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ABSTRACT Existing spatial keyword query processing models mainly consider the spatial proximity and
text relevancy between spatial objects and spatial keyword query, which usually makes the top-k answer
objects are similar to each other. However, the user hopes to obtain the top-k results that are typical and
semantically related to his/her query intention. This paper proposes a top-k spatial keyword typicality and
sematic querying approach which can expeditiously provide top-k typical and semantically related objects
to the given query. The approach consists of two processing steps. During the offline step, we first analyze
the location-semantic relationships between spatial objects by considering both the location similarity and
document semantic relevancy between them. For measuring the semantic similarity between documents
associated to the spatial objects, we propose two methods, the keyword coupling relationship-based docu-
ment similarity measure and the Word2Vec-CNN-based document similarity measure. Then, the Gaussian
probabilistic density-based estimation method is leveraged to find a few representative objects from the
dataset and then the order/permutation of remaining objects in the dataset can be generated corresponding
to each representative object. The objects in the permutation are ranked in descending order according to
their location-semantic relationships to the representative object. When a spatial keyword query coming,
the online processing step first computes the spatial proximity and semantic relevancy between the query
and each representative object, and then a small number of orders generated in the offline step can be
selected and used at querying time to facilitate top-k typical and semantically related object selection by
using the threshold algorithm (TA). Results of a preliminary user study demonstrate our location-semantic
relationship measuring method can capture the location similarity and semantic relevancy between spatial
objects accurately. The efficiency of typicality analysis and TA-based top-k selection algorithm is also
demonstrated.

INDEX TERMS Spatial keyword query, location-semantic relationship, typicality, top-k selection.

I. INTRODUCTION
With the rapid development of GPS and universal use of
mobile internet, more and more spatial objects (usually con-
taining the geo-textual information) are becoming available
on the Web that represent Point of Interests (POIs) such as
restaurant, hotels, cafes, and tourist attractions. These POIs
mainly consist of two types of information, the geo-location
(in the form of longitude and latitude) and the textual doc-
ument (such as names, amenities, and special features, etc.)
[5], [8], [27]. Table 1 shows an instance of spatial database,
where each row represents to a spatial object/POI.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

Nowadays, most of the Web queries are involved of the
location information and thus the LBS (Location Based
Service) becomes more and more popular (such as Google
Map, Foursquare, Ctrip, Dianping, etc). However, the spatial
database usually contains a large size of data and thus too
many answer problemwhich is referred to ‘‘information over-
load’’ often occurs when a user issues a non-selective spatial
keyword query [6], [20], [26], [35].

For example, nearly 500 restaurants would be returned for
a user who wants to find a restaurant providing Thai Food
located at the 706 Mission St , San Francisco by using the
YelpWeb site. In such a context, the usermay hope the system
can recommend a small number of top-k restaurants that are
typical among them. Typicality analysis is a concept from
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TABLE 1. An Instance of Spatial Database.

psychology and cognition science and is firstly applied to
database query answering by [14]. The concept ‘‘typical’’
means that an object o in a set of spatial objects D is more
representative than the others if o is more likely to appear
in D. Meanwhile, the user may also like to consider the
restaurants providing the same (or related) kind of tastes such
as Vietnamese Food , Hunan Food , etc. This recommenda-
tion can also broaden the user knowledge and perspectives.
Therefore, providing a few top-k results that are typical and
semantically related to the given query is very helpful for
users in obtaining the complete and effective information.

To deal with the problem of ‘‘information overload’’, top-k
(ranking) query approach and its variants have been proposed
to evaluate a few numbers of spatial objects that have both
the high spatial proximity and text relevancy to the given
spatial query as the answer [6], [7], [17], [18], [30], [35].
More specifically, let o be a spatial object in the form of
(o.loc, o.doc), where o.loc is a location consisted of latitude
and longitude and o.doc is a text document associated to the
spatial object. Let D be the universe of all spatial objects in
a spatial database. A top-k spatial keyword query q is in the
form of q : (loc, keywords, k, α), where loc means the query
location, keywords is the set of {w1,w2, . . . ,wm} (the element
wi corresponding to a keyword is usually computed by the
traditional tf · idf weighting method), k is the number of
requested result objects, and α plays a role for weighting the
spatial proximity and text relevancy in the scoring function
which is showed as follows [3], [6],

Score(o, q) = α ∗ SLoc(o.loc, q.loc)

+ (1− α) ∗ SDoc(o.doc, q.keywords) (1)

The existing top-k results of q is a list of top-k spatial objects
having the highest scores by combining the spatial prox-
imity and text relevancy according to the scoring function
(Equation (1)). However, this kind of approaches is con-
fronted with three shortcomings, that are, (i) it does not con-
sider the semantic relevancy between the query keywords and
textual documents associated to spatial objects, (ii) it needs
to compute the similarities of all matched spatial objects to
the query and then find the top-k objects with the highest
ranking scores as the exact answer, which usually makes the
online computation exhaustively and longer response delay,
(iii) the top-k answer objects obtained by existing spatial
query models are usually too similar with each other, which
are not benefit for users to recognize the features of whole
dataset and broad the user’s perspective.

On top of our previous work [24], this paper proposes
a novel top-k spatial keyword query approach which can

expeditiously find the top-k typical and semantically related
and answer objects to the given query. We first compute
the location and semantic similarities between every pair of
spatial objects in the entire dataset and then such two kinds of
similarities are combined to form the location-semantic rela-
tionships between spatial objects. Next, we take advantage
of probabilistic density-based estimation method to capture
a certain number of representative objects from the entire
dataset according to the location-semantic relationships of
spatial objects, and then create the order of remaining objects
in the dataset corresponding to each representative object.
When a user enters a spatial keyword query, a small number
of representative objects with the highest location-semantic
proximities to the given query and their corresponding orders
would be selected and then be leveraged to find the top-k
typical and relevant answers.

