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ABSTRACT Gas pressure regulators are widely applied in natural gas pipeline networks, correspondingly,
establishing an efficient fault diagnosis approach of regulators plays a critical role in optimizing the safety
and reliability of pipeline network systems. In our paper, considering that the outlet pressure signals of gas
regulators are nonstationary and nonlinear, we propose a fault diagnosis approach combining a complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and fuzzy c-means (FCM) clus-
tering to classify three typical faults of gas regulators. First, we propose to apply the CEEMDAN approach
for decomposing intrinsic mode functions (IMFs). Then feature vectors of the typical faults are established by
Hilbert marginal spectrum (HMS) of IMFs. Finally, we adopt cluster centers and feature clustering algorithm
to distinguish the types of faults. The experimental results indicate the high performance of the present fault
diagnosis approach. The membership degrees of test samples obtained from the CEEMDAN algorithm are
optimized to be within 0.9 to 1.

INDEX TERMS Gas pressure regulators, fault diagnosis, CEEMDAN, feature extraction, spectral analysis,
fuzzy c-means clustering.

I. INTRODUCTION
Pressure regulators are designed to maintain constant output
pressure regardless of the variations in the upstream pres-
sure or the downstream flow [1]. These control valves are
widely applied in the fields of industries and household, such
as aircraft [2], aerospace [3], vehicle [4], mining [5], etc.
In cooking and heating fields [6], the compressed natural
gas, regulated by a series of pressure regulators, eventually
goes to household supply systems at a lower pressure. Any
fault of a gas pressure regulator in this chain may lead to
the leakage of explosive gas, causing economic losses and
residential casualties [7]–[8]. Therefore, an effective fault
detection and identification approach for gas pressure regula-
tors has become an urgent problem to be solved [9]–[14].

In low-pressure gas pipeline networks, the stability of
outlet pressure is one of the most important parameters that
reflects the performance of a gas regulator. Depending on
its maximum allowable operating pressure (MAOP), we can
define three types of networks: high, middle and low pres-
sure gas networks [15]. The pressure value of low-pressure
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networks which eventually goes to household supply systems
ranges from 20 kPa down to 2 kPa [16]. When a faulty
regulator is operating, its outlet pressure signal, which fluc-
tuates abnormally, is rich in state information. Most com-
mon faults in a pilot-operated gas pressure regulator shown
in Fig. 1 include three types: high frequency surge, low
outlet pressure at peak hours, and high closing pressure at
night [17]. The schematic outlet pressure signals of a healthy
and three faulty regulators are shown in Fig. 2, and the
reasons of typical faults are summarized in Table 1. In the
stage of signal processing, the signals gathered from gas
regulators usually show nonlinearity and nonstationarity due
to the variety of interference factors and unstable conditions
in a pipeline [14]. Hence, a thorough solution for outlet
pressure signal processing is crucial to fault diagnosis of gas
regulators.

In the literature, fault diagnosis has been shown to be
performed through various algorithms, i.e., fast Fourier
transform (FFT) [18]–[20], short-time Fourier transform
(STFT) [21]–[23], wavelet transform (WT) and wavelet
packet decomposition (WPD) [24]–[26], empirical mode
decomposition (EMD) [27]–[29], and Hilbert-Huang trans-
form (HHT) [30]–[32]. These strategies can be successfully
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FIGURE 1. Experimental platform: A pilot-operated gas regulator in
regulating box.

FIGURE 2. The outlet pressure signal from (a) a healthy regulator, (b) a
regulator with surge, (c) a regulator with low outlet pressure, and (d) a
regulator with high closing pressure. (The features of the original
time-varying waveforms above are schematic and optimized.)

applied to the fault diagnosis in certain scenarios, but with
limitations. The FFT has an advantage of a higher extraction
efficiency than all other methods, but it performs poorly
in nonlinear and nonstationary conditions. The STFT has
adopted its decompositionmethod from global to local, which
is used on nonstationary signal processing; however, it shows
inefficiency in multi-resolution analysis and nonlinearity
conditions. The wavelet-based techniques have improved the
loss of information and the resolution limitations introduced
by Fourier analysis; however, desired wavelet requires a strict
design of filters for the diverse fault types, and thus any
improper selection of the basis function can affect the analysis
results [33, 47].

