
SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

Received August 10, 2019, accepted September 12, 2019, date of publication September 16, 2019, date of current version October 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941766

HcRPC: Highly Compact Reachability Preserving
Graph Compression With Corrections
RUI BING1, HUIFANG MA 1,2,3, XIANGCHUN HE1, ZHIXIN LI 3, AND LIJUN GUO4
1College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
3Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
4College of Information Science and Engineering, Ningbo University, Ningbo 315000, China

Corresponding author: Huifang Ma (mahuifang@yeah.net)

This work was supported in part by the National Natural Science Foundation of China under Grant 61762078, Grant 61363058, Grant
61762079, and Grant 61966004, in part by the Guangxi Key Laboratory of Trusted Software under Grant kx201910, in part by the
Research Fund of Guangxi Key Lab of Multi-Source Information Mining and Security under Grant MIMS18-08, in part by the Ningbo
Municipal Natural Science Foundation of China under Grant 2018A610057, and in part by the Zhejiang Provincial Natural Science
Foundation under Grant LY17F030002.

ABSTRACT Graphs are used in numerous applications to model real-world systems and phenomena.
The ever increasing size of graphs makes them difficult to query and analyze. In this paper, we propose
HcRPC, a Highly compact Reachability Preserving Graph compression algorithm with Corrections, which
is capable of preserving the reachability relations between the nodes in original graph. The highly compressed
representation of a given graph consists of a compressed graph and a set of corrections. The original graph
is compressed on the basis of equivalence class obtained via the reachability relations between nodes in the
original graph. In the compressed graph, each node corresponds to a set of nodes from the original graph with
similar ancestors and descendants, and each edge represents linkage between the original nodes in any two
node sets. The corrections portion specifies the set of corrections, including equivalent class-node corrections
and node-node corrections. MinHash technique is utilized to speed up checking whether equivalence classes
are structure-similar and the pair of equivalence classes with high similarity are thus merged to acquire a
highly compressed graph. Besides, we develop an algorithm for preserving compressed graph with a set of
corrections in response to changes to the original graph. We evaluate our algorithms on real-life graph data
sets and the results indicate that graph data sets can be highly compressed while preserving the reachability
relations between nodes.

INDEX TERMS Graph compression, reachability query, MinHash, dynamic graph.

I. INTRODUCTION
Nowadays, it is increasingly common to find graphs with
millions of nodes in various domains where nodes in the
graph represent entities in the real-world, while edges rep-
resent the relationship between entity and entity, such as
the relationships between users in social networks and web
pages in Web graphs. Due to the increasing scale of graph
data, it is impossible to process and analyze these graph
data directly. In order to save storage space and facilitate the
analysis of graph, it is necessary to compress large graph
into smaller-scale graph. Therefore, graph compression has
recently drawn intense research interest [1] and has been
wildly applied in many scenarios and domains [2]–[10], such

The associate editor coordinating the review of this manuscript and
approving it for publication was Shirui Pan.

as community influence analysis [11]–[15], graph visualiza-
tion [16], [17] and pattern discovery [18]–[20]. After com-
pressing graph, the complexity of the graph is reduced while
certain characteristics of the graph are preserved.

Consider a semantic network that represents people as
nodes in the graph and relationships among people as edges in
the graph. There are needs to understand whether two people
are related for security reasons [21]. On biological networks,
where nodes are either molecules, or reactions, or physi-
cal interactions of living cells, and edges are interactions
among them, an important question is to find all genes whose
expressions are directly or indirectly influenced by a given
molecule [22]. All the above questions can be mapped into
reachability queries, which make graph reachability queries
to be a very basic type of graph queries for many applications.
For reachability queries, it always takes O (|V | + |E|) time

136568 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-5104-8982
https://orcid.org/0000-0002-5313-6134

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 1. Compressing a real-life wiki-Vote social network.

via DFS/BFS search to determine whether there is a path
between any two nodes in the graph G = (V ,E). Although
indexes can be constructed to speed up evaluation, they can
still incur additional costs [23]. Therefore, evaluating queries
on graphs with millions of nodes and billions of edges is often
prohibitively expensive, and we are unlikely to reduce the
computational complexity. We may not change the complex-
ity of graph queries algorithms, but we can reduce the size
of the data graphs to obtain faster query speed. The method
proposed in [24] uses equivalence classes to partition nodes
in graphs, which effectively reduces the number of nodes in
graphs. For instance, a real-life wiki-Vote social network can
be highly compressed for reachability queries, as depicted
in Figure 1.What is more, inmany applications such as online
social networks, the graph evolves over time. We therefore
consider the problem of updating the compressed graph given
the graph changes over time.

To this end, in this paper, we introduce HcRPC, a Highly
compact Reachability Preserving graph Compression with
corrections. Figure 2 gives the framework of our methods.
It first divides nodes from the original graph into equivalent
classes via the equivalence relation of reachability. Then each
pair of equivalence classes are further compressed based on
the similarities of their ancestors and descendants. What is
more, a set of corrections is decided tomaintain the reachabil-
ity of the nodes in the original graph.HcRPC is relative to the
reachability queries, generating smaller graphswhile preserv-
ing information only relevant to reachability queries rather
than the entire original graphs, and therefore, achieves a better
compression ratio. In addition, any algorithm available for
evaluating reachability queries can be directly performed to
query the compressed graphs, as is, without decompressing.
In order to handle the dynamic changes of original graph,
we also propose an Incremental Reachability Preserving
Compression algorithm, i.e. IncRPC, to update both the com-
pressed graph and corrections in the dynamic graph, allowing
us to maintain the reachability of original graph without
decompressing after compress the graph once. We verify the
effectiveness and efficiency of our compression techniques
through experiments using real-life data.

The contribution can be summarized as follows:
(1). We propose a reachability query preserving com-

pression method for querying reachability relations on large
real-life graphs. Contrary to general graph data compression
strategies, our method only retains the information needed
for reachability queries, and thus achieves better compression

ratio by merging similar equivalence classes via MinHash.
Any algorithm for calculating the reachability query of the
original graph can be directly performed on the compressed
graph without decompression.

(2). As is known that merging similar sets will inevitably
incur reachability relation errors, a set of corrections is estab-
lished to maintain the same reachability relations on the
compressed graph as in the original graph. For reachability
queries, by calculating similarities and merging equivalence
classes to achieve better compression ratio, the reachability
relations in the compressed graph are kept unchanged through
the set of corrections. This not only achieves preferable com-
pression ratio, but also maintains the reachability relationship
in the original graph.

