmented image with boundary; (d) the background with
density i2.

FIGURE 20. Results of the proposed method for the sixth set of samples:
(a) Initial image with both malignant and/or normal; (b) the object with
density i1; (c) segmented image with boundary; (d) the background with
density i2.

togram resulted from log-AL. It can be seen that predom-
inantly equations (18) and (19) are larger magnitude than
the second term and third term in equation (17) and their
variance. Consequently, it is the prominent provider of curve
evaluation. Figs. 15-23 show the results of the introduced
technique for mammogram images from the 9 sets. To help
the reader understand the capability of the proposed tech-
nique in breast cancer recognition and segmentation pro-
cesses, the main outlines of the experimental results using
the improved-nonparametric approach based on image pixel
intensities and curve estimation in Figs. 15-23 are illustrated.
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FIGURE 21. Results of the proposed method for the seventh set of
samples: (a) Initial image with both malignant and/or normal; (b) The
object with density i1; (c) Segmented image with boundary; (d) The
background with density i2.

FIGURE 22. Results of the proposed method for the eighth set of
samples: (a) Initial image with both malignant and/or normal; (b) the
object with density i1; (c) segmented image with boundary; (d) the
background with density i2.

FIGURE 23. Results of the proposed method for the ninth set of samples:
(a) Initial image with both malignant and/or normal; (b) the object with
density i1; (c) segmented image with boundary; (d) the background with
density i2.

Figures 15 (a)-23(a) show the patient’s image with both
malignant and/or normal regions as obtained from the first set
of the nine sets. The fundamental object and integrated back-
ground disseminations are a bilateral intensity with Gaussian
intensity distribution and two Gaussian components as shown
in Figs. 15(b)-23(b) and Figs. 15(d)-23(d), respectively. Both
disseminations have the samemean-variance and mean-value
(the same diameter), making it difficult for a radiologist’s
visual system to distinguish the object from the background.
To show the foreground view, the real boundary lines are
shown by the curve in Figs. 15(c)-23(c).

VII. DISCUSSIONS RESULTS
The proposed method is applied to more difficult mammo-
grams with both malignant and/or normal tissues present
to confirm its proficiency in the segmentation process.
Figs. 24(a)-31(a) show the patient images contain foreground
and background including noise as a white colour within the
grayscale area, which makes it difficult to detect abnormal-
ities in this image. That’s why the radiologists say that it’s
a difficult image because this type of mammogram contains
not only invisible/unclear borders, but additionally a quantum
noise that white area is within the grayscale area, resulting
in a significant impact on image analysis and accuracy of
segmentation. The pixel distributions of the initial objective
and combined background are a two-sided intensity with a
numerical distribution of Gaussian density and two modules

FIGURE 24. The curve evolution on a mammogram image for set#1:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 25. The curve evolution on a mammogram image for set#2:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 26. The curve evolution on a mammogram image for set#3:
(a) Patient’s image, (b) First stage, (c)Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 27. The curve evolution on a mammogram image for set#4:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

of Gaussian. Therefore, it is challenging for the radiologist’s
visual system to distinguish/identify the ROI from the back-
ground because the distributions have the same mean-values
and variance. The presented method can handle and resolve
this problem and the four regions capture the background,
the foreground, the area with white colour, and the area with
greyscale level. To give the reader an objective view about the
complexity of the proposed algorithm, real examples of breast
cancer detection using the proposed algorithm are demon-
strated next. The patient’s images that were obtained from
the nine sets of samples contain a very small area of breast
cancer as shown in Figs. 24 (a)-31(a). In these sets, there
are two forms of Gaussian (unimodal and bi-modal) inten-
sities with two Gaussian constituents for the fundamental
foreground and background disseminations, as shown Figs.
24 (b)-31(b), and Figs. 24(c)-31(c). It was found that both
Gaussian distributions have a similar mean-value and mean-
variance, thus it is difficult for radiologists and/or oncologist
visual systems to distinguish the object from the background.
Figures 24(c)-31(c) show the results of the ROI for all ninth
sets, which present segmented images with boundary. For
this sample of mammogram images with simple initialization
image types as shown in Figs. 24- 31, much iterations and
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FIGURE 28. The curve evolution on a mammogram image for set#5:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 29. The curve evolution on a mammogram image for set#6:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 30. The curve evolution on a mammogram image for set#7:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