Our contributions are summarized as follows:
(1). A novel location-semantic relationship measuring

method is proposed, which considers both the semantic
relevancy and location similarity between spatial objects.
For measuring the semantic similarity between documents
associated to the spatial objects, we propose two methods,
the keyword coupling relationship-based document similarity
measure and the Word2Vec-CNN-based document similarity
measure.

(2). A new typicality estimation method is proposed for
finding the representative spatial objects from dataset accord-
ing to the location-semantic relationships between all spatial
objects.

(3). A TA (threshold algorithm)-based top-k selection algo-
rithm, which is used to expeditiously pick the top-k typical
and relevant spatial objects from dataset, is presented.

The rest of paper is organized as follows. Section 2 reviews
related work. Section 3 presents the definitions and solu-
tion framework. Section 4 describes the location-semantic
relationship measuring method while Section 5 proposes the
algorithm for retrieving the top-k typical and semantically
related answer objects. Section 6 shows the experimental
results and the paper is concluded in Section 7.

II. RELATED WORK
Several approaches have been proposed to deal with the
issues of spatial keyword queries over spatial databases
[2]–[7], [9], [17], [18], [20]. According to the different query
objectives and result units, these approaches can be divided
into four categories. (i) Boolean kNN Query [9], [17], [18]
retrieves the k spatial objects nearest to the query location
and the text description of each object contains all the query
keywords. (ii) top-k Range Query [29], [30], [33] finds the
k spatial objects having the highest textual relevance to the
query keywords and their locations are within the query
region. (iii) top-k kNN Query [3]–[6], [35] ranks the top-k
spatial objects according to their location proximity and
text relevancy. More specifically, it retrieves the k objects
having the highest ranking scores which are measured by a
weighted combination of their distances to the query location
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and the textual similarity between their textual descriptions
and query keywords. (iv) Collective Spatial Keyword Query
(CSKQ) [2], [11] returns a set of the objects that collectively
cover user’s query keywords, those objects are close to the
query location and have small inter-object distances. Fol-
lowing the CSKQ, the Reverse Collective Spatial Keyword
Query (RCSKQ) [26], [32] returns a region, in which the
query objects are qualified objects with the highest spatial
and textual similarity. Recently, the top-k kNN , CSKQ, and
RCSKQ query models are the most popular techniques in the
current spatial keyword query processing, and the CSKQ and
RCSKQ are the variants of the top-k kNN . However, it should
be pointed out that the top-k kNN query and its variants rarely
consider the relevancy of query keywords and text documents
of spatial objects in semantics [24]. Furthermore, the top-k
objects in the answer set are usually very similar to each other
which can neither effectively reflect the features of the whole
dataset nor broaden the user’s perspectives.

To quickly retrieve thematching query results, some hybrid
index structures (such as IR-tree [6], [19], quad-tree [12],
[34], S2I [28], etc.) are developed to assist the online query
processing. These can be mainly classified into three cate-
gories. The first is the two-stage index structure, in which
a R-tree is firstly used to find the nearest spatial objects to
the query location and then for each neighbor spatial object,
an inverted file is used to rank the objects according to their
text relevancy to the query keywords. This two-stage com-
bination cannot be suitable for top-k spatial keyword query
processing since it is difficult to determine in advance the
number of nearest neighbors needed to retrieve for satisfy-
ing the final top-k result selection by combining the spatial
proximity and text relevancy. The second is IR-tree and its
variants (such as IR2-tree [9], bIR*-tree [33]), these kinds of
indexes integrate the inverted file (or signature file, bit map)
for text retrieval and the R-tree for spatial proximity querying
to formulate a hybrid index structure which can prune the
searching space by simultaneously making use of both spatial
proximity and text matching. The third is the combination
of quad-tree and inverted file, which first builds the spatial
region by using quad-tree, and then, builds the inverted file
for the objects in each node partitioned by the quad-tree.
It should be pointed out that, although the last two indexes
are more efficient than the first one, they are sub-optimal
to deal with the top-k selection when k is small since they
have to compare all the objects in the candidate/matching
set by using the scoring function showed in formula (1) and
then to pick the top-k objects having the highest ranking
scores.

Our approach is also related to the text semantic similarity
measuring methods, which can be mainly classified into four
categories. The first one is based on the knowledge bases
(KB), such as WordNet, Probase, and Wikipedia, to split text
and then capture the keyword relationships [16]. However,
the keywords and their relationship measures in WordNet
and Wikipedia are subjective and cannot reflect the relation-
ships between keywords against the datasets. In addition,

the keywords or concepts uncovered by KB would not be
processed. The second category is based on statistic methods
to capture the keyword relationships. For example, Vector
Space Model and Context Vector Model (CVM-VSM) [15]
both capture the similarity relationships between terms in
document set by using their co-occurrence information while
they did not consider the inter-relation between keywords.
The third category is based on the topic models such as LDA
[31] and LSI [21]. Although the topic models have achieved a
certain improvement over the traditional similarity measuring
methods such as Bag ofWords (BOW) and CVM-VSMmod-
els, the significance of improvement and generalized ability
is not enough in processing some special scenarios (such
as short texts). Unfortunately, the text description of spatial
objects are often short texts, as [13] pointed out, the short
texts usually do not contain sufficient statistical information
to support traditional topic models for text processing. The
fourth category is word embedding-based similarity mea-
sures. Word embedding is the collective name for a set of
language modeling and feature learning techniques in nat-
ural language processing where words or phrases from the
vocabulary are mapped to dense, distributed, fixed-length
vector representations in a low-dimensional space relative
to the vocabulary size. The popular techniques of word
embedding mainly contain the Word2Vec [22], [23] (such as
Skip-gram and CBOW), genism, FastText, and GloVe [25].
Word embedding technique is very successful in the nat-
ural language processing (NLP). In this paper, we will
adopt word embedding techniques to measure the semantic
similarities between documents. However, word embedding
technique such as Word2Vec supposes the nearby/adjacent
words/phrases (in a fixed window size) usually having the
strong contextual relations while it is inefficient for capturing
the intra-correlations between keywords that are far from
each other in the same document and the inter-correlations
between keywords across the different documents. There-
fore, in this paper, we develop two document semantic sim-
ilarity measuring methods. The one is keyword coupling
relationship-based document similarity measure, which con-
siders both the intra- and inter-coupling relationships of key-
words in the documents. The other is Word2Vec-CNN-based
document similarity measure, which combines theWord2Vec
technique and Convolutional Neural Network to capture the
latent features of the documents.