(3). In order to cope with the dynamic changes of real-life
graphs, we propose an incremental reachability preserving
compression algorithm. Given a graphG, its compressionGs,
and updates 1G to G, the aim is to utilize similarity calcu-
lation and corrections to make the reachability relations on
the updated compressed graphGs consistent with the original
graph G. This allows us to compute the compressed Gs once
and maintain it incrementally according to the changes in G.

II. RELATED WORKS
Graph compression methods can be roughly categorized into
two groups: general graph compression and query-friendly
graph compression.

A. GENERAL GRAPH COMPRESSION
General methods preserve the information of the entire
graph, and highly depend on extrinsic information, coding
mechanisms and application domains [25], However, these
methods need decompression before querying the graph.
Existing general graph compression algorithms can be sum-
marized into the following four categories: (a). Attribute-
based graph compression algorithms: On-Line Analytical
Processing (OLAP) technology is developed to form the
graph OLAP method, collecting graph data from both infor-
mation OLAP and topology OLAP [26], and probability
is considered to compress graphs [27]. (b). Structure-based
graph compression algorithms: There are currently two
strategies, one is probability-based graph compression
method [28], which takes zero reconstruction error as the
benchmark, and constructs reconstruction error according to
the differences between the expected adjacency matrix calcu-
lated by the super-graph and the adjacency matrix of the orig-
inal graph. The smaller the reconstruction error is, the better
the accuracy is. The other is the graph compression method
based onmaximum compression, aiming to minimize the size
of the super-graph. The most notable algorithm is the Mini-
mumDescription Length (MDL) representation method [29].
These methods are compressed only according to the struc-
ture of the nodes, ignoring the edge weights corresponding to
the attribute information on the nodes and the compactness
between the nodes. (c). Structure and attribute-based graph
compression algorithm: At present, there are two different

VOLUME 7, 2019 136569

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 2. Framework for reachability preserving graph compression.

strategies of graph compression algorithm based on structure
and attributes. One is to utilize attribute similarity to partition
nodes set, and then utilize structural similarity to partition
attribute similarity groups. The other is to transform attribute
information into structural information and measure both
of them into the same measure function, to directly obtain
the final compressed graph [30]. The representative graph
compression algorithms are: graph compression technology
based on entropy model in information theory [31], SNAP/
k-SNAP compression algorithms [32], [33], generating com-
pression graphs according to the attributes of nodes and edges
selected by users. (d). Graph compression algorithm based on
weighted graph:Weighted graph compression algorithms aim
at calculating the weights of the superedges between node
sets formed by node compression [34].

Our method is different from the general graph compres-
sion methods from the following aspects: the compression
method only depends on the reachability relationship in the
graph, and the compressed graph is only used for a specific
class of queries, i.e., the reachability queries. The compressed
graph obtained by HcRPC can be directly used to perform
reachability queries without decompressing the compressed
graph.

B. QUERY-FRIENDLY GRAPH COMPRESSION
Closer to our work, query-friendly graph compression
approaches target specific classes of queries. Queries can be
summarized in the following categories:
Neighborhood queries. The purpose of neighborhood

queries is to find nodes connected to the specified node in
the graph [29], [35], [36]. The idea of query-able compres-
sion (no decompression query) for such queries is proposed
in [35], which adopts the compressed data structures by
exploiting Eulerian paths and multi-position linearization.
In [36], an S-node representation is introduced to solve
neighborhood query on network graph. The aim of graph

summarization [29] is to sketch graphs with small subgraphs
and construct super-graph abstraction. These methods con-
struct compact data structures that should be decompressed
to answer queries [25]. In addition, the query evaluation algo-
rithms on the original graph should be modified to answer the
query in the compact data structures.
Distance-based queries. The distance-based queries are

usually executed on the weight graphs. The purpose of
distance-based query is to obtain the shortest path between
any two nodes in the graph [37]–[39]. [37] propose a novel
strategy to simplify weighted graphs by pruning least impor-
tant edges from them by defining a graph connectivity func-
tion based on the best paths between all pairs of nodes. Given
the number of edges to be pruned, the problem is then to
select a subset of edges that best maintains the overall graph
connectivity. Reference [38] introduces a new approach ‘gate
graph’ from a large graph so that for any ‘non-local’ node pair
(distance greater than some threshold) in the original graph,
the shortest-path distance can be recovered by consecutive
‘local’ walks through the gate vertices in the gate graph,
to perform graph simplification. Reference [39] introduces a
novel distance preserving compression method called Shrink,
which can be used to query and store both weighted and
unweighted graphs. Compressing with Shrink has the least
effect on the distances between nodes because a system of
equations is introduced to minimize the distance variations
caused by nodes merge.
Reachability queries. The aim of the reachability queries

is to determine whether any two nodes in the original graph
are reachable [24], [40]–[43]. To answer these queries, [40]
computes the minimal subgraph using the same transitive
closure as the original graph, and [41] reduces the graph by
replacing a simple cycle for each strongly connected compo-
nent. These methods allow reachability queries to be evalu-
ated on a compressed graph without decompression. Bipartite
compression [42] reduces the graphs by introducing virtual

136570 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

nodes and compressing bicliques. However, its compression
method is to establish the bijection between the original graph
and its compression graph, so that they can be converted to
each other. In contrast, our method does not need to restore
the original graph; and the algorithms for reachable queries
must be modified before they are applied to the compressed
graphs [42], [43] calculates a compresses bit vector to encode
the transitive closure of a graph. In contrast, the reachable
algorithm and the compression scheme in [43] can be directly
applied to the compressed graph. Incremental maintenance of
bit vectors is not mentioned in [43]. Comparedwith the reach-
ability query methods discussed above, our method achieves
a better compression ratio, since our compressed graph do
not necessarily be a subgraph of the original graph and some
of the compression methods only reduce the number of the
edges [40], [42], [43] while our method reduces the number
of nodes and edges by merging nodes into super-nodes.

Unlike previous graph compression methods,
CompressR [24] preserves information needed for answering
reachability queries which divides the nodes in the original
graph into several equivalence classes by equivalence rela-
tion of reachability to reduce the graph and achieves better
compression effect.