As an ideal time-frequency analysis approach, EMD
exhibits a better performance in analyzing amplitude-
frequencymodulated (AM-FM) andmulticomponent signals.
Compared with traditional FFT and WT, the data driven
method of the EMD does not require designated assumptions

TABLE 1. Typical faults and reasons.

behind a fundamental model and is suitable for both nonlinear
and nonstationary signals. Meanwhile, the EMD decomposes
a signal into approximative monocomponents called instinct
mode functions (IMFs). Some of these IMFs are sensitive
and relevant to specific faults, thus making the EMD ideal
for fault feature extraction of a system. Moreover, the HHT
method [34] is an advanced method which combines the
self-adaptive EMD algorithm and the Hilbert transform (HT)
in order to produce a time-frequency distribution of amplitude
called Hilbert spectrum (HS). So far, the EMD has been
applied in many cases, but its application in gas pressure
regulation is rarely reported.

Although the EMD displays decent performance in diverse
fields, its drawbacks in separating close modes cannot be
ignored. As a dyadic filter bank [35], the EMD suffers from
sampling rate issues and insufficient performance in noisy
industrial environments, which have hindered its application
in fault diagnosis. A vital drawback of the EMD method is
the presence of oscillations of very different amplitudes in a
mode, or very similar ones in different modes, termed ‘‘mode
mixing’’ [36]. To alleviate this problem, several methods
were proposed [37]–[40]. These methods, however, can only
reduce mode mixing to some extent due to different attempts
of signal mixed with noise generating different decomposi-
tion results. Some of themethods lead to a significant residual
noise while others increase the decomposition level [41].
Therefore, these algorithms can hardly be applied in diagnos-
tic schemes for gas regulators.

In this paper, we proposed an automatic diagnostic frame-
work for gas pressure regulators, which is for the most
part manual and inaccurate nowadays. Utilizing a complete
ensemble EMD with adaptive noise (CEEMDAN) to extract
weak features from pressure signals, a holistic diagnosis
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approach is applied based on CEEMDAN and feature cluster-
ing. First, to alleviate mode mixing and improve diagnostic
accuracy of results, the CEEMDAN algorithm is utilized;
then IMFs are computed based on a unique residue [42].
Second, we collect a finite number of IMFs, which contain
the fault features of a gas regulator, to reconstruct a feature
vector based on Hilbert marginal spectrum (HMS). Third,
we use feature vectors to construct faulty sample centers
by a fuzzy c-means (FCM) clustering method [43]. Finally,
the fault diagnosis method is verified by collected data from
residential gas regulators.

The remaining parts of our paper are organized as follows:
Section II introduces the CEEMDAN algorithm and FCM
clustering. Section III gives a full account of experiment
results and analysis aiming at one healthy pressure regulator
and three faulty pressure regulators as we adopt the traditional
and CEEMDAN algorithms to diagnose the outlet pressure of
gas regulator respectively. Finally, the FCM clustering is used
to classify the fault types. Conclusions are drawn in the last
section.

II. METHOD
A. EMPIRICAL MODE DECOMPOSITION
AND MODE MIXING
Empirical mode decomposition is a self-adaptive algorithm
that was first proposed by Huang et al. in [34]. It can decom-
pose the original signals into a series of IMFs and a residue
function. Suppose the original signal is x(n), in EMD x(n) can
be written as:

x(n) =
K∑
k=1

IMFk (n)+ r(n) (1)

where K denotes the number of decomposed IMFs; IMFk
denotes the kth IMF; and r(n) is the residue of the
signal x(n).

The realization of EMD algorithm consists of four steps:
extract local maximum and minimum of a signal, interpolate
extremum points to generate lower and upper envelopes,
calculate the mean of the upper and lower envelopes, judge
whether the difference between the signal x(n) and the mean
of envelope is an IMF, and sift and iterate. Moreover, each
IMF must satisfy two conditions:

1) The numbers of local extremum points and zero cross-
ings must be equal or differ by one.