Furthermore, this paper is an extension of the conference
version appeared in DASFAA 2019 [24]. Compared to it, this
paper contains the following new materials:

(1) A new method which combines the Word2Vec and
CNN techniques is proposed for measuring the document
semantic similarity.

(2) The processing procedure of density-based probability
estimation method for finding representative spatial objects
is described in details and the complexity of the algorithm is
also deeply discussed.

(3) The algorithm description of TA-based top-k selection
is presented.
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FIGURE 1. The difference from the typical object to the median and mean
of a set of objects.

(4) The experiment part is enhanced by adding an evalua-
tion of document semantic similarity measuring methods.

III. PROBLEM DEFINITION AND FRAMEWORK
This section first gives definitions (and/or descriptions)
related to the spatial typicality keyword query, and then
presents our solution framework.

A. DEFINITIONS
Definition 1 (Typicality): Given a set of spatial objects D
with two attributes, location and description, the objects in
D can be treated as a subset of samples of a two-dimensional
random vector Z that takes values in the Cartesian product
space of the domains with respect to attributes location and
description. The typicality of an object o ∈ D corresponds
to Z is defined as T (o,Z) = L(o|Z) where L(o|Z) is the
likelihood of o ∈ D.
Example 1: As illustrated in [14], given a set of objects

in Figure 1, suppose objects B andC are the mean andmedian
of the set, respectively. It is clearly to see that the object A is
more typical than the objects B and C since there are more
objects around A closer than that around B and C . In this
scenario, the object A is a good representative of the set rather
than B and C .
Computing the probability density of an object is a good

way to measure the confidence of the object that may appear
compare to the others in the same object set. In this paper,
we will use Gaussian kernel-based density estimation method
to compute the L(o|Z).
Definition 2: (Problem of top-k typicality and seman-

tic query). Let q be a spatial keyword query over spa-
tial dataset D. Based on the location-semantic relationships
between query and spatial objects as well as the object’s
typicality, the goal is to address the top-k typicality and
semantic query problem defined as,

0k = argmax0′k

k(k<<n)∑
i=1

(Sim(q, oi)+ Typicality(oi)) (2)

where 0k is a set of k answer objects and n the number
of all spatial objects in D, Sim(q, oi) represents the seman-
tic similarity between f and oi, Typicality(oi) is the typi-
cality of oi. The objective of the problem is to find a set
of k objects in D that are both typical and semantically
related closely as possible to the given spatial keyword
query.

FIGURE 2. Framework of our top-k spatial keyword query approach.

B. FRAMEWORK
The framework of our solution is shown in Figure 2. It con-
sists of the offline pre-processing and online processing steps.
During the offline pre-processing step, the location-semantic
relationship computing component calculates the location
similarities and semantic similarities between all pairs of
spatial objects in the dataset. These similarities are com-
bined to form the matrix of location-semantic relationships
of spatial objects; each element eij in the matrix represents
the location-semantic relationship between object oi and oj.
Based on the Matrix, the representative object finding and
order creating component first picks a certain number of rep-
resentative objects by using the Gaussian kernel-based proba-
bilistic density estimation method from the entire dataset and
then create orders of remaining objects corresponding to all
representatives. These orders aremaintained as the candidates
for facilitating the top-k typical and relevant object selection.
During the online processing step, for a given spatial

keyword query, the location-semantic proximity computing
component first measures the location-semantic similarities
between representative objects and query and then picks the
representatives having the highest location-semantic similar-
ities to the current query. After this, the orders corresponding
to the selected representatives would be leveraged by thresh-
old algorithm (TA) to select the top-k typical and relevant
result objects.

IV. LOCATION-SEMANTIC RELATIONSHIP MEASURING
This section first describes the location similarity and
semantic similarity measuring methods for spatial objects,
respectively. For measuring the semantic similarity between
documents associated to the spatial objects, we propose two
measures, the keyword coupling relationship-based measure
and the Word2Vec-CNN-based measure, respectively. Then,
the location similarity and document similarity are combined
to form a location-semantic relationship of spatial objects.

A. LOCATION SIMILARIY MEASURING
The location information of a spatial object is usually denoted
by a pair of latitude and longitude. Therefore, we can straight-
forwardly use the Euclidean distance to measure the loca-
tion distance between a pair of spatial objects according
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TABLE 2. The Normalized Location Similarities between Spatial Objects.

to their geo-locations. Given two spatial objects, oi and oj,
the Euclidean distance between them is generally defined as,

D(oi, oj) =
K∑
k=1

d(o(k)i , o
(k)
j ) (3)

where K is the spatial dimensions of the spatial objects.
Based on the Euclidean distance, the location similarity

between spatial objects oi and oj can be computed as,

SLoc(oi, oj) = 1− D(oi, oj)/MaxD (4)

where MaxD is the maximum distance of all pairs of spatial
objects which is used to normalize the spatial distance of all
pairs of spatial objects into the interval [0, 1]. Table 2 shows
the location similarities of spatial objects listed in Table 1.

B. KEYWORD COUPLING RELATIONSHIP-BASED
DOCUMENT SEMANTIC SIMILARITY MEASURING
The semantic relevancy between a pair of spatial objects can
be reflected by their textual document similarity in terms
of semantics. The textual document associated to a spatial
object is usually the short text containing the object name,
amenities, special features, etc. The documents associated to
all the spatial objects are formed a document set. We first
use the short text segmentation tools such as AlchemyAPI or
Jieba to extract all the distinct keywords from the document
set and then each document can be represented by a keyword
set. In this section, we first propose the keyword coupling
relationship-based document semantic measuring method.
The Word2Vec-CNN-based measure will be proposed in the
following subsection.