It is worth noting that our work is a significant exten-
sion of compressR. CompressR obtains equivalence classes
through equivalence relation of reachability while the aim of
our proposed HcRPC is to obtain highly compressed graph
via merging sets with high similarities, and corrections are
introduced to maintain the reachability of the original graph,
which makes HcRPC substantially different from compressR
in terms of both key ideas and techniques. Meanwhile,
IncRPC is to utilize similarity calculation and corrections to
make the reachability relations on the updated compressed
graph Gs consistent with the original graph G instead of sep-
arating nodes each step in the incremental algorithm as that in
compressR [24]. Furthermore, our method is able to achieve
higher compression rate through merging similar equivalent
classes.

III. PRELIMINARIES
In this section, we introduce some necessary notations to
describe the essential basic concepts and the MinHash tech-
nique used in similarity computing.

A. GRAPH AND REACHABILITY QUERY
Given a directed graph consisting of nodes and edges denoted
by G = (V ,E) where V is a set of nodes, E ⊂ V × V
is a set of edges, 〈u, v〉 ∈ E denotes a directed edge from
node u to v.
A path p from node u to v in G is a sequence of nodes (u =

uo, u1, u2. . .un = v), for each i ∈ [1,n], 〈vi−1, vi〉 ∈ E . The
length of path p denoted by len (p), is the number of edges in
path p. A node u can reach v (or v is reachable from u) if and
only if (iff) there exists a path from u to v in G.
A graph Gs = (Vs,Es) is a compressed graph of G, where

Vs is a set of supernodes and each supernode is composed

FIGURE 3. MinHash computing process.

of a set of nodes in G, while Es is a set of superedges
between supernodes and each superedge represents the edges
between the original nodes in the supernodes. In the following
section, we will detail how to create supernodes based on the
similarity between sets, and how to establish superedges via
the connection of the original nodes in the supernodes.

A reachability query on a graph G is QR (u, v), which is
a boolean query asking whether node u can reach node v
in G.

B. MINHASH
MinHash is a technique for quickly estimating how similar
two sets are [44]. Initially used in AltaVista search engine
to detect duplicate web pages and delete them from search
results. The goal of MinHash is to quickly estimate Jaccard
similarity between sets, without explicitly computing the
intersection and union.

Specifically, an index matrix I size of n× k is constructed,
where n is the total number of distinct elements in the union
of all the sets to be compared and k is the number of sets.
The entry I ij in the index matrix represents whether the jth set
contain the element i in the union of all the sets. Different hash
functions h1, h2, . . . ,hl are defined and each hash function
is a random permutation on n elements. That is to say, each
hash function is a random row order exchange of the index
matrix I . According to the row order exchange of the index
matrix I based on hash function hi, the row number of the first
non-zero value of each column in the exchanged index matrix
is the MinHash value of the set represented by this column.
Therefore, after exchanges l times, each set is attached with
l MinHash values. In terms of the l different hash functions
and k sets, a MinHash signature matrix M (l × k) is created
whereM ij represents MinHash value on hash function hi for
the jth set.

The similarity between columns in the MinHash signature
matrix is considered as the similarity of the set represented by
this column. Clearly, the similarity values between two sets
are real numbers within the interval [0,1].

VOLUME 7, 2019 136571

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

Example 1: Take four sets, S1, S2, S3 and S4 as
an example, where S1 ={a, d, e}, S2 ={c}, S3 ={b, d, e},
S4 ={a, c, d, e}, the union set U = {a, b, c, d, e}. Next
we show the calculation of the similarity between the sets.
We create an index matrix shown in Figure. 3(a) and five
different hash functions, h1, h2, h3, h4, h5 are generated
randomly as shown in Figure. 3(b) to exchange row order in
index matrix. Figure. 3(c) indicates h1 functional exchange
on index matrix and the MinHash values of S1, S2, S3 and
S4 are 2, 1, 3, 1, respectively. The exchange process if the
rest hash functions are similar with h1, based on which the
MinHash values of these sets are obtained. Finally, we create
the MinHash signature matrix shown in Figure. 3(d). The
calculation of similarity between two sets is conversed as
the similarity between the two corresponding columns in
the MinHash signature matrix. For instance, the similarity
between S1 and S4, S3 and S4 are 0.8 and 0.4, respectively.

IV. COMPRESSION FOR REACHABILITY
In this section, we propose the highly compact two-part
representation of a given graph G consisting of a graph
summary and a set of corrections. In contrast to reachability
preserving algorithm proposed by Fan et al. [24], our highly
compact reachability preserving compression algorithm can
effectively reduce the number of equivalent classes and save
storage costs.

A. REACHABILITY RELATION GRAPH
The reachability relation on graphG = (V ,E) is defined as a
binary relationRe ⊆ V×V , for each (u, v) ∈ Re and any node
x ∈ V such that x can reach u if and only if x can reach v; and
u can reach x if and only if v can reach x. Put it another way,
(u, v) ∈ Re if and only if they have the same set of ancestors
and the same set of descendants.

We use [u]Re to denote equivalence class containing node u
and other nodes in the same equivalence class with the same
set of ancestors and the same set of descendants, indicating
each equivalence class owns a set of ancestors and set of
descendants.

The reachability relation graph of graph G = (V ,E) is
defined as Gr = (Vr ,Er) where Vr =

{
[v]Re

∣∣ v ∈ V} is a
set of equivalence classes partitioned via reachability relation
and Er is a set of edges. There is an edge

〈
[u]Re , [v]Re

〉
in

Er if there exist nodes u
′

∈ [u]Re and v
′

∈ [v]Re such that〈
u
′

, v
′
〉
∈ E . Therefore, the reachability relation graph can

be regarded as the initial compressed graph for the original
graph.