2) The local mean of the upper and lower envelopes is
zero.

Although the EMD method has proven to be efficient for
signal processing, the drawbacks are obvious, such as end
effect, sampling rate issue, mode mixing, etc. [44]. If mode
mixing occurs, an IMF component no longer has a physi-
cal significance by itself, suggesting falsely that there may
be different physical processes represented in a mode [45].
An improved method which can decompose IMFs with a
narrower frequency spectrum is thus in need.

B. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE
Aiming at the mode mixing phenomenon, Torres et al. [42]
recently proposed a method called CEEMDAN. Given a sig-
nal x(n), this algorithm defines an operator Ej(·) which pro-
duces the jth mode decomposed by the EMD. Because adding
the white Gaussian noise at each stage of the decomposition
directly will lead to incomplete decomposition with residual
noise, in this approach, a particular noise Ej(ωi(n)) is added to
extract the jth IMF component. The steps of the CEEMDAN
algorithm are described as follows:

1) Add ε0ωi(n) to the original signal x(n) to obtain real-
ization X (n) = x(n) + ε0ωi(n), where ωi(n) denotes
the ith added white noise with N (0,1), and εk is the kth
signal-to-noise ratio (SNR) coefficient. Decompose by
EMD I realizations X (n) to obtain the first IMFs and
calculate the mean value by

ĨMF1(n) =
1
I

I∑
i=1

IMF i1(n) = IMF1(n)

2) Then calculate the first residue: r1(n) = x(n) −
ĨMF1(n). By adding ε1E1[ωi(n)] to the first residue
r1(n), we can obtain the realizations r1(n) +
ε1E1[ωi(n)], i = 1, 2...I .

3) Decompose realizations r1(n) + ε1E1[ωi(n)] I times,
compute the mean value and then obtain the second
IMF:

ĨMF2(n) =
1
I

I∑
i=1

E1{r1(n)+ ε1E1[ωi(n)]}

4) For k = 2, 3 . . .K , calculate the kth residue: rk (n) =
rk−1 − ĨMFk (n), decompose the realizations rk (n) +
εkEk [ωi(n)], i = 1, 2 . . . I , and then the (k + 1)th IMF
can be defined as:

ĨMFk+1(n) =
1
I

I∑
i=1

E1{rk (n)+ εkEk [ωi(n)]}

5) Repeat Step 4 for next k until rk (n) cannot be decom-
posed. The final residue is:

R(n) = x(n)−
K∑
k=1

ĨMFk

Therefore, the original signal is written as:

x(n) =
K∑
k=1

ĨMFk + R(n)

Although the single experiment may certainly produce
very noisy results, the added Ej(ωi(n)) can cancel out each
other in the ensemble mean of enough experiments. The
ensemble mean is regarded as the true IMF.

The εk coefficients enable us to choose the SNR at each
phase. To determine the parameter settings of the CEEM-
DAN, the noise amplitude needs to be reduced when the
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gas pressure signal is dominated by high-frequency com-
ponents. When the gas pressure signal is dominated by
low-frequency components, the amplitude of added noise
should be increased [46]. To alleviate mode mixing and
reduce errors, we can increase the ensemble number to a few
hundred and the error caused by the added white noise can be
reduced to a very small extent or even negligible. Therefore,
we used the CEEMDAN with an ensemble number of 500,
and the amplitude of noise was 0.2 times standard deviation
of the pressure signal.

C. MODIFIED HILBERT–HUANG TRANSFORM AND
FEATURE VECTOR
The traditional HHT consists of two parts: the EMD and
Hilbert spectrum analysis (HSA). The almost monocompo-
nent IMFs decomposed by EMD provide a proper method
for the instantaneous frequency analysis of complex signals.
Applying the Hilbert transform to each IMF, we obtain a
time-frequency-energy distribution, called Hilbert spectrum.
Nevertheless, an IMF can cease to have physical meaning
by itself due to the mode mixing originated from the EMD.
Thus obtained Hilbert spectrum cannot reveal the signal fea-
tures accurately. To solve this problem, we used CEEMDAN
instead of EMD to decompose the original signal.