1) KEYWORD COUPLING RELATIONSHIP MEASURING
The basic idea is to analyze the intra- and inter-correlation
between a pair of keywords in the document set and then
to combine these two kinds of correlations as the keyword
coupling relationships.

We use a graph structure to represent the correlations
between different keywords. Figure 3 shows a toy example of
keyword relationship graph for the keyword {A,B,C}. Each
node represents a distinct keyword while the edge means the
directly correlation between two keywords. There would be
an edge between two keywords if they co-occur in the same
textual document.

As showed in Figure 3, the correlation between a pair
of keywords can be divided into two categories, the intra-
correlation and inter-correlation. Two nodes (such as nodes
A and B) are intra-related if they are directly connected

FIGURE 3. Keyword relationship graph.

while two nodes (such as A and C) are inter-related if they
are inter-connected through at least one common node. The
weight on the edge denotes the normalized intra-correlation
degree between two keywords. For example, the intra-
correlation degree from A to B is 1 while that of which from
B to A is 0.5. The reason is that the keywords A and B may
have different correlations to the other keywords. Given a
pair of keywords, the coupling relationship between them is
combined by their intra- and inter-correlations.

a: KEYWORD INTRA-CORRELATION
The frequency of co-occurrence of a pair of keywords (ti, tj)
appearing in the same documents can be measured by the
Jaccard coefficient,

J (ti, tj) =
|T (ti) ∩ T (tj)|
T (ti) ∪ T (tj)|

(5)

where T is the set of documents associated to all spatial
objects, T (ti) and T (tj) represent the documents in which ti
and tj appears, respectively.

Based on Equation (5), the intra-correlation between key-
words ti and tj in T is defined,

δIntra(ti, tj|T ) = J (ti, tj) (6)

Since ti or tj may also co-occur with other key-
words in the same documents, we need to normalize the
intra-correlations between ti and tj by dividing the total num-
ber of intra-correlations between ti and other keywords, that
is,

δIntra(ti, tj) =


1, i = j

δIntra(ti, tj|T )∑n
k=1,k 6=i δIntra(ti, tk |T )

, i 6= j
(7)

where n is the number of all distinct keywords in T .
For each pair of keywords ti and tj, we have δIntra(ti, tj) ≥

0 and
∑n

j=1,j 6=i δIntra(ti, tj) = 1. Note that, δIntra(ti, tj) and
δIntra(tj, ti) may not be equal to each other due to the different
dominators.

b: KEYWORD INTER-CORRELATION
The keyword ti and tj are inter-related if there is at least
one common keyword between them. The inter-correlation
between ti and tj via their common keyword tc is defined as,

δInter (ti, tj|tc) = min{δIntra(ti, tc), δIntra(tj, tc)} (8)

where δIntra(ti, tc) and δIntra(tj, tc) are the intra-correlation
between ti and tc, tj and tc, respectively.
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TABLE 3. The Coupling Relationships between Keywords (Here we set
β = 0.2).

Since there is two or more common keywords between
ti and tj and each one may have different importance in
documents. We use the traditional idf () weighting function
to measure the weight of the keyword in the document set
and then use the maximum idf value to normalize the weight
of each keyword.

After this, let S be the set of common keywords for ti and
tj, the inter-correlation between ti and tj, inter-related by all
the common keywords in S can be formalized as,

δInter (ti, tj) =

1, i = j∑
∀tc∈S w(tc) ∗ δIntra(ti, tj|tc)

|S|
, i 6= j

(9)

where |S| denotes the number of common keywords between
ti and tj in S. If S = 8, then δInter (ti, tj) = 0.

c: KEYWORD COUPLING RELATIONSHIP
The combination of intra- and inter-correlation between a pair
of keywords (such as ti and tj) is called the keyword coupling
relationship which is defined as follows,

δCoupling(ti, tj) =


1, i = j
(1− β) ∗ δIntra(ti, tj)
+β ∗ δInter (ti, tj), i 6= j

(10)

where β ∈ [0, 1]. Table 3 shows the coupling relationships
between keywords extracted from Table 1. We here use A,
B, C , D, E , F , and G to represents the keywords swimming
pool,WiFi,Breakfast, Subway,Conference, Internet , and
Airport service, respectively.

2) KEYWORD COUPLING RELATIONSHIP-BASED
DOCUMENT SEMANTIC SIMILARITY MEASURING
Based on the keyword coupling relationships, we then use a
kernel-based cosine similarity method to compute the seman-
tic similarity between a pair of documents. The solution
consists of the three steps.
Step 1: Convert the document into vector representation.

Given a pair of documents d1 and d2, we assume K the set
of all distinct keywords extracted from d1 and d2 and m the
number of keywords in K . We also let m = |K | and 1 be an
fixed order on the keywords appearing in K . K [i] refers to the
i-th keyword of K based on the order 1. After this, a vector
representation of d1 = ∧jK [j](j = 1, . . . ,m) is a vector of
−→
d1 size m. If K [i] appears among the keywords of d1 then
−→
d1 [i] = idf (K [i]), otherwise it is 0.

TABLE 4. The Document Semantic Similarities between Spatial Objects.

Step 2: Construct the keyword coupling relationship
matrix. Given a pair of documents d1 and d2, the coupling
relationships of m distinct keywords in d1 and d2 can then be
transformed into aMatrixM , which is am∗mmatrix and each
element M (i, j) in it corresponds to the coupling relationship
between keywords ti and tj.
Step 3: Compute the kernel-based cosine similarity. The

traditional cosine similarity measuring method ignores the
coupling relationships between keywords in the compared
documents. To address this shortcoming, based on the matrix
M generated in Step 2, each document is transformed into
a new vector

−→
d ′ =

−→
d ′M , which enriches the document

vector representation with the coupling relationships between
keywords. Then, using this transformation the corresponding
kernel [1] of two vector

−→
d1 and

−→
d2 can be written as,

k ′(d1, d2) =
−→
d1 (MTM )

−→
d2 T (11)

After this, we can define the document semantic similarity,
which can be computed by using the kernel-based cosine
similarity method as follows,

SDoc(d1, d2) = cosker (
−→
d1 ,
−→
d2 )

=
k ′(d1, d2)

√
k ′(d1, d1)

√
k ′(d2, d2)

(12)

By using the method proposed above, we can get the
document semantic similarities (showed in Table 4) between
the spatial objects in Table 1.