B. SIMILARITY CALCULATION AND CORRECTIONS
Suppose there are k equivalence classes in Vr for the reach-
ability relation graph for graph G = (V ,E), denote as
(S1, S2, . . . , Sk). Two equivalent class-node matrices based
on the reachability relation,A andD, are created respectively,
with both sizes of n× k , where n is the total number of nodes
in graph G = (V ,E). Entries in Matrix A denote which

nodes are ancestors of the nodes in each equivalent class in the
reachability relation graph. Thereafter, each row of matrix A
indicates the node in graph G, and each column indicates
the equivalent class in the reachability relation graph. Aij is
a binary value indicating whether node i is an ancestor of the
nodes in the equivalent class Sj. Similar to matrix A, matrixD
denotes which nodes are descendants of the nodes in each
equivalent class. Dij in matrix D represents whether node i is
the descendant of nodes in the equivalent class Sj.
MinHash is adopted to calculate the similarities of ances-

tors and descendants between each pair of equivalent classes
Si, Sj denoted by siman

(
Si, Sj

)
and simdes

(
Si, Sj

)
, respec-

tively. Next, we propose a joint similarity to measure the
similarity between Si, Sj.

sim
(
Si, Sj

)
=

1
2

(
siman

(
Si, Sj

)
+ simdes

(
Si, Sj

))
(1)

A pair of equivalent classes Si, Sj is merged to create a
supernode if sim

(
Si, Sj

)
≥ θ , where θ is the similarity

threshold to determine the similarity between two equivalent
classes. Otherwise we create two supernodes to represent two
equivalence classes Si, Sj. In the experiments, we will detail
the setting of threshold θ .

To eliminate reachability errors caused by merging equiv-
alence classes, we introduce a set of corrections C to
preserve the reachability relations in the original graph
G = (V ,E).There are two types of equivalent class-node
corrections, −r() and +r(), where +r() represents that the
equivalent class are reachable to a node while −r() repre-
sents that the equivalent class are unreachable to a node. For
instance, the equivalence class Sj has the descendant u and
the ancestor v while Si does not have the descendant u and
the ancestor v. We create corrections to preserve reachability
by merging equivalence classes Si, Sj, where each equivalent
class-node correction is a tuple denoted by −r (Si, u) or
−r (v, Si). The −r (Si, u) represents the equivalence class
cannot reach the descendant u because node u is the descen-
dant of Sj, and the −r (v, Si) represents the ancestor v cannot
reach equivalence class Si since node v is the ancestor of Sj.

C. REACHABILITY PRESERVING COMPRESSION
We next present the highly compact reachability pre-
serving compression algorithm, HcRPC. Given a graph
G = (V ,E), the objective is to calculate the compressed
graph Gs = (Vs,Es) and corrections C . The algorithm is
shown in Figure. 4.

Given a graph G = (V ,E), HcRPC firstly computes its
reachability relation Re and obtain the partition Par = V/Re
of G consisting of equivalent classes (lines 2-3). After this,
equivalent classes are used to form the reachability relation
graph Gr (lines 4-10). According to (1), HcRPC computes
the joint similarity between each pair of equivalent classes
Si, Sj in graph Gr (lines 11-14). At this point, the algorithm
selects the pair of equivalence classes whose joint similarity
exceeds the threshold θ to merge. For the equivalence classes
whose joint similarity does not exceed the threshold, they

136572 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 4. Algorithm HcRPC.

become supernodes independently. Meanwhile, supernodes
are created to represent the merged equivalence classes and
single equivalence classes, and they are then added to set
Vs (lines 15-20). The strategy of adding superedge for each
pair Si, Sj is that if there is an edge between elements in
the equivalence classes Si, Sj, the superedge between Si, Sj is
created. After this, a set of equivalent class-node corrections
is generated to preserve the reachability relations on com-
pressed graphGs (lines 21-24). Finally, the compressed graph
Gs and corrections C are constructed and returned (line 25).
Example 2: Consider the graph G given in Figure. 5(a),

in terms of reachability relations on the graph G, nodes D,
E are in the same equivalence class, F , G are in the same
equivalence class and I , J are in the same equivalence class

FIGURE 5. Reachability preserving compression.

as shown in Figure. 5(b) since they own same ancestors and
descendants. Let the threshold θ equals to 0.75, after cal-
culating the joint similarity between each equivalent classes
in the reachability relation graph Gr , the joint similarity
between [D]Re and [I]Re exceeds the threshold θ . Therefore,
we merge [D]Re and [I]Re together and create a supernode for
Vs. In addition, node A cannot reach [I]Re in the graph Gr ,
we thus add an equivalent class-node correction to preserve
the reachability of graph G shown in Figure. 5(c).

V. INCREMENTAL REACHABILITY
PRESERVING COMPRESSION
In order to deal with the dynamic changes of graphs, in this
section we propose an incremental reachability preserving
compression algorithm for compressed graph. The updates
1G is defined as a list of edge deletions and insertions to the
original graph G. The algorithm we proposed can preserve
the reachability of the updated original graph directly through
the compressed graph Gs by using node corrections without
decompressing the compressed graph Gs and separating each
affected node in each step.

A. PREPROCESSING
Before we deal with edge operations in updates1G, we need
to preprocess the updates to remove edge operations that have
no affect to reachability on compressed graph Gs. The strat-
egy of removing edges is similar with [24]: According to the
compressed graph Gs and corrections C , the preprocessing
removes (a) edge insertions 〈u, v〉 where [u]Re 6= [v]Re , and
[u]Re can reach [v]Re in graphGs; and (b) edge deletions 〈u, v〉

VOLUME 7, 2019 136573

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

if either [u]Re can reach [v]Re through a path with length no
less than two in Gs.
Two types of node-node corrections are adopted denoted

by −() and +(), respectively, where +() represents that the
pair of nodes have an edge between each other and −()
represents that there is no edge between this pair of nodes.

B. INCREMENTAL REACHABILITY PRESERVING
COMPRESSION
Here, we present the incremental reachability preserving
compression algorithm that given a graph G = (V ,E),
compressed graph Gs = (Vs,Es) of G and updates 1G,
calculate its updated compressed graph Gs = (Vs,Es) and
corrections C . The algorithm is shown in Figure. 6.

