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ABSTRACT Cancer is one of the deadliest diseases caused by abnormal behaviors of genes that control
the cell division and growth. Genomics data and clinical outcomes from multiplatform and heterogeneous
sources are used to make clinical decisions for the cancer patients, where both multimodality and hetero-
geneity impose significant challenges to bioinformatics tools and algorithms. Numerous works have been
proposed to overcome these challenges by using sophisticated bioinformatics and machine learning algo-
rithms as either primary or supporting tools. In this paper, we propose a new approach to analyze genomics
data from The Cancer Genome Atlas (TCGA) to classify breast cancer patients based on their subtypes
and survival rates. Since multiple factors such as estrogen receptor (ER), progesterone receptor (PGR), and
human epidermal growth factor receptor 2 (HER2) statuses are involved in breast cancer diagnosis, we used
DNA methylation, gene expression (GE), and miRNA expression data by creating a multiplatform network
calledMultimodal Autoencoders (MAE) classifier to support each data type. Experiment results demonstrate
that our approach is promising with high confidence for predicting both breast cancer subtypes and survival
rates. In particular, we achieved state-of-the-art results with accuracies of 91% and 86%, respectively for
the ER and PGR-based subtype prediction and moderately low accuracy for the HER2-based subtype
prediction as well as we perceived reasonably low MSE and positive coefficient of determination (R2)
scores in case of survival prediction. Additionally, we created unimodal and multimodal features from
each input type and trained decision tree (DT), Naive Bayes (NB), K-nearest neighbors (KNN), logistic
regression (LR), support vector machine (SVM), random forest (RF), and gradient boosting trees (GBT)
as ML baseline models. Finally, we use the model averaging ensemble of top-3 models to report the final
prediction.

INDEX TERMS Cancer genomics, cancer subtype, survival prediction, multimodal autoencoder.

I. INTRODUCTION
Cancer is caused by abnormal behaviors of genes that control
the cell division and growth, as a reflex of genetic aberrations
such as somatic mutations, copy numbers changes, DNA
methylation, and epigenetic alterations [1]. The damaged
cells start reproducing more rapidly than usual in the affected
area by forming a tumor. Cancer is not only a lethal dis-
ease but also tremendously complex to diagnose. More than
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200 types of cancer have been identified [2] in which each
type can be characterized with different molecular profiles
that require unique therapeutic strategies [1].

As the importance of genetic knowledge in cancer treat-
ment is increasingly addressed, several projects have emerged
recently being The Cancer Genome Atlas (TCGA) most
well-known for omics data. By acquiring deep insights of
patients omics data, treatment can be focused on the preven-
tive measure. These data, however, are known to be highly
variable, high-dimensional, and sourced from heterogeneous
platforms, which imposes significant challenges to existing
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bioinformatics tools. TCGA curates various omics data about
cancer such as gene mutation, GE, DNA methylation, copy
number variations (CNV), and miRNA expression, where
breast cancer data is one of the richest. Besides, clinical out-
comes like clinical and pathology information are provided.
These multiplatform nature of heterogeneous data gives an
emerging scope of developing deep learning (DL)-based
diagnosis and prognosis system. However, accurate diag-
nosis and prognosis to cancer are not trivial but specific
to patients with particular cancer subtypes and molecular
traits e.g. accurate treatments for the breast cancer patients
depends on several distinct molecular subtypes such as
‘Luminal A’, ‘Luminal B’, ‘HER2-enriched’, and ‘Triple-
negative’ (TN) [3], [4], which subject to the distinction
mainly determined by several factors: ‘Luminal A’ disease
generally requires only endocrine therapy, chemotherapy is
considered necessary for ‘Luminal B’, ‘HER2-enriched’, and
‘Triple-negative’ patients [5]. Thus, knowing the subtypes of
any breast cancer patient is essential before recommending
the best possible treatment.

Research has identified that TN breast cancer defined by
ER, PGR, and HER2, represents a subset of breast can-
cer with different biologic behavior. Thus, ER, PGR, and
HER2 statuses are mainly involved in determining breast
cancer subtypes and survival rates. Further, those patients
can be categorized into different classes. For example,
ER ‘POSITIVE’, ‘NEGATIVE’, or ‘INDETERMINATE’.
The ER-negative tumors are associated with a worse clini-
cal outcome compared to ER-positive disease. An accurate
estimate of the hazard ratio between ER-negative tumors and
ER-positive tumors remains difficult and prone to higher
misclassification [6]. The survival rate, on the other hand,
suggests the chance of survival based on patients clinical and
pathology information, which are further dependent on the
in-depth analysis of these status biomarkers. In this study,
we used DNA methylation, GE, and miRNA expression data
in a single analysis by creating an MAE to handle the shared
representation of themultiplatform data to support each other.
The other contributions of this paper can be summarized as
follows:
• Processing genomics data from TCGA and preparing
richest labeled dataset for the breast cancer.

• Implementation ofMAE to handlemultimodality of data
types and a novel way to predict breast cancer subtypes
and survival rates for the patients.

• Comprehensive evaluations with details analysis of the
outcome and comparison with state-of-the-art.