The keyword coupling relationship-based document
semantic similarity measuring method considers both the
keyword intra- and inter-couplings in the documents, which
makes the document semantic similarity more reasonability
than the traditional similarity measures (e.g., TFIDF). In the
next section, we will propose an alternative for measuring the
document semantic similarity by learning the latent features
of documents.

C. WORD2VEC-CNN-BASED DOCUMENT SEMANTIC
SIMILARITY MEASURING
Word embedding technique (such as Word2Vec) is very suc-
cessful in the natural language processing (NLP) while con-
volutional neural network (CNN) is effective for processing
the images. We borrow and combine these two techniques to
measure the semantic similarities between documents. The
solution consists of the following three steps.
Step 1 (Transform a Keyword Into Its Vector Representa-

tion): We leverage the Skip-gram model to train the word
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FIGURE 4. Word2Vec-CNN-based document feature vector learning
model.

vector [22], [36]. The vocabulary of words is the keywords
in the document set associated to the spatial objects. After
the training process, each distinct keyword/phrase in the doc-
ument set can be transformed to be a 128-dimension vector.
Step 2 (Transform a Document Into Its Matrix Representa-

tion): Based on the keyword vector representation generated
in step 1, we use a n∗k matrix to represent a document. Here,
n is the largest number of keywords in the document of the
document set, k is the dimension of the keyword vector (in our
experiment, k = 128). Note that, the length of each document
is fixed to n. For the document whose length is less than n,
we adopt the 0-vector to fill in the matrix. In other words,
each document in the document set should be a represented
by a n ∗ k matrix.
Step 3 (Transform a Document Into Its Vector Represen-

tation): In this step, we first design a Convolutional Neural
Network (CNN) which contains convolutional layer, pooling
layer, dropout layer, and flatten layer, the structure of which
is showed in Figure 4. In this network, we set the filter size
of (3, 3), (4, 4), (5, 5) respectively to do the convolution
operation (the filter moving step is set to 1), and use the
ReLU as the activation function. Then, we take the matrix
corresponding to each document as the input of CNN. After
processing of convolution layer, pooling layer, Dropout layer,
and Flatten layer, the feature/latent vector of a document can
be lastly obtained. In our experiments, we empirically set the
parameter of dropout layer is to 0.2.
Step 4 (Compute the Semantic Similarity for a Pair of

Documents): The output of step 3 is the vector representation
of a document. Given a pair of documents, we can take Cosine
similarity measure to compute the similarity based on their
corresponding vector representations.

D. LOCATION-SEMENTIC RELATIONSHIP MEASURING
FOR SPATIAL OBJECTS
Based on the location similarity and the document semantic
similarity, we can then obtain the location-semantic relation-
ship for each pair of spatial objects by linearly combining

these two similarities, i.e.,

SimLD(oi, oj) =


1, i = j
(1− λ)SLoc(oi, oj)
+(1− λ)SDoc(oi, oj), i 6= j

(13)

where λ ∈ [0, 1] is the parameter to determine the
weight of location similarity and semantic similarity in the
location-semantic relationship measuring.

V. TOP-K TYPICAL AND RELEVANT OBJECT SELECTION
This section first discusses the challenges of top-k typical
and relevant object selection problem, and then presents an
approximation approach.

A. TOP-K SELECTION PROBLEM
As mentioned above, given a spatial keyword query q over
spatial dataset D, the objective of the top-k typical and rel-
evant object selection problem is to find a set of number k
objects in D that are both typical and semantically related
closely as possible to the given spatial keyword query.

The top-k typical and relevant object selection may be
applied on large datasets, however, computing the exact
answer set with the both highest typicality and semantic
relevance to the given query needs quadratic time which is
too costly for online query answering. Thus, it is necessary
to develop an approximation algorithm which can rapidly
provide the good approximations of exact answers.

B. APPROACH
This paper proposes an approximation approach, which con-
sists of three steps, to resolve the top-k typical and relevant
object selection problem over large datasets. The first step
is to find a certain number of representative objects from the
spatial database, and the second step is to order the remaining
objects corresponds to each representative objects. The third
step is to select the top-k typical and relevant objects based on
these orders. The first and second steps are processed during
offline phase, and the third step is processed in online phase.
Step 1 (Find Representative Objects): Based on the

location-semantic relationships between different pairs of
spatial objects, we provide a method, which is inspired by
the typicality estimation algorithm proposed in [14], to find
the representative objects. As pointed out in [14], the object
that has the highest probability density can be selected as
the representative/typical object for the set of closely related
objects. Since Gaussian kernel function is commonly used in
density estimation and is essential in typicality computation,
it can be applied to compute the representative objects in this
paper. Given a set of spatial objects D = (o1, o2, . . . , on),
the probability density function f (o) is approximated as fol-
lows,

f (o) =
1
n

n∑
i=1

Gh(o, oi) =
1

n
√
2π

n∑
i=1

e−
d(o,oi)

2

2h2 (14)
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where d(o, oi)2 is the location-semantic distance between

spatial objects o and oi, Gh(o, oi) = 1
n
√
2π

∑n
i=1 e

−
d(o,oi)

2

2h2 is

the Gaussian kernel (here, h = 1.06σ−1/5 and σ is the stan-
dard deviation of the location-semantic distances between all
pairs of spatial objects).