Given a graph G = (V ,E), compressed graph Gs =
(Vs,Es) of G and updates 1G, the algorithm first removes
redundant edges in 1G (line 1). Next, for each edge in the
updates 1G, the similarity between the affected node and
its equivalent class (lines 2-3) is calculated. The algorithm
adds node-node corrections if the joint similarity between the
affected node and its equivalent class exceeds the threshold
θ , and separates the affected node from its equivalent class if
the joint similarity between the affected node and its equiva-
lent class below the threshold θ (lines 4-31). Then, for the
separated affected node, the algorithm calculates the joint
similarities between the node and its equivalent class’ brother
equivalent classes in set B (lines 9,18,26). The separated
affected node is merged into equivalent class in set B if
the joint similarity exceeds the threshold θ (lines 10-11,
19-20, 27) and a supernode is created to represent this sepa-
rated affected node if the joint similarity is below the thresh-
old θ (lines 12-14, 21-23, 29-31). N (u), N (v) represent the
neighbor node set of nodes v, respectively. Thus, the updated
compressed graph Gs and corrections C are established and
returned (line 32).
Example 3: Recall the graph G proposed in Figure 5. Now

we update graph G with 1G, where 1G is composed of two
edge insertions 〈D,H〉, 〈A, I 〉 and one edge deletion 〈E,G〉 as
shown in Figure. 7(a). According to the reachability relation
of graph Gs, we can see that the edge insertion 〈D,H〉 can
be removed in preprocessing phase since [D]Re can reach H .
Next, we perform the edge insertion 〈A, I 〉. After inserting
〈A,E〉, we compute the similarities between node A and its
equivalent class [A]Re , node E and its equivalent class [I]Re .
Let the threshold θ equals to 0.75, it is clear that both the
similarities between node A and its equivalent class [A]Re
node I and its equivalent class [I]Re exceed the threshold θ .
Therefore, there is no need to separate nodeA and I from their
equivalent classes, and a node correction +(A, I) is added
to denote that there is an edge from A to I . Same as the
edge insertion, we perform the edge deletion 〈E,G〉 and then
compute the similarities between node E and its equivalent
class [D]Re , node G and its equivalent class [F]Re . The result
in Figure. 7(b) indicates that there is no need to separate
node E and G from their equivalent classes, and a node

FIGURE 6. Algorithm IncRPC.

correction−(E,G) is supplemented to denote the deletion of
edge from E to G.

136574 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

TABLE 1. Datasets.

FIGURE 7. Incremental reachability preserving compression.

VI. EXPERIMENTS
In this section, we present the experimental evaluation on
real-life data sets using algorithms introduced in the previous
section. Furthermore, we investigate the impact of the graph
size and graph type.

A. EXPERIMENT SETTING
We run our algorithms on the following real-life data sets
with different graph type to evaluate the proposed techniques.
We adopt six real-world networks collected by SNAP1 with
four graph types shown in Table 1.

Three social networks. (a). soc-Epinions1 is a who-trust-
whom online social network of a general consumer review
site Epinions.com. Members of the site can decide whether
to ‘trust’ each other. All the trust relationships interact and
form the Web of Trust which is then combined with review
ratings to determine which reviews are shown to the user.
(b). soc-Pokec: Pokec is the most popular online social net-
work in Slovakia. In the soc-Pokec, a node represents a
user and edges represent friendships between users. Datasets
contains anonymized data of the whole network and friend-
ships in Pokec are oriented. (c). wiki-Vote: This network
contains all the Wikipedia voting data from the inception of
Wikipedia. Nodes in the network represent Wikipedia users
and a directed edge from node i to node j represents that user
i votes on user j.

1http://snap.stanford.edu/data/

Communication network. wiki-Talk: The network con-
tains all the users and discussion from the inception of
Wikipedia. Nodes in the network represent Wikipedia users
and a directed edge from node i to node j represents that user
i at least once edited a talk page of user j.
Product co-purchasing network. amazon: In this net-

work, a node represents a product and edges represent co-
purchasing relations. If a product i is frequently co-purchased
with product j, the graph contains a directed edge from i to j.
Internet peer-to-peer network. p2p-Gnutella: In this net-

work, nodes represent hosts in the Gnutella network topology
and edges represent connections between the Gnutella hosts.

B. EVALUATION METRICS
We utilize the compression ratio widely used in numerous
graph compression methods to measure the performance of
the reachability preserving compression algorithm. The com-
pression ratio of Gs is defined as follow:

cr (Gs) =
|Gs|
|G|

(2)

In (2), |Gs| denotes the sum of the number of supernodes and
superedges in the compressed graph Gs of the original graph
G and |G| denotes the sum of the number of nodes and edges
in the original graph G.

In addition, we define storage cost to measure the mem-
ory cost of the compressed graph, where the storage cost is
defined as follow:

c (Gs) = |Gs| + |C| (3)

Same as in (2), |Gs| in (3) denotes the sum of the number of
supernodes and superedges in the compressed graph Gs and
|C| denotes the number of two type corrections in graph Gs.

We conduct a series of experiments to verify our algo-
rithm: the effectiveness of the reachability preserving com-
pression algorithm and incremental reachability preserving
compression algorithm, the performances are measured by
compression ratio; the effectiveness of the query process-
ing measured by query evaluation time over original and
compressed graphs; the efficiency of the incremental reach-
ability preserving compression algorithm measured through
update execution time and the performance of storage cost

VOLUME 7, 2019 136575

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 8. Hash function setting.

FIGURE 9. Threshold setting.

with corrections. Besides, we conduct experiment to select
reasonable parameter θ and number of hash functions.

We compare our method performance with one of the state-
of-the-art graph compression method introduced in [24],
where the reachability preserving compression in [24] is
named after compressR and the incremental compression is
named after incRCM.

C. EXPERIMENTAL RESULTS
1) HASH FUNCTION SETTING
Firstly, we introduce how to choose the optimal number of
hash functions on four datasets. The result is shown in Figure.
8, where the X-axis represents different numbers of hash
functions and 1S in the Y-axis represents the difference of
similarities between the same sets measured by the previous
number of hash functions and the current number of hash
functions. From Figure 8, we can see that when the num-
ber of hash functions reaches 30, 1S tends to be stable.
Therefore, we set the number of hash functions to 30 for
calculating similarities.

2) THRESHOLD SETTING
In this set of experiments, we introduce how to choose the
optimal threshold θ according to the storage cost. Figure 9
shows how the compression performance of theHcRPC algo-
rithm changes as we change the values. Three different col-
ors indicate three different datasets, P2P, soc-Epinions1 and

wiki-Vote, respectively. In Figure. 9, The X-axis repre-
sents different threshold values ranging from 0.1 to 1 with
0.1 increments and the Y-axis represents the storage cost of
compressed graph. For each θ , we run the algorithm five
times and pick the result which is associated with the best
storage cost. The result reveals that when the threshold θ is
0.75 on average, the storage cost c (Gs) of the compressed
graph is the smallest since exorbitant setting of similarity
threshold θ brings about few or even no equivalent classes
to be merged. Similarly, excessively low setting of similarity
threshold θ allows any two equivalent classes to be merged,
toomuch corrections, evenmore than the edges in the original
graph, and thus the compressed graph is with a highly expen-
sive storage cost. Hence, we set the threshold θ to 0.75 when
wemerge equivalent classes. From Figure 9, it is clear that the
P2P data set with smaller size than soc-Epinions1 achieves
a slightly higher storage cost than that of soc-Epinions1 in
the case of choosing the optimum threshold θ , while the
compression effectiveness of P2P data sets is slightly lower
than that of the other two data sets, because soc-Epinions1
and wiki-Vote have higher connectivity than P2P networks.