FIGURE 31. The curve evolution on a mammogram image for set#8:
(a) Patient’s image, (b) First stage, (c) Intermediate stage, (d) Final stage,
(e) Quality of segmentation.

in some cases the curve may be captured in a local optimal
zone. The power of multi-initialization is that all regions are
achieved and the curve estimation is completed. The fig-
ures illustrate the intermediate stages of assessment at which
seeds in the background area are regularly analysed at each
stage, while seeds in the area of the object grow. Figs. 24(d)
to 31(d) provide a segmentation result for all sets. In these
figures, the last curvature includes the core of the malignant
tissues (resulted area). Figs. 24 (e) to 31 (e) demonstrate the
efficiency of the proposed method (IBCNP) for measuring
the quality of segmentation process. The mammograms of
the nine sets of patients with different sizes, dimensions, and
types of breast cancer are used to assess the effectiveness of
the proposed technique by assessing the segmentation quality
as compared to the other four different segmentation tech-
niques (PDEs, IMBC, SDFs, and EINP). Five segmentations
of givenmammogram images generated by fivemethods with
different parameters are shown in Figs. 24 (e) to 31(e). The
plots of the segmentation results that were obtained from 156
subjects show that the IBCNP method has the best segmenta-
tion quality.

VIII. PERFORMANCE DISCUSSIONS AND
COMPARATIVE RESULTS
A comparative study is performed using different
mammogram image segmentation techniques to evaluate the
performance of the proposed one. The results obtained from
the proposed algorithm are compared to those produced
by four different popular segmentation techniques (PDEs,
IMBC, SDFs, and EINP). The initially processed segmented
images are divided into three nonparametric zones based
on pixel intensity, and then each zone is segmented to N
unclassified areas. The proposed technique is applied to
these zones to detect the malignant tissues in mammograms.
The accuracy of the identification process is obtained by
comparing the resulting images from different segmentation
techniques as applied to mammogram images with different
sizes, dimensions, and types of breast malignant tissues using
the overall mammogram image quality (Q), the Dice simi-
larity coefficient (DSC), Peak signal-to-noise ratio (PSNR)
metric, Haussdorff Distance (HD) and probability of tumor
detection (PTD). Also, the comparison involves measuring
the average execution time of each technique in seconds as
listed in Tables 1-3 for all of the nine sets. The DSC is used
as a statistical validation metric to estimate the performance
of both the reproducibility of borderlines of the desired area
in segmented images and the spatial overlap accuracy of
automated probabilistic subdividing of mammogram images
(foreground and background). The DSC is obtained by using
equation (21). The Q is obtained by using equation (20),
PSNR metric is obtained by using equation (22), HD is
obtained by using equation(23), and the probability of tumor
detection (PTD) is obtained by using equation (27). The
Q, PSNR, HD, and PTD values were calculated, and the
mean values of logarithmic transformed values were com-
pared with the analysis of variance. Table 1 shows the com-
parative results of the breast cancer segmentation process
on nine sets of mammogram images using the proposed
technique (IBCNP) and four other different segmentation
techniques (PDEs, IMBC, SDFs, and EINP). In this table,
the comparison of the speed of the breast cancer identifica-
tion process has been calculated using the average execution
time in seconds. The breast cancer segmentation methods
similarity measurements show that Q, DSC, PSNR, HD and
PTD measurements of IBCNP are better than the equivalent
measurements in the case of the PDEs, IMBC, SDFs, and
EINP methods. This indicates that the IBCNP method is the
most precise segmentation method among all the methods
mentioned above. Table 2 shows the result of the mean-
variance standard deviation and expected value of breast
cancer detection probabilities of the proposed technique in
the nine sets. As can be seen in Table 2 for all cases, the aver-
age and standard deviation of the proposed algorithm are
µ = 0.397815 and, σ = 0.260253, where the mean and
standard deviation are obtained by using equations (25) and
(26). The mean and standard deviation for the ROIs are
µ = 0.029141 and, σ = 0.017924. As shown in Table 2,
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TABLE 1. Comparative results of breast cancer identification on 9 sets
with both malignant and/or normal using different techniques.