We then use the probabilistic density estimation to find the
representative objects from the given spatial object datasetD.
The procedure is described as follows.

i) randomly partitionsD into several groups, each of which
contains u spatial objects, and thus therewould be n/u groups.
ii) computes the typicality of each object in the group

by using formula (14) and then finds the object having the
highest probability in each group. These objects are formed
into a new group N .
iii) for the groupN , repeats the step (i) and (ii) until the only

one winner is obtained. The winner is treated as a candidate
of representative objects.

FIGURE 5. The strategy for finding the candidate of representative
objects.

Figure 5 shows the processing procedure for finding the
candidate of representative objects.

To guarantee the precision of representative object selec-
tion as much as possible, we repeat the above procedure v
times and thus there would be v objects in the candidate set
of representative objects. We then compute the typicality for
each object in the candidate set in the scale of dataset D
and then pick the object with the highest typicality as the
representative.

To obtain the l representative spatial objects, the whole
procedure described above should be repeated l times and
thus the complexity of the algorithm is O(lvun).
After this, when a user enters a spatial query, it needs to

only compute the location proximity and semantic relevancy
between the given query and representative object, which is
used as a weighting parameter for top-k result selection.
Step 2 (Create Orders for Representative Objects): For

each representative object oi, create an order τi of all remain-
ing objects in D (except oi) in descending order, according to
their location-semantic relationships to oi. The output of this
step is a set of l orders. According to the output orders, each
object oj has a score that is associated with the position of oj
in each τi. The score of oj in τi that corresponds to oi is,

s(oj|oi) = n− τi(oj)+ 1 (15)

where τi(oj) represents the position of oj in τi.

Step 3 (Select Top-k Typical Relevant Object): For a given
spatial keyword query q, using the output of step 2, this step
computes the set qk (D) ⊆ D with |qk (D)| = k , such that
∀qj ∈ qk (D) and q′j ∈ {D−qk (D)} it holds that score(oj, q) >
socre(o′j, q) with score(oj, q) =

∑l
i=1(SimLD(q, oi)s(oj|oi)).

The Threshold Algorithm (TA) is employed to quickly
evaluate the top-k objects for a given query [10]. The TA
uses Sorted and Random modes to access the objects in the
orders. The Sorted mode obtains the score of an object in
an order by scanning the order of the objects from the top
to down sequentially. The Random mode finds the score of
an object in an order in one access by using an in-memory
index structure. The in-memory index structure is a n∗l array,
where n denotes the number of all objects and l represents the
number of orders. The array stores the scores of all objects
corresponding to different orders. For example, the element
of array[j][i] (where, j = 1, . . . , n, i = 1, . . . , l) represents
the score of the j-th object in the i-th order. Clearly, when an
object ID accessed by Sorted mode, the corresponding score
of the object can be directly found in other orders by Random
mode using the index.
Example 2: Figure 6 shows a toy example to illustrate

the top-k selection processing procedure. In Figure 6(a),
there are 5 objects in total and o1, o2, and o3 are selected
as the representatives, each of which corresponding to an
order consists of the remaining objects (ranked according
to their location-semantic relationships to the representative
object) and their corresponding scores. Figure 6(b) shows the
index array built for Random mode according to the orders
in Figure 6(a).

The top-k result selection algorithm is shown in Algo-
rithm 1, where the score of object oj found in each order τi to
query q is defined as:

s(oj, q) = SimLD(q, oi)s(oj|oi) (16)

where, the first factor is measured by Equation (13) and
the second factor is computed by Equation (15). Note that,
we use s(oj, q) to approximate the integration score of typ-
icality and relevance of oj to q. That means the object that
is both relevant to the query and typical in the entire dataset
would be scored high; on the contrary, the object having high
relevancy to the query and low typicality in the dataset (or
verse) may not get a high score.

The score of oj in every other order can be found by
using random access mode and all these scores are summed,
resulting in the final score of oj for given query q:

score(oj, q) =
l∑
i=1

SimLD(q, oi)s(oj|oi) (17)

The termination criterion guarantees that no more retriev-
ing object operations will be needed on any of the orders. This
is accomplished by maintaining an array L which contains
the scores of the last visited objects from all the orders by
the end of the round-robin cycle. The sum of the scores in L
represents the score of the very best object we hope to find

VOLUME 7, 2019 138129



X. Zhang et al.: Efficient Top-K Spatial Keyword Typicality and Semantic Query

FIGURE 6. TA-based top-k result selection processing.

in the data that is yet to be seen. If this value is no more
that the object in the top-k buffer with the smallest score,
the algorithm successfully terminates.

It should be pointed out that, to make sure the objects in
the top-k answer set are relevant to the query as much as
possible, we first select a certain number (much less than
the number of all objects) of representative objects from
the entire dataset, and then reserve only a small number
of representatives that are closest to the given query. These
reserved representatives and their corresponding orders are
finally leveraged by TA to find the top-k result objects. The
time complexity of algorithm 1 is O(Ckl log n), where n is
the number of objects in the dataset, C is the number of
representative objects selected from the entire dataset, l is
the number of reserved representative objects, and k is the
number of retrieved results.

Clearly, the result objects would be more typical than
that obtained by traditional similarity-based query process-
ing models since the top-k result objects selected by TA

Algorithm 1 The Top-k Selection Algorithm
Input: Order set Tl = {τ1, . . . , τl}, spaitial keyword

query q, number k .
Output: Top-k typical relevant objects.

1 Let B ={} be a buffer that can hold k spatial objects
2 Let L be an l size array that is used to store the score the
last visited object of each order by the end of the current
round-robin cycle

3 repeat
4 for all i ∈ {1, . . . , l} do
5 Retrieve next object oj from τi
6 Compute score(oj, q) = SimLD(q, oi)s(oj|oi) as oj’s

score
7 Update L[i] with score of oj in τi;
8 Get score of oj from other orders {τk |τk ∈ Tl and

k 6= i} via random access
9 score(oj, q)← summing up of all the retrieved

scores of oj retrieved from all the orders
10 Insert 〈oj, score(oj, q)〉 into B in descending order.
11 λ = λ+ L[i]

12 until B[k − 1].score ≥ λ
13 return B

are based on the orders corresponding to representative
objects. We will next compare the efficiency and perfor-
mance of our top-k typical relevant object selection method
and the traditional spatial keyword querying method in
experiments.