3) EFFECTIVENESS OF REACHABILITY COMPRESSION
We then evaluate the effectiveness of HcRPC using com-
pression ratio on real-life datasets. We treat the compression
ratio as a measurement for representation of compression
effectiveness, which differs from the ratio measuring the
memory cost reduction. The smaller the compression ratio
is, the more effective the compressing method is. The com-
pression ratios of reachability preserving compression are
reported in Table 2. The table shows that: (a) HcRPC can
highly compress real-life graphs. Indeed, cr (Gs) obtained
by HcRPC is in average 2.2% over the six datasets. For
wiki-Vote data set, it is up to 99.8% reduction in original
graph size. (b) Comparing with compressR, the compression
ratios produced by the HcRPC are about 40% lower than
compressR because of merging the similar pair of equivalence
classes. (c) The HcRPC perform best on social networks and
product co-purchasing networks since social networks and
product co-purchasing networks are with higher connectivity
than other graph types. The denser edges of the network,
the more nodes can be merged. Compared with other net-
works, the compression ratio cr (Gs) obtained by HcRPC on
P2P network is about 60% higher than others.

4) EFFECTIVENESS OF INCREMENTAL
REACHABILITY COMPRESSION
We evaluate the effectiveness of the IncRPC, in terms of
compression ratio cr (Gs). The result is shown in Figure. 10,
where 1 |E| in X-axis represents the percentage of the total
edge updates performed in 5% increments and Y-axis rep-
resents the compression ratio cr (Gs). To facilitate compar-
ison with the incRCM, we only select edge insertions and
execute them for edge updates. Figure. 10(a) shows the
compression effectiveness of IncRPC and incRCM on wiki-
Vote dataset. We can see that the more edges inserted into

136576 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

TABLE 2. Reachability preserving: compression ratio.

FIGURE 10. Effectiveness of incremental reachability compression.

original graph, the better the graph can be compressed for
reachability queries as with the increase of edges, more nodes
may belong with the same reachability equivalent classes.
As can be seen from Figure. 10(a), the IncRPC achieves better

FIGURE 11. Effectiveness of query processing.

compression ratio than incRCM on account of merging the
pair of equivalence classes, which exceeds the joint similarity
threshold θ . Figure. 10(b) and Figure. 10(c) show the result of
the execution of IncRPC and incRCM on P2P and wiki-Talk
datasets, respectively. Similar to the result with Figure. 10(a),
IncRPC shows better compression performance than incRCM
as shown in Figure. 10(b) and Figure. 10(c). Meanwhile,
the compression effectiveness of the two algorithms on the
P2P dataset is inferior to compression effectiveness on the
other two datasets.

5) EFFECTIVENESS OF QUERY PROCESSING
In this set of experiments, we evaluate the performance of
HcRPC for reachability queries on the original and com-
pressed graphs. Meanwhile, compressR is selected as the
compared algorithm. Figure. 11 shows the experimental
result run on five different datasets, where Y-axis represents
the percentage of reachability query time on compressed
graphs obtained by the two algorithms to reachability query
time on the original graphs. From Figure. 11, we can see that
the reachability query time on compressed graphs is signif-
icantly less than the reachability query time on the original
graphs. Indeed, the running time of reachability query on
the compressed graph is only 6% of the cost on original
graphs in average, and the optimal result of the running time
of reachability query on compressed graph is 2% on soc-
Epinions1 dataset. In addition, the time spent for reachability
queries on the compressed graph generated by HcRPC is
30% faster than that on the compressed graph generated
by compressR in average, as HcRPC can generate smaller
compressed graphs than compressR, the smaller the size of

VOLUME 7, 2019 136577

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 12. Efficiency of reachability compression.

the query graph, the shorter the reachability query time will
be.

6) EFFICIENCY OF REACHABILITY COMPRESSION
In this set of experiments, we evaluate the efficiency of
HcRPC via compressing execution time on three datasets,
P2P, wiki-Vote and soc-Epinions1. It is not surprising that
the compressing execution time of HcRPC will be slower
than compressR since HcRPC needs to calculate similarities
based on the equivalent class obtained by compressR. Fortu-
nately, MinHash adopted inHcRPC is a technique for quickly
estimating how similar two sets are. As is shown in Figure.
12, the execution time of HcRPC is comparable with than of
compressR. Although the execution time ofHcRPC is slightly
slower than that of compressR, HcRPC can achieve better
compression result.

7) EFFICIENCY OF INCREMENTAL
REACHABILITY COMPRESSION
We next evaluate the efficiency of IncRPC by execution time
of edge updates. Fixing the number of nodes in the social
network soc-Epinions1, we vary the number of edges from
519K to 607K by inserting edges in 10K increments and
the number of edges from 519K to 429K by deleting edges
in 10K decrements. As is shown in Figure. 13(a) and Figure.
13(b), IncRPC outperforms incRCM in execution time when
performing edge insertion updates and edge deletion updates.
Intuitively, IncRPC runs 17% faster than incRCM in the
execution time of edge updates in average. The reason is that
IncRPC does not need to separate each node involved in edge
updates to compute the topological ranking values and merge
them. It is replaced by computing the joint similarity between
the node affected by edge update and its equivalent classes,
and the nodes whose joint similarity does not satisfied the
threshold θ are separated, thus greatly saving the execution
time of edge updates.

8) STORAGE COST ANALYSIS
We then evaluate the storage cost of HcRPC on five datasets
with three graph types. As is shown in Figure. 14, the storage
cost of compressed graphs generated by the two algorithms
is significantly lower than that of original graphs. What is

FIGURE 13. Efficiency of incremental reachability compression.