After applying the CEEMDAN algorithm on a signal, a set
of IMFs with different feature scales is obtained. Suppose the
ith IMF is ci, the Hilbert transform is defined in the following
equation:

di(t) =
1
π

∫
∞

−∞

ci(τ )
t − τ

dτ (2)

Combining ci and di, an analytic signal can be expressed
as: 

zi(t) = ci(t)+ jdi(t) = ai(t)ejθi(t)

ai(t) =
√
c2i (t)+ d

2
i (t)

θi(t) = arctan
di(t)
ci(t)

(3)

where ai(t) denotes the instantaneous amplitude (IA) and θi(t)
is the instantaneous phase.

If the signal x(t) is monocomponent, the instantaneous
frequency (IF) can be expressed as:

ωi(t) =
dθi(t)
dt

(4)

With definitions above, the original signal x(t) can be
written as:

x(t) = Re
n∑
i=1

ai(t)ej
∫
ωi(t)dt (5)

where Re denotes the real part. According to the Equation (5),
the Hilbert spectrum can be defined as:

H (ω, t) = Re
n∑
i=1

ai(t)ej
∫
ωi(t)dt (6)

According to Equation (6), the Hilbert marginal spectrum
is written as:

h(ω) =
∫ T

0
H (ω, t)dt (7)

where T denotes the sampling time period. Then according to
Equation (7), the total energy of the original signal is defined
as:

E =
∫
∞

0
h(ω)dω (8)

The Hilbert marginal spectrum can describe the frequency-
energy distribution of a pressure signal. In order to analyze
these fault features precisely, we divided theHMS further into
five frequency bands. The energy of each frequency band is
defined as:

Ej =
∫ bj

aj
|h(ω)|dω (j = 1, 2· · ·5) (9)

where Ej denotes the energy of jth frequency band, aj and
bj are the lower and upper limits of jth frequency band
respectively.With these definitions, we can establish a feature
vector V of an outlet pressure signal as:

V = [E1/E, E2/E · · · E5/E] (10)

E =
5∑
i=1

Ei (11)

D. FUZZY C-MEANS AND CLUSTER CENTER
The FCM algorithm, which was proposed by
Bezdek et al. [43], is a fuzzy analysis method focused on
evaluating the centroids of multiple clusters and the activation
levels of datamodes. Based on a large number of experiments,
we found that a gas regulator may have multiple faults in its
life cycle, and each fault has a unique clustering structure.
Thus, we used the FCM algorithm to identify the types of
faults in diagnostic schemes.

The FCM algorithm is based on an objective function,
which can be written as:

J (U ,Z ) =
∑C

i=1
∑n

j=1(µij)
m(dij)2

i ∈ (1 . . . t . . .C)
j ∈ (1 . . . k . . . n)

(12)

where U , Z , n, and m denote the membership matrix, clus-
ter center, the number of samples, and the weight index
(also known as smoothing factor which is 2 in most cases),
respectively. In this paper, we chose random values to initial-
ize a prototype (cluster center) of samples.

The goal of fuzzy c-means clustering is to compute a group
of center vectors to minimize the objective function, which
can be defined as:

min {J (U ,Z )} =
n∑
j=1

min {
C∑
i=1

(µij)m(dij)2} (13)
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In this definition, the membership degree µij satisfies the
following relationship:

C∑
i=1

µij = 1 (14)

where C denotes the number of the categories. dij, the degree
of distortion between the jth sample point and the ith cluster
center, is generally expressed by the distance between two
vectors:

d2ij =‖ xj − zi ‖2 (15)

where xj denotes the sample point and zi denotes cluster
center.