the mean-variance standard deviation of the proposed tech-
nique is very sensitive to the region of malignant tissues and
the recognition of breast cancer is very sensitive. As shown
in Tables 3, identification of breast cancer in mammogram
images using the proposed technique is more robust com-
pared to the others four techniques. Fig. 32 shows the
comparison of similarity throughout the breast cancer seg-
mentation results using the five different techniques of image

TABLE 2. The result of the mean and standard deviation of the
nonparametric approach on 9 sets with both malignant and/or normal.

TABLE 3. Average comparative results of breast cancer detection on
9 sets with both malignant and/or normal using different approaches.

FIGURE 32. Q, DSC, PSNR, HD, and PTD comparison results on 9 sets with
both malignant and/or normal using IBCNP, PDEs, IMBC, SDFs, and
EINP.

segmentation as applied to the nine sets. These outcomes are
schemed in column charts to illustrate the comparative results
of breast cancer segmentation among the IBCNP, PDEs,
IMBC, SDFs, and EINP segmentation techniques using Q,
DSC, PSNR, HD, and PTD similarities. Computation speed
comparison is achieved using the mean value of performance
time in seconds. These results indicate that the proposed
method (IBCNP) has the smallest bar graph that denotes
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the highest speed with high accuracy in the segmentation
approach. Finally, based on results, it can be determined that
the proposedmethod has high values of Q, DSC, PSNR, PTD,
and the lowest HD that denotes high accuracy and fastest
speed in the segmentation process.

IX. CONCLUSION
In analyzingmedical images, radiologists face a problemwith
the differentiation between benign and malignant tissues in
mammogram images due to the white area being within the
grey area that leads to difficulty of a direct diagnosis of the
breast cancer. Up to 64 % of breast cancers usually can be
detected in mammogram images as a mass, but practically,
it is difficult to identifymost tumor size smaller than 4.9mm3.
The threshold for recognition of a tumor depends on the
tissue density, examination quality, radiographic irregularity,
and the experience of the radiologist. The proposed multi-
phase segmentation technique can help solve this issue, and
the three portions handle the grey region, white region and
background. In this paper, we presented a nonparametric
approach based on the curve estimation technique to the
problem of mammographic image segmentation with a data-
theoretic perspective. The proposed method formulates the
segmentation problem by maximizing mutual data between
area identifiers and pixel intensities. We obtained the curve
estimation equations for the image improvement problem
modeled in the frame of the image. Due to the non-parametric
feature of ourmethodology, the presented approach is capable
of robotically managing several image segmentation prob-
lems where many currently available curve estimation meth-
ods fail completely or require at least statistical extraction
for each zone. In this research, a comparative study has been
conducted between different mammogram image segmenta-
tion methods to determine the most accurate segmentation
methods. The performance of the proposed segmentation
method is estimated and compared with PDEs, IMBC, SDFs,
and EINP segmentation methods using several important
image quality counters such as Q, DSC, PSNR, HD, and
PTD. Also, the execution time for each segmentation tech-
nique is measured to determine the speed of the segmenta-
tion process as an additional performance indicator. In this
work, a precise approach was used to compute the curve
and non-parametric estimation that keep the computational
difficulties at a reasonable level. A segmentation approach
to differentiate between carcinoma and non-tumorous tissues
for breast cancer is presented. This approach prepares the
theoretical problem of data optimization by applying curve
estimation techniques and deriving the correlated gradient
flows. To attain the evolution that results, level-set tech-
niques were used. In addition, it is based on the evaluation
of mutual data and non-parametric density, considering the
calculation of histograms, variances, averages and determi-
nants of covariance matrices. The introduced technique was
applied to mammograms having more than two regions of
interest and including the use of spatially dependent prob-
ability density functions. The results showed the quality

of the approach presented in the precise segmentation of
real mammogram images. The proposed algorithm improved
accuracy with agreement with the radiologist expert’s
assessments.
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