The rest of the paper is structured as follows: section II
reviews DL-based approaches applied to cancer genomics.
Section III describes the overall approach, including data
collection, feature engineering, network construction, and
training. Section IV demonstrates and analyze experiment
results both quantitatively and qualitatively. Section V
summarizes this research, identifies potential limitations,
and suggests some possible outlook before concluding the
paper.

II. RELATED WORK
Numerous approaches using mixed data types such as
genomic data, bioimaging data, and clinical outcomes
are used for analyzing genomics data and decision mak-
ing for the cancer treatment [7]. For example, RNA-Seq
data is used widely to identify rare and common tran-
scripts, isoforms, and non-coding RNAs in cancer. Whereas,
single-nucleotide polymorphism (SNP) indicates small
genomic variations in cancer patients and array-based DNA
methylation data is used to provide epigenetic changes in
the genome that are useful for early genetic changes of
cancer e.g. early-stage detection of ovarian cancer is now
possible [1], [8].

Since DL algorithms can work better with such high
dimensional data, recent studies focused on using deep
neural networks (DNN) architectures such as autoencoder,
Restricted Boltzmann Machine (RBM), Deep Belief Net-
works (DBN), Multilayer Perceptron (MLP), CNN, and
Recurrent Neural Networks (RNN) in cancer genomics. For
example, literature [9] used Stacked Denoising Autoencoder
to extract features from the RNA-seq data, which are then fed
into SVM and shallow ANN to classify malignant or benign
tumor of breasts [10]. DeepCNA is another CNN-based
approach proposed for cancer type prediction based on CNVs
and chromatin 3D structure with CNN [11]. Albeit, it is
very efficient in the case where both CNA and 3D chro-
matin structures supplied, availability of such resources,
however, not always possible as genomics-based cancer
detection.

Besides, histology and radiological images are used for
understanding the genetic and epigenetic cause in cancer
analysis [11]–[13]. In particular, GISTIC, MutSig, and clus-
tering algorithms are used to visualize genomic and tran-
scription alterations in various cancers at advanced level [14].
Besides, X-ray and CRT images [15] along with proteomic
and genomic assays are also used, which shows great suc-
cess in cancer prediction and prognosis [16]. Often these
images are used to generate noninvasive, functional, and
molecular imaging modality data called multispectral pho-
toacoustic imaging [12] to detect prostate cancer using
K-means and SVM [13]. Besides, histopathology images are
used [17], [18] to identify the existence of cancer using
CNN.

Literature [9] used stacked denoising autoencoder to
extract features from RNA-seq data and then fed into SVM
and shallow ANN to classify malignant or benign tumor of
breasts [10]. DeepCNA is another CNN-based approach for
cancer type prediction based on CNVs and chromatin 3D
structure [11]. Apart from these works, restricted methods
have been proposed based on CNVs for cancer risk and type
predictions [20], [21], [23]. Ding et al. [23] used recurrent
CNVs from non-tumor blood cell DNAs of non-cancer sub-
jects about hepatocellular carcinoma, gastric cancer, and col-
orectal cancer patients. They found to reveal the differences
between cancer patients and controls concerning CN losses
and CN gains. Although their study can make predictions on
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TABLE 1. Different cancer detection methods, data types, and performance.

the cancer predisposition of an unseen test group of mixed
DNAs with high confidence, it is limited to only Caucasian
cohort and Korean cohorts.

Zhang et al. [21] used CNVs level of 23,082 genes for
2,916 instances from cBioPortal for Cancer Genomics to
classify six different types of cancers, i.e., breasts, blad-
der urothelial, colon, glioblastoma, kidney, and head and
neck squamous cell. They construct a dagging-based clas-
sifier in which the feature space was reduced into CNVs
of 19 genes using minimum redundancy maximum rele-
vance feature selection (mRMR) and incremental feature
selection (IFS) methods [21]. Their approach managed to
achieve an accuracy of 75%, which indicates that only a few
genes may play essential roles in differentiating cancer types.
Then Elsadek and Aldeen [20] extended their work in which
7 ML classifiers were trained giving random forest algorithm
accuracy of 86%.

Other works used omics data to identify various cancer
types e.g. literature [24] used principal component analy-
sis (PCA) to extract features from high dimensional GE data,
which are then fed into sparse and stacked autoencoders to
classify acute myeloid leukemia, breast, and ovarian cancer
patients. Whereas, literature [25] proposed a multilevel fea-
ture selection technique based on DBN and unsupervised
active learning from miRNA expression data, which out-
performs PCA-based methods for hepatocellular and breast
carcinoma identification. Literature [26] proposed to cluster
ovarian and breast cancer patients based on multiplatform
genomics (e.g. GE, DNA methylation, and miRNA expres-
sion) and clinical data. To deal with such multiplatform data,
MAE is used in which latent features are extracted before
clustering with the K-means.