With these definitions and according to Equation (14),
we can use Lagrange method to calculate membership
degrees. Suppose the Lagrange function is:

F =
C∑
i=1

(µij)m(dij)2 + λ(
C∑
i=1

µij − 1) (16)

where λ is a parameter. Suppose ∂F
∂λ
=
∑C

i=1 µij − 1 = 0,
∂F
∂µtk

= [m(µtk )m−1(dtk )2 − λ] = 0. We can obtain the
following equation:

µtk =

[
λ

m(dtk )2

] 1
m−1

=

(
λ

m

) 1
m−1

(
1

(dtk )2

) 1
m−1

(17)

Bring Equation (17) into
∑C

i=1 µik = 1, the following
equation can be obtained:

C∑
i=1

µik =

(
λ

m

) 1
m−1

{
C∑
i=1

[
1

(dik )2
]

} 1
m−1

= 1 (18)

and the equation in (18) can be written as:(
λ

m

) 1
m−1

=
1{∑C

i=1[
1

(dik )2
]
} 1
m−1

(19)

Then bring Equation (19) into Equation (17), the µtk can be
obtained:

µtk =
1∑C

i=1[
dtk
dik

]−
2

m−1

(20)

According to the membership degree µtk , we can obtain
the membership matrix U. For the iteration of updating the
prototype, suppose ∂J (U ,Z )

∂zi
= 0, we can obtain the following

equation:

∂J (U ,Z )
∂zi

=

n∑
k=1

(µik )m
2∂[(xk − zi)]T (xk − zi)

∂zi

=

n∑
k=1

(µik )m[−4(xk − zi)]

= −4[
n∑

k=1

(µik )m(xk − zi)]

= −4[
n∑

k=1

(µik)mxk −
n∑

k=1

(µik)mzi] = 0 (21)

FIGURE 3. Flowchart of the diagnostic scheme for gas regulators.

Then, the prototype (cluster center) can be updated as:

zi =

∑n
k=1(µik )

mxk∑n
k=1(µik )m

(22)

Repeat Equations (13)–(22) until the zi coincides with the
centroid of a cluster. The final zi is regarded as the standard
cluster center, and we can thus obtain the corresponding
membership degrees of samples.

E. DIAGNOSTIC SCHEME BASED ON CEEMDAN AND FCM
The diagnostic scheme for gas regulators consists of two
parts: building parameters and diagnostic verification, which
are as follows:

1) Calculate total energy E of healthy regulators by
CEEMDAN, HSA and statistical analyze, and then set
a healthy threshold.

2) Analyze faulty samples to establish a cluster center for
each of the three typical faults by our method.

3) Input testing signal x(t). First, calculate its energy and
confirm if value exceeds the threshold. If not, this
regulator is healthy.

4) If yes, this regulator is faulty. Then extract its IMFs by
CEEMDAN, calculate feature vector V by HMS and
identify membership degree by FCM.

The diagnostic scheme for gas regulators based on CEEM-
DAN and FCM is shown in Fig. 3.

III. EXPERIMENT RESULTS AND ANALYSIS
A. EXPERIMENTAL PLATFORM
The approach proposed above was verified in a gas reg-
ulating box as shown in Fig. 1. This platform consisted
of a pilot-operated regulator (RTZ-/0.6 AQ, made by
Hebei Anxin Co., Ltd.), a gas filter, an inlet pressure
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FIGURE 4. The results from a regulator with surge: (a) IMFs based on the EMD, and (b) Hilbert marginal spectra of IMFs.

valve, an outlet pressure valve, and other auxiliary
devices.

In identical running conditions, we mainly researched four
gas regulators: a regulator with a deformed stem (surge sim-
ulation), a regulator with clogged ports (low outlet pres-
sure simulation), a regulator with damaged sealing rings
(high closing pressure simulation), and a healthy regulator.
We replaced the tested regulator after each group of exper-
iments. The rated running pressure of tested regulators was
2500 Pa, and the inlet pressure was maintained at 20 kPa
by upstream regulators. In the regulating box, we installed
a wireless pressure monitoring terminal which enabled us
to derive sufficient outlet pressure data. For each regulator,
similar experiments were conducted and each set of data
collection lasted for 2 days. All pressure data from regulators
were recorded at 15-minute intervals, totalling 96 pressure
values in one day. In order to display experimental results
clearly, all frequency domains of figures in next sections
ranging from 1 to 2500were normalized (α·f , α = 4.6×106).