FIGURE 14. Storage cost analysis.

more, HcRPC has better storage cost on social networks and
product co-purchasing networks than compressR since social
networks and product co-purchasing networks arewith higher
connectivity than P2P and wiki-Talk. That is to say, the edges
on social networks and product co-purchasing networks are
denser than others. The denser edges of the network, the fewer
the corrections are needed. Meanwhile, the storage cost of the
compressed graph generated by HcRPC is almost the same
as that generated by compressR on the P2P and wiki-Talk
networks since few corrections are introduced.

VII. CONCLUSION
In this paper, we introduce a highly compact reachability pre-
serving graph compression algorithm that is able to preserve

136578 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

the reachability relations between nodes in original graph. For
reachability queries, the compressed graphs can be directly
queried without decompression, using any available eval-
uation algorithms for the queries. The highly compressed
representation of a given graph G consisting of a compressed
graph and a set of corrections, where the set of corrections
is introduced to preserve the reachability relations between
nodes in graphG. In our reachability preserving compression
algorithm, a highly compact compressed graph is obtained
via merging a similar pair of equivalent classes when the joint
similarity of the pair of equivalent classes exceeds threshold.
Meanwhile, we propose an incremental reachability preserv-
ing compression algorithm for compressed graphs in order
to deal with the dynamic changes of graphs without decom-
pression. Instead of separating each node involved in edge
updates, we only compute the joint similarity between the
node affected by edge updates and its equivalent classes, and
separate the nodes whose joint similarity does not satisfied.
The experimental results on real world datasets show that our
algorithms are effective and efficient.

REFERENCES
[1] Y. Liu, T. Safavi, A. Dighe, andD. Koutra, ‘‘Graph summarizationmethods

and applications: A survey,’’ ACM Comput. Surv., vol. 51, no. 3, 2018,
Art. no. 62.

[2] B. Dolgorsuren, K. U. Khan, M. K. Rasel, and Y.-K. Lee, ‘‘StarZIP:
Streaming graph compression technique for data archiving,’’ IEEE Access,
vol. 7, pp. 38020–38034, 2019.

[3] S. Anirban, J. Wang, and M. S. Islam, ‘‘Multi-level graph compression for
fast reachability detection,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.
Cham, Switzerland: Springer, 2019, pp. 229–246.

[4] N. Kahl, ‘‘Graph vulnerability parameters, compression, and quasi-
threshold graphs,’’Discrete Appl. Math., vol. 259, pp. 119–126, Apr. 2019.

[5] S. Maneth and F. Peternek, ‘‘Grammar-based graph compression,’’ Inf.
Syst., vol. 76, pp. 19–45, Jul. 2018.

[6] D. Zhao, Y. Zhang, J. Lin, W. Song, A. Liotta, and D. Huang, ‘‘Query of
marine big data based on graph compression and views,’’ in Proc. IEEE
Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp. 252–257.

[7] M. Nelson, S. Radhakrishnan, and C. N. Sekharan, ‘‘Queryable compres-
sion on time-evolving social networks with streaming,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2018, pp. 146–151.

[8] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan,
‘‘Queryable compression on streaming social networks,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2017, pp. 988–993.

[9] A. Chatterjee, M. Levan, C. Lanham, M. Zerrudo, M. Nelson, and
S. Radhakrishnan, ‘‘Exploiting topological structures for graph compres-
sion based on quadtrees,’’ in Proc. 2nd Int. Conf. Res. Comput. Intell.
Commun. Netw. (ICRCICN), Sep. 2016, pp. 192–197.

[10] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan,
‘‘On compressing massive streaming graphs with quadtrees,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Oct./Nov. 2015, pp. 2409–2417.

[11] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. S. Subrahmanian,
‘‘Fast influence-based coarsening for large networks,’’ in Proc. 20th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 1296–1305.

[12] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen, ‘‘CSI: Community-
level social influence analysis,’’ in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases. Berlin, Germany: Springer, 2013,
pp. 48–63.

[13] L. Shi, H. Tong, J. Tang, and C. Lin, ‘‘VEGAS: Visual influEnce GrAph
summarization on citation networks,’’ IEEE Trans. Knowl. Data Eng.,
vol. 27, no. 12, pp. 3417–3431, Dec. 2015.

[14] Q. Qu, S. Liu, F. Zhu, and C. S. Jensen, ‘‘Efficient online summarization
of large-scale dynamic networks,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 12, pp. 3231–3245, Dec. 2016.

[15] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen,
‘‘Sparsification of influence networks,’’ in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2011, pp. 529–537.

[16] C. Dunne and B. Shneiderman, ‘‘Motif simplification: Improving network
visualization readability with fan, connector, and clique glyphs,’’ in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2013, pp. 3247–3256.

[17] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, ‘‘TimeCrunch:
Interpretable dynamic graph summarization,’’ in Proc. 21st ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1055–1064.

[18] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, ‘‘VoG: Summarizing
and understanding large graphs,’’ in Proc. SIAM Int. Conf. Data Mining.
Philadelphia, PA, USA: SIAM, 2014, pp. 91–99.

[19] G. Buehrer and K. Chellapilla, ‘‘A scalable pattern mining approach to
Web graph compressionwith communities,’’ inProc. Int. Conf. Web Search
Data Mining, 2008, pp. 95–106.

[20] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han,
‘‘Mining graph patterns efficiently via randomized summaries,’’ in Proc.
VLDB Endowment, 2009, vol. 2, no. 1, pp. 742–753.

[21] K. Anyanwu andA. Sheth, ‘‘The ρ-operator: Enabling querying for seman-
tic associations on the semantic Web,’’ in Proc. 12th WWW Conf., 2003.

[22] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch,
D. Gilbert, and S. J. Wodak, ‘‘Representing and analysing molecular and
cellular function using the computer,’’ Biol. Chem., vol. 381, nos. 9–10,
pp. 921–935, 2000.

[23] J. X. Yu and J. Cheng, ‘‘Graph reachability queries: A survey,’’ in
Managing and Mining Graph Data. Boston, MA, USA: Springer, 2010,
pp. 181–215.

[24] W. Fan, J. Li, X.Wang, andY.Wu, ‘‘Query preserving graph compression,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 157–168.

[25] P. Boldi, M. Rosa, M. Santini, and S. Vigna, ‘‘Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,’’ in Proc. 20th Int. Conf. World Wide Web, 2011, pp. 587–596.

[26] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, ‘‘Graph OLAP: Towards
online analytical processing on graphs,’’ in Proc. 8th IEEE Int. Conf. Data
Mining, Dec. 2008, pp. 103–112.