Ngiam et al. [27] proposed a multimodal architecture to
handle multimodality of audio and video features based on
three methods: multimodal fusion, cross-modality learning,
and shared representation learning. While each method uses
multimodalities on the feature learning steps, multimodal
fusion uses multimodalities in supervised learning and test-
ing. Cross-modality learning used one type of data for both
supervised learning and validating, while shared represen-
tation learning used one kind of data for supervised learn-
ing and testing. The original idea behind the cross-modality

learning is to handle multimedia objects where not all
data have all modalities. Liang et al. [26] adopts a simi-
lar multimodal architecture for clustering multimodal cancer
genomics GE, DNA methylation, and clinical data.

Although, approaches using both unimodal [22] and multi-
modal DBN [26] show accuracy at different prediction tasks,
one of the potential limitations using DBN-based approaches
is that the limited capability at feature learning during pre-
training [28], although it gets a decent set of feature rep-
resentations for the inputs. Furthermore, DBN is incapable
of learning quality features from very high dimensional
datasets. Besides, pretraining losses often get out of bound,
which results in overfitting issue. To overcome these lim-
itations, researches have proposed multimodal autoencoder
(MAE)-based approaches [28]–[30], which is a flexible,
simple prior distribution which can be learned efficiently
and potentially capture from extensive features of a target
distribution.

Consequently, MAE has shown tremendous success in nat-
ural language understanding tasks like document modeling
and dialogue modeling [28], in computer vision like emotion
recognition [29], and multimodal word representation [30]
for natural language processing. Inspired by these successes,
we construct a MAE network by extending the multimodal
system presented in [30] by adding the capability of handling
multiple modalities across four different types of genomics
data. Then we added a fully connected layer to use the MAE
architecture for the supervised learning task, i.e. breast cancer
subtypes and survival rate predictions. However, our datasets
are very rich, covering all the modalities for 93% of patients.
In our approach, we apply multimodal fusion approach by
discarding the small part of patient data that don’t have all
modalities in our MAE network.

III. MATERIALS AND METHODS
We discuss the data collection and preprocessing steps in
detail before using them for training the MAE network.

A. PROBLEM FORMULATION
We focus here on the difficult problem of finding sub types of
breast cancers. Since we conceive finding the importance of
extensive knowledge about genetic mutations in breast cancer
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aiming to help in discovering more suitable treatments for
each breast cancer subtypes, this study might show which
genetic mutations are responsible for which breast cancer
subtypes (with feature selection) or have direct correlations
on the survival rates.

For the breast cancer subtypes prediction, we used
genomics data accompanied by ER, PGR, and HER2/neu
status that are present inside breast cancer patients for each
patient either separately or in a multimodal way. In the con-
text of survival rate prediction, our network should tell us the
chance of survival for each cancer patient based on individual
patient’s clinical and pathology information. The survival rate
ranges between [0-1], with 1 being the highest chance of
survival.

B. DATA COLLECTION
Although genomics data covers all data related toDNAon liv-
ing organisms, we use transcriptomics data, including RNA
and miRNA. These genomics data are usually accompanied
by clinical outcomes, which comprise of general clinical
information as well as cancer status (e.g., cancer location,
cancer stage). These data are also very high-dimensional,
e.g., GE data for each patient, which is structured based on
gene id reaches around 60,000 types, meaning a predictor
based on GE comes with 60,000 different features.

Several databases of genomics data exist including
TCGA [31], ICGC [32], and COSMIC [33]. However, based
on public availability and amount of data consideration,
e.g., the number of patients data and clinical outcomes,
we considered the Breast Invasive Carcinoma (BRCA)
branch of TCGA as the main source of data.1 After select-
ing data sources, we start collecting both clinical data and
biospecimens through the Genomics Data Commons (GDC)
data portal.2

C. DATA SELECTION AND PREPROCESSING
To provide more reliable cancer identification and the deci-
sion about survival, several modalities consisting of masked
somatic mutations, copy number segment (CNS) and mask
CNS, DNA methylation, GE, miRNA expression along with
clinical outcomes can be used, instead of a single modality.
Moreover, some of the data itself comes from more than
one format, e.g. from the complete DNA methylation data of
breast cancer patient, 70% of came from a different platform
than the remaining 30%, which means that there are two
separate structures on the DNA methylation data.

However, in our case, several factors refrained us from
using each type of data, e.g. masked somatic mutation data
are the base pair (BP) position in a chromosome but not all
the mutations are significant. Even if we use them, the gener-
ated dataset will be very sparse. The CNS and masked CNS
data were not used because of extremely high dimension

1TCGA has 39 projects for 39 different cancer types (v89)
2https://portal.gdc.cancer.gov/

and complex structure of the data, and there was no fixed
dimension for each data per patient. Since BP’s start refers
observed, CNS data and stop positions in a chromosome,
which will always vary at a BP resolution. With these con-
siderations, DNA methylation, GE, and miRNA expression
data along with clinical data containing pathology response
and the survival rate data are used.

Since theGE quantification data covers the amount of RNA
synthesized by each gene on a single time, we treat each data
per row and consider if the gene’s Ensemble Id belongs to the
Ensemble Id Release 89. The miRNA expression quantifica-
tion and GE quantification data from TCGA were already in
the desired format, so no preprocessing was required.