B. FEATURE EXTRACTION BASED ON CEEMDAN
After the pressure signal was collected, the EMDwas applied
to decompose the signal into a set of IMFs. The CEEMDAN
with a noise amplitude of 0.2 and an ensemble size of 500 was
applied on the same signal, respectively. Figs. 4(a) and 5(a)
illustrate the decomposed IMF components from a regulator
with surge.Meanwhile, Figs. 4(b) and 5(b) describe the corre-
sponding frequency-amplitude (energy) distribution of these
IMFs, which is also known as the Hilbert marginal spectrum.
By comparing Fig. 4(a) and Fig. 5(a), it is obvious that the
CEEMDAN decomposed this faulty signal thoroughly into
more monocomponents. Moreover, in Fig. 5(b), each IMF
occupied almost a unique frequency band in HMS. Hence,

the CEEMDAN algorithm was verified effective for fault
feature extraction.

In order to observe the influence of mode mixing,
the Hilbert marginal spectrum of IMFs 1 to 5 were obtained
by EMD and CEEMDAN, as shown in Fig. 6. We discovered
that the lines of spectra based on CEEMDAN were less over-
lapped than those by EMD. Fig. 5(b) displays a clearer sep-
aration of frequency distribution between each IMF, which
indicates that CEEMDAN can alleviate mode mixing well
enough for further analysis.

C. FEATURE VECTOR BASED ON HILBERT
SPECTRUM ANALYSIS
After the IMFs were obtained, the system energy of a regula-
tor was calculated to identify the severity of faults, and neces-
sary parameters including healthy threshold, feature vectors
were computed.

First, according to Equations (2)–(7), Fig. 7 shows the
obtained Hilbert spectrum of a signal from a healthy regulator
and three defective regulators. The x axis of 4 corresponding
marginal spectra ranges from 0 to 3.398, which corresponds
to the logarithmic value of normalized frequency from 1 to
2500. Any fluctuation of the original signal will produce a
local energy peak in time domain of the Hilbert spectrum.
By Fig. 7, we found the features of time-frequency-energy
distribution as follows:

1) The energy distribution of the signals from healthy
regulators is more stable than those from the faulty
ones.

2) In high frequency bands, the energy of a regulator with
surge is even larger than the other two types of faults.

3) The energy of regulators with the other two types of
faults mainly distributed in lower frequency bands, but
the energy is much distinct in Fig. 7(c).
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FIGURE 5. The results from a regulator with surge: (a) IMFs based on the CEEMDAN, and (b) Hilbert marginal spectra of IMFs.

FIGURE 6. Spectra of IMFs 1 to 5 obtained by (a) the EMD, and (b) the
CEEMDAN.

Second, according to Equation (8), the total energy of each
operating state can be calculated based on their marginal
spectra. As shown in Fig. 7, we found that the energy value

of a healthy system is far below other defective ones and
this is consistent with the energy distribution in Hilbert
spectrum. Therefore, there should be a healthy threshold
which can identify the severity of a fault. In this paper,
we computed this threshold by 51 data sets from a healthy
pressure regulator. The method to acquire each data set is
the same as mentioned in Experimental Platform section.
The normalized threshold 7.7646 in Fig. 8 is the average of
data plus three times standard deviation. By this threshold,
we could pick healthy signals out of an unknown signal
pool.

For the defective signals, the key parameter to distinguish
the fault types was its feature vector. The y axis of the HMS
was divided into five frequency bands to calculate the local
energy component Ei. As shown in Fig. 7, the normalized fre-
quency band from 1 to 500 in every Hilbert spectra included
massive energy, so it was divided into two bands. As a
result, these normalized frequency bands vary in the range of
1–253, 254–508, 509–1021, 1022–1533, and 1534–2500.
Then according to Equations (8)–(10), the energy ratios were
calculated to build the feature vectors. For gas regulators
monitored in this experiment, the feature vectors of three
typical faults are shown in Fig. 9. It can be seen that the energy
ratios of high frequencies E1/E , E2/E , E3/E , E4/E are
higher for a regulator with surge (see Fig. 9). In comparison,
the energy ratio of low frequencyE5/E is significantly greater
for regulators with other two faults. Based on the above
analysis, the distinct differences among vectors indicate that
they are able to represent corresponding faults.
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FIGURE 7. The HS and corresponding HMS of a signal from (a) healthy, (b) surge, (c) low outlet pressure, and (d) high
closing pressure regulator.