[27] N. Hassanlou, M. Shoaran, and A. Thomo, ‘‘Probabilistic graph sum-
marization,’’ in Proc. Int. Conf. Web-Age Inf. Manage. Berlin, Germany:
Springer, 2013, pp. 545–556.

[28] K. LeFevre and E. Terzi, ‘‘GraSS: Graph structure summarization,’’ in
Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM, 2010,
pp. 454–465.

[29] S. Navlakha, R. Rastogi, and N. Shrivastava, ‘‘Graph summarization with
bounded error,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 419–432.

[30] K. U. Khan, W. Nawaz, and Y.-K. Lee, ‘‘Set-based unified approach for
summarization of amulti-attributed graph,’’WorldWideWeb, vol. 20, no. 3,
pp. 543–570, 2017.

[31] Z. Liu, J. X. Yu, and H. Cheng, ‘‘Approximate homogeneous graph sum-
marization,’’ Inf. Media Technol., vol. 7, no. 1, pp. 32–43, 2012.

[32] Y. Tian, R. A. Hankins, and J. M. Patel, ‘‘Efficient aggregation for graph
summarization,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 567–580.

[33] N. Zhang, Y. Tian, and J. M. Patel, ‘‘Discovery-driven graph summa-
rization,’’ in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), Mar. 2010,
pp. 880–891.

[34] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, ‘‘Compression
of weighted graphs,’’ in Proc. 17th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2011, pp. 965–973.

[35] H. Maserrat and J. Pei, ‘‘Neighbor query friendly compression of social
networks,’’ in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2010, pp. 533–542.

[36] S. Raghavan and H. Garcia-Molina, ‘‘Representing Web graphs,’’ in Proc.
19th Int. Conf. Data Eng., Mar. 2003, pp. 405–416.

[37] F. Zhou, S. Malher, and H. Toivonen, ‘‘Network simplification with mini-
mal loss of connectivity,’’ inProc. IEEE Int. Conf. DataMining, Dec. 2010,
pp. 659–668.

[38] N. Ruan, R. Jin, andY.Huang, ‘‘Distance preserving graph simplification,’’
in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011, pp. 1200–1205.

[39] A. Sadri, F. D. Salim, Y. Ren, M. Zameni, J. Chan, and T. Sellis, ‘‘Shrink:
Distance preserving graph compression,’’ Inf. Syst., vol. 69, pp. 180–193,
Sep. 2017.

[40] D. M. Moyles and G. L. Thompson, ‘‘An algorithm for finding a minimum
equivalent graph of a digraph,’’ Manage. Sci. Res. Group, Pittsburgh, PA,
USA, Tech. Rep., 1967.

[41] A. V. Aho, M. R. Garey, and J. D. Ullman, ‘‘The transitive reduction of a
directed graph,’’ SIAM J. Comput., vol. 1, no. 2, pp. 131–137, 1972.

VOLUME 7, 2019 136579

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

[42] T. Feder and R. Motwani, ‘‘Clique partitions, graph compression and
speeding-up algorithms,’’ J. Comput. Syst. Sci., vol. 51, no. 2, pp. 261–272,
Oct. 1995.

[43] S. J. van Schaik and O. de Moor, ‘‘A memory efficient reachability data
structure through bit vector compression,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2011, pp. 913–924.

[44] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, ‘‘Syntactic
clustering of the Web,’’ Comput. Netw. ISDN Syst., vol. 29, nos. 8–13,
pp. 1157–1166, Sep. 1997.

RUI BING received the B.E. degree from North-
west Normal University, China, in 2017, where
he is currently pursuing the master’s degree with
the College of Computer Science and Engineering.
His general research interest includes graph data
mining.

HUIFANG MA received the B.E. degree from
Northwest Normal University, China, in 2003,
the M.S. degree from Beijing Normal Univer-
sity, China, in 2006, and the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, in 2010. She is currently a
Professor with the College of Computer Science
and Engineering, Northwest Normal University.
Her research interests include data mining and
machine learning.

XIANGCHUN HE received the B.E., M.S., and
D.Ed. degrees from Northwest Normal Univer-
sity, China, in 2003, 2010, and 2019, respec-
tively, where he is currently an Associate Professor
with the College of Education Technology. His
research interests include data mining and learning
analysis.

ZHIXIN LI received the B.S. and M.S. degrees
from the Huazhong University of Science and
Technology, in 1992 and 2004, respectively, and
the Ph.D. degree in computer software and the-
ory from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2010. He is cur-
rently a Professor with the College of Computer
Science and Information Technology, Guangxi
Normal University. His research interests include
image understanding, machine learning, and mul-

timedia information retrieval. His doctoral dissertation haswon the Best Doc-
toral DissertationAward of the ChineseAssociation ofArtificial Intelligence,
in 2011.

LIJUN GUO received the Ph.D. degree in com-
puter science from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing, China, in 2011. He is currently a Full
Professor with Ningbo University, Ningbo, China.
His current research interests include computer
vision, intelligence science, and machine learning.

136580 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORKS
	GENERAL GRAPH COMPRESSION
	QUERY-FRIENDLY GRAPH COMPRESSION

	PRELIMINARIES
	GRAPH AND REACHABILITY QUERY
	MINHASH

	COMPRESSION FOR REACHABILITY
	REACHABILITY RELATION GRAPH
	SIMILARITY CALCULATION AND CORRECTIONS
	REACHABILITY PRESERVING COMPRESSION

	INCREMENTAL REACHABILITY PRESERVING COMPRESSION
	PREPROCESSING
	INCREMENTAL REACHABILITY PRESERVING COMPRESSION

	EXPERIMENTS
	EXPERIMENT SETTING
	EVALUATION METRICS
	EXPERIMENTAL RESULTS
	HASH FUNCTION SETTING
	THRESHOLD SETTING
	EFFECTIVENESS OF REACHABILITY COMPRESSION
	EFFECTIVENESS OF INCREMENTAL REACHABILITY COMPRESSION
	EFFECTIVENESS OF QUERY PROCESSING
	EFFICIENCY OF REACHABILITY COMPRESSION
	EFFICIENCY OF INCREMENTAL REACHABILITY COMPRESSION
	STORAGE COST ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	RUI BING
	HUIFANG MA
	XIANGCHUN HE
	ZHIXIN LI
	LIJUN GUO