However, processing DNA methylation data was a
complex task as some patients were measured with the
HumanMethylation27 platform. The remaining patients were
measured with HumanMethylation450 arrays, which mea-
sures 450.000methylation sites, being only 26KDNAmethy-
lation sites were considered in common to both platforms.
We combined these data in seven modalities: DNA methyla-
tion, GE, miRNA expression, GE+miRNA expression, DNA
methylation+GE+miRNA expression, GE+DNA methyla-
tion, and miRNA expression+DNA methylation within the
data.3

TABLE 2. Datasets for ER status classification.

TABLE 3. Datasets for PGR status classification.

Table 2, 3, and 4 show the statistics of the preprocessed
data for each modality. We find corresponding Ensembl gene
IDs from the chromosome position based on GDC API. The
samples having the latest gene Ensembl IDs from Release
89 are only considered valid. Clinical data covers clini-
cal outcomes of cancer patient treated as general, pathol-
ogy, treatments, and surgery. We categorized each patient

3Last two modalities were used for the training and evaluation but not
reported due to low accuracies.
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TABLE 4. Datasets for HER2 status classification.

TABLE 5. Datasets for survival prediction.

data into different groups, but only the pathology response
and the survival data from the whole clinical outcomes are
used.

D. NETWORK CONSTRUCTION
The multimodality nature of the input data further motivated
us developing the MAE. An autoencoder (AE) is an unsuper-
vised learning technique in which a neural network is trained
to reproduce an input X ∈ RD based on the reconstruction
error between X and the network’s output X ′ ∈ RD. A key
feature of autoencoders is learning a useful representation of
the data, often in a compressed format in which the input
X needs to be transformed into an embedding Z ∈ RK ,
where K � D. The mapping from X to Z is accomplished by
the encoder module of the AE network. The decoder module
of the AE network maps Z to the reconstruction X ′.
Although a single AE can reconstruct an output similar to

the original input, it cannot handle multimodality (i.e., dif-
ferent types of information). Nevertheless, traditional super-
vised learning is only able to learn from the intersection
of samples, which are both clean and labeled. In contrast,
the weights of the MAE encoder learn from both clean,
unsupervised data with no labels, and noisy supervised data
with missing modalities, leveraging as much of the available
data as possible.

Architecturally, MAE is similar to a three-stage AE: the
first stage represents a particular modality for each type of
data, and the second stage represents the cross-modality.
The AE is used to find a low-dimensional representation
of multimodal data, taking advantage of the information
that one modality provides about another. We illustrate
the construction of an MAE as a quad-modal AE for this
problem. Where DNA methylation, GE, miRNA expres-
sion, and clinical outcomes form four different modalities.

The individual modality AE is not only a one-layer AE,
but a multilayer and gradually shrinking AE with the pos-
sibilities of a different number of layers for each modal-
ity, which is due to the difference in dimension between
modalities are pretty large, e.g. GE data consists of around
60,000 samples, while miRNA data only consists of around
1,800 samples.

By default, the AE network fusing multiple modalities
consists of a variable number of ReLU layers, which are
densely connected. The cross-modality AE is also a multi-
layer gradually shrinking AE with different size of output
layer for each prediction. However, the number of layers
and number of units per layer of the encoder and decoder
networks are symmetric. The third stage is the supervised
MAE in which the decoder part is removed, and only the
encoder part is utilized by adding a fully connected layer
for the classification and regression operations. As shown
in fig. 1, our model first transforms input DNA methylation
vector xm, GE vector xe, miRNA expression vector xr , and
clinical data vector xc to hidden representations [30].

hm = g (Wmxt + bm) (1)

he = g (Wexv + be) (2)

hr = g (Wrxa + br ) (3)

hc = g (Wcxt + bc) (4)

Then the hidden representations are concatenated together
and mapped to a common space [29]:

hmae = g (Wmme [hm; he; hr ; hc]+ bmme) (5)

The model is trained to reconstruct the hidden repre-
sentations of the three modalities from the multimodal
representation hmae:[
ĥm; ĥe; ĥr ; ĥc

]
= g

(
W ′maehmae + b ˆmae

)
(6)

θ =
{
Wm,We,Wr ,Wc,W ′m,W

′
e,W

′
r ,W

′
c,Wmae,W ′mae

}
(7)

To reconstruct the original representation of different
modalities i.e., DNA methylation, gene expression, miRNA
expression data, and clinical outputs [30]:

x̂m = g
(
W ′mĥm + bm̂

)
(8)

x̂e = g
(
W ′eĥe + bê

)
(9)

x̂r = g
(
W ′r ĥr + br̂

)
(10)

x̂c = g
(
W ′cĥc + bĉ

)
(11)

where x̂m, x̂e, x̂r , x̂c are the reconstruction of input vectors xm,
xe, xr , xc. Hence, by randomly blocking out different modal-
ities from the training data and learning to reconstruct them,
the MAE attempts to reconstruct the original data ĥm, ĥe, ĥr ,
and ĥc are the reconstruction of hidden representations hm, he,
hr , and hc [30]. The last element of the hidden dimension is
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FIGURE 1. In our proposed approach, same input types with different features for subtypes and survivals are used.