VI. EXPERIMENTS
This section introduces the experimental setup and reports the
experimental results.

A. EXPERIMENTAL SETUP
The experiments are conducted on a computer running Win-
dows 2010 with Intel i5-6300HQ 2.30GHz CPU, and 8GB of
RAM. All algorithms are developed by Java.

Dataset: For our evaluation, we setup a real dataset con-
taining 50,000 POIs extracted from Yelp [37]. Each POI has
location and textual information. The location information
is represented by longitude and latitude while the textual
information is described by the name and amenities of POI.
For the textual information, we first use the existing text seg-
mentation and analysis tools such as AlchemyAPI, Jieba to
extract the keywords and then transform the text document in
to a set of keywords with associated idf weights. Table 5 lists
the dataset properties.

B. ACCURACY OF DOCUMENT SEMANTIC SIMILARITIES
This experiment aims to evaluate the accuracy of our doc-
ument semantic similarity measuring methods. To do this,
we adopt the following user study strategy. We invited
100 students and they were partitioned into 10 groups. Each
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TABLE 5. Properties of the Test Dataset.

FIGURE 7. Accuracy of answers for Word2Vec-CNN-Sim, Coupling-Sim,
and TFIDF-Sim.

group chose one document from the spatial dataset. For each
selected document di, we generated a set Di of 30 docu-
ments from dataset that are likely to contain a good mix of
relevant and irrelevant documents in relation to the given
document. Each set Di is formed by mixing the top 10 doc-
uments returned by each method of Word2Vec-CNN-based
similarity measure (short for Word2Vec-CNN-Sim), Key-
word Coupling Relationship-based similarity measure (short
for Coupling-Sim), and traditional TFIDF based similarity
measure (short for TFIDF-Sim). Note that, if there were
overlapped documents in Di, we deleted them and randomly
added some other documents into Di. We empirically set
the parameter β = 0.2 (resp. λ = 0.5) in Equation (10)
(resp. Equation (13)) for measuring the keyword coupling
relationship (resp. document similarity). Lastly, we presented
the documents with their corresponding Di’s to each user
group in our study. Each user group had to reach a consensus
on marking the top 10 documents in Di that are considered
semantically related to di. We then measured how closely the
10 documents marked as relevant by the user group matched
the 10 documents returned by each method.

The Precision metric is used to evaluate this overlap.
Figure 7 shows the Precision of answers forWord2Vec-CNN-
Sim, Coupling-Sim, and TFIDF-Sim, respectively. It can be
seen that Word2Vec-CNN-Sim outperforms Coupling-Sim
and TFIDF-Sim behaves the worst. The averaged Precision
of Word2Vec-CNN-Sim and Coupling-Sim is 87.2% and
76.8%, respectively, while the TFIDF-Sim is 58.7%.

It also can be seen that, although the averaged precision
of Word2Vec-CNN-Sim is higher than that of Coupling-
Sim, the Coupling-Sim outperforms the Word2Vec-CNN-
Sim in a few cases (user group 5 and user group 7).
The reason is that the Word2Vec measure supposes the
nearby/adjacent words/phrases (in a fixed window size)

usually having the strong contextual relations while it is
inefficient for capturing the intra-correlations between key-
words that are far from each other in the same document and
the inter-correlations between keywords across the different
documents. In contrast, the keyword coupling relationship
measuring method is independent of the sequence of the
words/phrase in the documents, it considers both the fre-
quency of co-occurrence of the keywords within the same
documents and the inter-correlations between the keywords
across the different documents. Therefore, in our following
experiments, we will mainly use Word2Vec-CNN-Sim to
measure the document semantic similarity and then leverage
Coupling-Sim to adjust the special cases.

C. PRECISION OF TOP-K SELECTION ALGORITHM
This experiment aims to test the precision of the top-k answer
objects obtained by using our TA-based top-k selection algo-
rithm over the orders that are generated in the offline time
when compared with the top-k answer objects obtained by
computing the location-semantic relationships of the given
query to all spatial objects. To quantify this precision, we use
R(All, k) to denote the top-k objects returned by comput-
ing the location-semantic relevancy of the given query to
all objects in the dataset, and R(Rep, k) to denote the top-
k objects returned using our top-k selection algorithm. The
overlap of two top-k answer sets is measured using the
Jaccard coefficient:

J (R(Rep, k),R(All, k)) =
|R(Rep, k) ∩ R(All, k)|
|R(Rep, k) ∪ R(All, k)|

(18)

The coefficient falls into [0, 1] and the higher its value the
more similar the two sets of answer objects are.

In this experiment, we randomly pick 10 objects from the
Yelp dataset and then extract 2 ∼ 4 keywords from the text
document associated to each object. The location information
and extracted keywords of the selected object are combined
to form a spatial keyword query. Furthermore, we use four
parameters: n, m, l, and k , to character the dataset. Here, n
is the number of spatial objects in the dataset, m the number
of representative objects found from the dataset during the
offline processing step, l(l < m) the number of selected
representative objects having the highest location-semantic
relationships to the given query, and k the number of objects
needs to be retrieved. Figure 8 shows the value of the coef-
ficients (averaged over 10 test queries) for different values
of k , when l = {2, 3, 4, 5, 6} for each number of m (m =
{20, 30, 40, 50}). The values of n are fixed to 50,000 (since
there are 50,000 objects in Yelp dataset), and k is varied in
{10, 20, 30, 40, 50}.

From Figure 8 we can see the overall coefficients (i.e.,
precision) of top-10 results corresponding tom = 40 is higher
compared to that of other m. Furthermore, for the case of
m = 40, the precision corresponding to different numbers
of l are nearly identical when l = {3, 4, 5}, and especially the
precision of top-10 results achieves 55% when l = 4, which
means that when only a small number of orders are used to
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FIGURE 8. Precision of our top-k selection method for different l and m
when k varied.