the dimensionality of the latent space representation and the
decoder module has similar gradual increasing architecture.
The learning parameters θ as shown in eq. (7) are weight
matrices, {bm, be, br , bc, bm̂, bê, br̂ , bĉ, bmae, b ˆmae} are bias
vectors, [.; .] denotes the vector concatenation, and g denotes
the ReLU (.) activation function [30].
Similar to literature [28], [30], noise distributions are

taken into account employing Bregman divergences, which
corresponds to particular exponential families such as
Gaussian, Poisson or gamma distributions. Each modality
can have its own Bregman divergence as loss function,
thereby assuming a specific noise of output distribution.
The unsupervised pre-training is performed greedily on
each layer of the MAE, which corresponds to the nature
of AE.

The three-stage MAE creates hierarchical hidden units,
which have strong connections between nodes not only for
individual modality but also across the modalities. For exam-
ple, the survival rate prediction will only consist of one
neuron in the output layer, while the breast cancer sub-
type classification and the treatment response classification
both will consist of more than one neuron in the output
layer. Later on, we generalize the MAE for both breast
cancer subtype classification and survival rate prediction.
The datasets are formed from any combinations of three
genomics data, including DNAmethylation, GE, and miRNA
expression.

E. NETWORK TRAINING
Since the breast cancer subtype classification consists of three
sub-tasks based on ER, PGR, and HER2/neu status, each of
these will correspond to their neural networks. First, we focus
on the ER status classification by determining the existence
of ER protein inside breast cancer patient. The status can

be ‘POSITIVE’, ‘NEGATIVE’, or ‘INDETERMINATE’,4

which means our network will predict one of three classes.
The input to the network can be a single or multimodality in
combination with DNA methylation, GE, or miRNA expres-
sion data as shown in table 2.

The second type of breast classification is the PGR sta-
tus classification, which determines the existence of PGR
protein inside breast cancer patient. Just as ER status, PGR
status is also classified into ‘POSITIVE’, ‘NEGATIVE’,
or ‘INDETERMINATE’, which means the neural network
will predict one of three classes. In this PGR classifica-
tion, we also use single type input with a regular AE and
multiple types of input with an MAE. For each of these
models, we have specific datasets according to each input
as described in table 3. The third type of breast subtype
classification is based on the HER2/neu, which determines
the existence of HER2 in the breast cancer patient. Unlike
ER and PGR status, HER2/neu status is the most important
predictive and prognostic biomarker in breast cancer, which
is classified into four types: ‘POSITIVE’, ‘NEGATIVE’,
‘INDETERMINATE’, and ‘EQUIVOCAL’.5 Similar to ER
and PGR subtyping, both unimodal inputs with a regular AE
and multimodal input with MAE are used for the HER2/neu
based classification as shown in table 4.

The survival rate ranges between 0-1 with 1 indicate the
best chance of survival. Due to the continuous nature of
the output, we implement regression for this task. Just as
the whole breast cancer subtype classification, the survival
rate prediction was also implemented using both single type
input with a regular AE and multiple types of input with an
MAE. We perform unsupervised pre-training for the whole
layer of MAE, which is followed by a supervised fine-tuning
for either subtype classification or survival rate predic-

4Patients can’t be grouped as positive, negative, or equivocal
5Assessments without information on how to treat a patient
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tion. During the pretraining phase, we utilized the whole
datasets for the training with 10% for the validation. Train-
ing a single-layer autoencoder corresponds to optimizing the
learning parameters to minimize the overall loss between
inputs and their reconstructions, which can be defined as
follows:

min
θ

n∑
i=1

∥∥∥x it − x̂ it∥∥∥2 + ∥∥∥x iv − x̂ iv∥∥∥2 + ∥∥∥x ia − x̂ ia∥∥∥2 (12)

where i denotes the ith feature. Since cross-entropy is appro-
priate for binary values, before applying this loss, we first
normalized all of our features to the [0,1] range. The
MAE network parameters were initialized with Xavier ini-
tialization [34] and trained using first-order gradient-based
optimization techniques such as Adam, AdaGrad, and
RMSprop to optimize the categorical cross-entropy (CE)
loss eq. (13) of the predicted cancer subtype P vs. actual
subtype T.

E =
∑
i,j

Ti,j logPi,j +
(
1− Ti,j

)
log

(
1− Pi,j

)
(13)

The softmax activation function is used in the output layer
for the probability distribution over the classes for breast
cancer subtype prediction. On the other hand, for the sur-
vival prediction, we use CE reconstruction loss in eq. (14)
as suggested in [30], which experienced better results for
the MAE architecture than using MSE. The CE loss to be
minimized is:

L = −
D∑
k=1

[
Xk logX ′k + (1− Xk) log

(
1− X ′k

)]
(14)

Further, we observe the performance by adding the
Gaussian noise layers followed by the dense layer to improve
model generalization and reduce overfitting. Since an appro-
priate selection of hyperparameters can have a huge impact
on the performance of a deep architecture, we perform the
hyperparameter optimization through a random search by
varying learning rates and different batch sizes and 5-fold
cross-validation tests.

IV. EXPERIMENTS
All program were implemented in Python using scikit-learn
and Keras with TensorFlow backend.6 The network training
was done on an Nvidia GTX 1050 GPU with CUDA and
cuDNN enabled.

A. EXPERIMENT SETUP
The full training set is used for pretraining the MAE in
which 10% data is used for the validation. Then we per-
form the supervised fine-tuning with 70% training set and
the trained model is evaluated on the 20% held-out test set.

6https://github.com/rezacsedu/
MultimodalAE-BreastCancer

Results based on best hyperparameters produced through a
random search and 5-fold cross-validation tests empirically
are reported only in which macro-averaged precision, recall,
F1, and Matthias correlation coefficient (MCC) scores are
used. Additionally, confusion matrices and receiver operating
characteristic (ROC) curves are reported. Whereas, standard
mean squared error (MSE) and coefficient of determina-
tion (R2) are used to assess the performance of the survival
rate prediction in a regression setting.

B. ANALYSIS OF SUBTYPE CLASSIFICATION
The best results for ER status prediction is highlighted in
green in table 6 for each modality, where a combined input
of GE and miRNA expression data performs the best than a
single modality. The confusion matrix in fig. 2a shows pre-
dictions about 288 breast cancer patients in which 197 were
‘ERPositive’, 58were ‘ERNegative’, and 33 samples for ‘ER
Indeterminate’. The classifier correctly predicted as much as
187 ‘ER Positive’ cases, making only 10 mistakes (misclas-
sification) in which 3 were misclassified as ‘ER Negative’
and 7 of themwere classified as ‘ER Indeterminate’. showing
overall high model confidence.

TABLE 6. Top results for ER status classification.

TABLE 7. Top results of PGR status classification.

Furthermore, as shown in the ROC curve in fig. 3a,
the AUC scores for class 0, 1, and 2 are 0.91, 0.89, and 0.94,
respectively. Although, we had only a few ‘Indeterminate’
samples in the test set. The best results of PGR status pre-
diction for each type of input is shown in table 7. Similar to
ER status prediction task, the predictor performs the best with
the input of GE data combined with miRNA expression data.
The other predictor with combined input of DNA methyla-
tion + gene expression + miRNA expression also performs
relatively well. Best results are highlighted in green in table 7.
As seen from the confusion matrix in fig. 2b, the model is
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FIGURE 2. Confusion matrix for ER, PGR and HER2 status classification.

evaluated on 263 samples in which 167 were ‘PGR Positive’,
75 ‘PGR Negative’, and only 21 ‘PGR Indeterminate’. The
best result was observed with the GE + miRNA expres-
sion input modality. As seen from fig. 3b, the AUC score
for class 0 (‘PGR Positive’) and class 1 (‘PGR Negative’)
are both 0.79. However, the AUC score for class 2 (‘PGR
Indeterminate’) is 0.86.

The best results for HER2/neu status prediction for each
type of input is shown in table 8. Similar to the ER and
PGR status prediction tasks, the predictor performs the best
with the input of GE data combined with miRNA expression
data. However, we observed overall a low accuracy score
for each type of data, although, the performance on the
training set itself was near to perfect. Even after applying
several regularization techniques such as l2-regularization
and Gaussian dropout layers, the result is still poor, which
might be because of the overfitting. One of the possible
causes for such overfitting is the smaller number of sam-

TABLE 8. Top results for HER2/neu status prediction.

ples (i.e. 860 samples) compared to ER and PGR statuses
(i.e. 1,024 samples).

The best result based on gene+miRNA expressionmodal-
ity is highlighted in green in table 8. The corresponding
confusion matrix is shown in fig. 2c. As seen, the predictor is
tested on 225 breast cancer patients, with 40 of them actually
‘HER2/neu Positive’, 121 of them are ‘HER2/neu Negative’,
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FIGURE 3. ROC curve of the best predictor performance for ER, PGR and HER2 status classification.

21 of them are ‘HER2/neu Indeterminate’, and 32 of them are
‘HER2/neu Equivocal’ in this test set.

The classifier correctly predicted 173 ‘HER2’ cases, mak-
ing 48 mistakes showing overall low confidence giving about
80% accuracy. Furthermore, the ROC curve of this experi-
ment is shown in fig. 3c. As observed, with 2 out of 4 classes
achieve lower than 0.5 AUC score: the AUC score for class 0
(‘HER2/neu Positive’) is 0.83, for class 1 (‘HER2/neu Nega-
tive’) is 0.73, for class 2 (‘HER2/neu Indeterminate’) is 0.36,
and for class 3 (‘HER2/neu Indeterminate’) is 0.48.

C. CONSISTENCY OF SUBTYPE PROGNOSIS
Inspired from literature [35] and to qualitatively study
whether the learned representation can express biological

characteristics of the patients, t-SNE of the MAE encoder’s
output i.e. latent feature map and the t-SNE plot with raw
GE are plotted in fig. 5. We can observe moderately high
distinctive patterns between three subtype patients.7 Since,
all the input modality has high dimension, it signify the
complexity level of the problem we are solving in the
task. Thus, the association between each feature should be
considered.