FIGURE 9. Comparison on Precision of IR-tree-based top-k selection
method and our TA-based top-k selection method for different l when
value k varied.

find the top-10 related typical objects, the information lost
by looking at the orders of representative objects instead of
computing location-semantic relationships of the given query
to all objects in dataset is acceptable. It also can be seen
that, the tendency of precision is not raised as the increase
of number l (such as the precision corresponding to l = 6 is
much lower than that of l = {3, 4, 5} for each number of m
on the test dataset). The reason is that the larger number of l
the more orders which are inconsistent with the order of top-k
result objects would be added into the TA scan list, and thus
makes the precision becoming worse.

In this experiment, we also compared the precision of
our TA-based top-k selection method with IR-tree-based top-
k selection method. IR-tree is an efficient spatial keyword
query index schema. It first builds the spatial index, and then,
builds the text index for the objects in each group partitioned
by the spatial index. Since IR-tree index cannot deal with the
semantic querying, we compute the location-text relationship
(rather than location-semantic relationship) for each pair of
objects in the dataset by using the tf · idf weighting function
and Cosine similarity for the text similarity measuring and
then use TA algorithm to choose the top-k typical relevant
objects. Figure 9 shows the comparison of the precision of
our method and IR-tree-based top-k selection method. Note
that we fix the number ofm to 40 in this experiment since this
value of mmakes our method reaching the best performance.

It can be seen that the precision of IR-tree based top-k
selection method steadily outperforms our method, the aver-
aged precision from top 10 to 50 is 61%; While, our method
achieves the best average precision (45%) from top 10 to
50 and best precision of top-10 results is 55% when l = 4.
Although the precision of our method is lower than that of
IR-tree index, our aim is to find both the typical and relevant
objects to the given query with a certain precision. We next
test the typicality of top-k objects returned by our method.

D. TYPICALITY OF THE TOP-K ANSWER OBJECTS
This experiment aims to verify the typicality of the top-
k answer objects returned by using our method and
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FIGURE 10. Comparison for the typicality of the top-k results returned by
using our method and IR-tree-based top-k selection.

IR-tree-based top-k selection method, respectively. The mea-
suring criteria of the typicality of top-k results is showed as
follows,

Typicality(T ) =

∑k
i=1 f (oi)
k

(19)

where T is the set of top-k answer objects, k is the number of
objects needs to be retrieved, oi is in T and f (oi) is computed
by Equation (14). In this experiment, we set k = 10. To deter-
mine the candidate set for computing the object typicality
by using Equation (19), we first obtain the union set of top-
10 objects that are returned by using both our method and IR-
tree-based top-k selection method, and then choose an object
from the set whose location-semantic relationship to the given
query is the furthest. After this, we take the location-semantic
relationship of the selected object to the given query as a
threshold, and then to obtain the candidate set of the objects
having location-semantic relationships to the given query
greater than the threshold. The higher the typicality of the
top-k results indicates the more representative of the answer
objects over the candidate set, and thus can improve the
user recognition of the entire candidate set more efficiently.
We take the typicality of the top-10 most typical objects
from the candidate set as the baseline, and then compute
the typicality of top-k results returned by IR-tree-based top-
k selection and our method, respectively. Figure 9 shows
the comparison of the typicality of top-10 answers returned
by our method (resp. IR-tree-based top-k selection) for over
10 test queries.

From Figure 10, the typicality of top-10 results returned by
using our method steadily outperforms the IR-tree index, and
the averaged normalized typicality of top-10 results obtained
by our method and IR-tree based method are 66% and 46%,
respectively. The reason is that our method leverages TA and
the orders corresponding to representative objects to find the
top-k result and thus the typicality of the top-10 results is
high. In contrast, IR-tree index uses Equation (1) to select and
rank the results which usuallymakes the top-k results are sim-
ilar to each other without the diversity and typicality. By inte-
grating the comparison results of Figure 9 and Figure 10,
we found that our method can achieve high typicality with

TABLE 6. Properties of the Test Dataset.

a relative high precision, which can satisfy the user’s needs
in relevancy and typicality for the top-k results.

E. PERFORMANCE
This experiment aims to verify the performance of our
TA-based top-k selection algorithm compared with IR-tree
based top-k selection algorithm. We generate three differ-
ent sizes of datasets which contain 10,000, 30,000, and
50,000 spatial objects, respectively. For the TA-based top-k
selection algorithm, we fixed the number of l (i.e., the number
of orders TA should be scanned) to 4 since our algorithm
achieved the best precision when l = 4 which has been
identified in the Experiment C . Based on these datasets,
we test the execution time of our TA-based top-k selection
algorithm and IR-tree based top-k selection algorithm for
different k values (k = {10, 20, 30, 40, 50}). Table 6 presents
the execution time (ms) of the two algorithms over datasets
for different k values.
From Table 6 we can see that our method runs faster than

IR-tree index over the datasets for different values of k . This
demonstrated that our method can not only obtain the typical
and relevant answers but also has better performance compar-
ing with the IR-tree index, which indicates our algorithm can
be well suitable for processing the large scale of dataset.

VII. CONCLUSION
This paper proposed a top-k spatial keyword query approach
to address the typicality and semantic query problem. Our
approach differs from the state-of-the art approaches in two
aspects: (1) our approach considers the semantic relevancy
between textual documents associated to spatial objects,
especially we propose two document similarity measures,
the keyword coupling relationship-based similarity measure
and Word2Vec-CNN-based similarity measure, and the for-
mer is a good complement for the latter; (2) the probability
density-based evaluation method is used to find the repre-
sentative objects and the TA-based algorithm is leveraged to
facilitate the top-k typical and semantically related answer
object selection.

In the future, we will investigate how to analyze user
temporal-spatio behaviors and to incorporate deep learning
techniques for dealing with the personalization and diversity
querying issues of spatial keyword query.
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