Further, we can see that the order of subtypes in the t-SNE
plot is identical to the order of prognosis of breast cancer
subtypes. Research [36] has exposed that 80% of all breast
cancers are ‘ER-positive’ in which the cancer cells grow

7Distinction between subtypes is not clear as MNIST, though.
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FIGURE 4. Top ER, PGR, and HER2 status classifications results for each input type.

FIGURE 5. t-SNE visualization of the raw gene expression vs autoencoder’s encoder latent feature map.

in response to the hormone estrogen. While about 65% of
these are also ‘PR-positive’ in which the cancer cells grow in
response to another hormone, progesterone. Tumors that are

ER/PR-positive are much more likely to respond to hormone
therapy than tumors that are ER/PR-negative. In about 20%
of breast cancers, the cells make too much HER2 protein

VOLUME 7, 2019 133859



M. R. Karim et al.: Prognostically Relevant Subtypes and Survival Prediction for Breast Cancer

FIGURE 6. Kaplan meier survival plots of the patients.

and tend to be aggressive and fast-growing.8 In breast cancer,
certain subtype has the worst prognosis e.g. basal, followed
byHER2, Luminal B, and Luminal A. The reason is that basal
subtype has distinctive molecular characteristics from other
subtypes [37]. However, not all these patterns clearly visible
in the t-SNE plot with raw GE, which signifies that the MAE
learned the latent molecular properties better from the patient
expression profiles.

D. SURVIVAL ANALYSIS
The results of the survival rate prediction are also done with
multitype inputs similar to breast cancer subtype classifica-
tion. Results of the best performance for each type of input
are shown in table 9. Overall, the lowest MSE was recorded
with the gene expression modality. However, the coefficient
of determination R2 is negative. In case of DNA methy-
lation + gene expression + miRNA expression modality,
the MSE score is considerably high and the corresponding
R2 score is negative. These two cases indicates that the pre-
dictions are worse than the actual average output.

TABLE 9. Top results for survival rate prediction.

Whereas, R2 scores for the DNA methylation, miRNA
expression, and gene expression + miRNA expression
modalities are also positive, even though the corresponding
MSE scores are lower than that of DNA methylation modal-
ity. Further, the R2 is a positive value, which indicates it

8https://www.webmd.com/breast-cancer/

performs better than the actual average output. To further
evaluate the ability of the model to comprehend character-
istics of molecular subtypes, we performed survival anal-
ysis inspired by literature [35]. We clustered the patients
into two groups based on raw GE values and the MAE
encoder’s output i.e. latent feature map. K-means algorithm
is used for the clustering and t-SNE is used for the dimension
reduction and visualization. To the measure hazard ratios of
different patient groups and to analyze the effectiveness of
treatment by comparing the Kaplan-meier (KM) plots (based
on non-parametric statistics) of the treated and non-treated
patient group are drawn for each of two clustering results as
shown in fig. 6.

The plot generated by the latent features (fig. 6b) shows
that the patient samples are more clearly separated into
two subgroups showing distinct survival patterns with a
p − value < 0.05, while the plot with raw expression
value (fig. 6a) failed giving p−value > 0.05. This is an inter-
esting result as it shows that the model can simultaneously
learn the genotypic information of patient from multimodal
input features while performing the classification task.

E. COMPARISON WITH ML BASELINES
Although our datasets are collected from TCGA, multimodal
features are used to train DL algorithms. Nevertheless, none
of the related works summarized in table 1 used multimodal-
ity for breast cancer subtypes and survival prediction. Thus,
a one-to-one comparison in a DL setting was not viable.
Instead, we created unimodal and multimodal features out of
each input type and train LR, KNN, NB, SVM, RF, and GBT
as ML baseline models classifiers. On the other hand, linear
regression (L̂R), Support Vector Regression (SVR), Gradi-
ent Boosted Regression (GBR), and random forest regres-
sion (RFR) models were trained for predicting survival rates.
In both setting, hyperparameters optimization is performed
using random search with 5-fold cross validation.
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TABLE 10. Subtypes prediction across modalities with ML
classifiers (*=modality with the best result).

As shown in table 10 and table 11, the GBT and RF-based
classifiers and regression models perform consistently best
for subtype classification and survival prediction. The clas-
sification analysis can be further validated by calibrating the
best performing MAE classifier against different embedding
methods for which the output probability of the classifier
can be directly interpreted as a confidence level in terms of
‘fraction of positives’ (FOP) as shown in fig. 7. As seen the
MAE classifier gave a probability value (i.e. FOP) between
0.82 to 0.93, which means 93% predictions belong to true
positives.Whereas the second best GBT and RF generates the
FOP values between 0.75 to 0.87 and between 0.76 to 0.89,
respectively.

When it comes to survival prediction with ML regression
models, the lowest MSE was recorded with the gene expres-
sion modality using GBR regression model but much higher
than that of MAE-based one. Whereas, the coefficient of
determination R2 is a positive value. In case of DNA methy-
lation + gene expression + miRNA expression modality,
the MSE score is considerably high and the corresponding
R2 score is also negative. These two cases indicates that the
predictions are worse than the actual average output.

On the other hand, R2 scores for the miRNA expression,
and gene expression + miRNA expression modalities are
also positive but lower than that ones generated by MAE,

TABLE 11. Survival prediction across modalities with ML regression
models (*=modality with the best result).

FIGURE 7. Calibrating different classifiers.

even though the corresponding MSE scores are much higher
than that of ones generated with MAE. In summary, the gene
expression+miRNA expression modality shows the highest
R2 and lowest MSE score, which indicates it performs better
than the actual average output showing moderately worse
performance than that of MAE.

F. OVERALL ANALYSIS
From the overall results of our implementation, the best
results for breast cancer subtypes classification (ER, PGR,
and HER2 status classifications) is generated from the MAE
implementation with the input of GE and miRNA expression
data, which is the best results for each of the classification
tasks. The HER2 status classification got the worst results by
far compared to ER and PGR status ones, which is probably
because the HER2 status data has fewer samples than ER
and PGR ones. The training accuracy for each classifier far
exceeds the test accuracy, probably because of overfitting.
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FIGURE 8. Learning curves showing the validation and training scores of top-3 and SVM classifiers.

As shown in fig. 4, the number of samples across
datasets is only 1,000. While, the smallest number of feature
(e.g. 1,881 features in miRNA expression) still exceeds it.
Also, the number of features in DNA methylation and GE
exceeds other datasets. We experienced varying results on
survival prediction e.g. AE achieves the lowest MSE score
with the input of DNA methylation but giving a negative R2

score, which means the prediction itself is not better than the
average of the actual output. Positive R2 scores were achieved
with miRNA expression and GE+miRNA expression inputs
using AE and MAE, respectively.

To further understand the effects of having more training
samples, and to understand whether our classifiers suffer
more from variance errors or bias errors, we observed the
learning curves of top-3 classifiers (i.e., RF, GBT, and MAE)
and SVM (a linear model) for varying numbers of training
samples. As shown in fig. 8, for SVM the validation and
training scores converge to a low value with increasing size
of the training set. Consequently, SVM did not benefit much
from more training samples. However, RF and GBT are
tree-based ensemble methods, and the MAE model can learn

more complex concepts from the GE + miRNA multimodal
features. This results in a lower bias, which can be observed
from higher training scores than the validation scores for
the maximum number of samples i.e. adding more training
samples does increase model generalization.

Overall, MAE gave relatively better results compared to
regular AE with a single type of input as well as other best
ML baselines e.g. GBT and RF. It mostly occurs with the
GE+miRNA expression giving the best results for subtypes
classification and decent results for survival rate prediction.
Based on this comparison between MAE and AE, we can
conclude that there is a possibility MAE might surpass AE,
GBT or RF performance with the right combination of inputs.

V. CONCLUSION AND OUTLOOK
In this paper, we proposed an MAE for predicting different
subtypes of breast cancer patients and their survival rates.
Experiment results for the subtype classification are promis-
ing, especially based on the ER and PGR status having
0.93 F1-score, which produced with combined inputs of GE
and miRNA expression data. The performance result of the
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survival rate prediction shows varying signs. The best MSE
score is taken from predictors with DNA methylation as an
input, although the R2 score itself is negative, which indicate
that it still performs worse than the simple average output.
The GE+miRNA expression combination data as input gave
very good results in general, although it did not have the best
performance on the survival rate prediction.

However, overall research is hindered due to several fac-
tors: i) limited amount of labeled genomics data, which is
probably individual patients privacy. This limitation causes
of overfitting while training our neural network. As shown
in fig. 8, the training scores is much higher than the validation
scores for the maximum number of samples i.e. adding more
training samples does increase model generalization. This
suggest that the prediction can be made more confidently if
we had more labelled training data, ii) secondly, we did not
perform any feature selection but let the network to choose
from the very high dimensional inputs. Consequently, for
some input combinations the pretraining error for the MAE
were getting out of bound, ii) limited amount of publicly
available genomics data sources because other sources such
as ICGC and COSMIC are not comprehensive even requiring
restricted access.

Existing DL-based approaches outperform ML-based
approaches but mostly suffer from lack of interpretability.
However, interpretability is important to gain insights into
the reasons why a given cancer case is of a certain type can
help in finding more accurate treatments and drug reposition-
ing. Further, the ‘‘right to explanation’’, of EU GDPR [38]
gives patients the right to know why and how an algo-
rithm makes a diagnosis decision. In the future, we intend
to develop a more robust multimodal network such as mul-
timodal Convolutional-LSTM to act both feature extractor
and classifier and train with an enriched number of samples
from other sources to develop an explainable deep architec-
ture might open future opportunity to learn more towards
potential gene set biomarkers based diagnosis.We also intend
to improve the explanations about the predictions using an
ante-hoc approach by seeding explainability into the model
from the beginning. In particular, we will focus on multi-
modality with reversed time attention model and Bayesian
deep learning [39].
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