TABLE 2. The standard cluster center of FCM algorithm based on the EMD.

D. FAULT DIAGNOSIS BASED ON FCM CLUSTERING
As described in Experimental Platform section, three groups
of experiments – a regulator with surge fault, a regulator
with low outlet pressure, and a regulator with high closing
pressure – were conducted to classify the fault types. The data
sampling interval for each experimental group was 15 min-
utes and a data collection procedure lasted for two days.
Each experimental group consisted of two phases: building
standard cluster centers of a typical fault, and computing the
membership degrees of test samples.

The goal of Phase 1 was to build 3 standard cluster cen-
ters of typical faults. The sampling procedure was repeated
8 times to obtain a total of 8 data sets for each exper-
imental group. Thus for 8 data sets, the number of fea-
ture vectors is 24. Then, the FCM clustering method was
used to calculate a cluster center for each cluster of fea-
ture vectors, and these cluster centers were set as the stan-
dard cluster centers. To verify the stability of our method,
we also applied the EMD on the same data sets as com-
parison groups. Tables 2 and 3 present the standard cluster
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TABLE 3. The standard cluster center of FCM algorithm based on the CEEMDAN.

TABLE 4. The membership matrix of the test samples from the EMD after FCM.

TABLE 5. The membership matrix of the test samples from the CEEMDAN after FCM.

FIGURE 8. Energy of signals from a healthy and three typical faulty gas
regulators. (Normalized energy = E/α, α = 4.6× 106.)

centers of FCM algorithm based on the EMD and the
CEEMDAN.

The goal of Phase 2 was to compute the membership
degrees of test samples. To classify the fault type of an
unknown signal, we repeated the sampling procedure to col-
lect another 18more data sets. Then, we calculated the feature
vectors of these data sets, and obtained their membership
degrees with standard cluster centers. A part of the diagno-
sis results are shown in Tables 4 and 5. In Table 4, false
classification results are presented. Two samples with low
outlet pressure were classified as ones with high closing pres-
sure. Another two samples with high closing pressure were

FIGURE 9. The feature vector of a signal from (a) a regulator with surge,
(b) a regulator with low outlet pressure, and (c) a regulator with high
closing pressure.

classified as one with surge, and one with low outlet pressure.
In Table 5, by contrast, we can observe that the diagnostic
results based on the CEEMDAN algorithm is relatively ideal.

To validate the diagnostic accuracy of proposed approach,
we used identical data sets to conduct two more groups of
experiments based on STFTwithHammingwindow function,
and WT using a db4 mother wavelet. The whole diagnosis
results of 18 data sets (54 test samples) based on STFT, WT,
EMD, and CEEMDAN are shown in Fig. 10. It can be seen
that the diagnostic accuracy calculated by the STFT, WT and
EMD algorithms are unstable. Some membership degrees
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FIGURE 10. The stability of diagnosis results based on STFT, WT, EMD,
and CEEMDAN.

are significantly low, and false diagnosis results often occur:
eleven errors in STFT, nine errors in WT, and seven errors in
EMD. Hence, the fault diagnosis accuracy of STFT, WT, and
EMD is 79.6%, 83.3%, and 87.0% respectively. By contrast,
for the CEEMDAN algorithm, all the samples are classified
into three categories correctly, and the membership degree of
test samples ranges between 0.9 to 1. Overall, the proposed
diagnostic method has been proved to be effective by experi-
mental results.

IV. CONCLUSION
In this paper, a novel fault diagnosis approach for gas pressure
regulators based on CEEMDAN and feature clustering is
proposed. The CEEMDAN algorithm was used to extract
fault features of a regulator. In comparison with the EMD,
the CEEMDANwas able to alleviate the mode mixing signif-
icantly. Hence, we can obtain a more accurate Hilbert spec-
trum to reflect fault information distibution. Then, FCM was
used to classify diverse types of faults. Experimental results
indicate that the proposed method can achieve diagnostic
results with a higher degree of accuracy.

The currently proposed fault diagnosis approach for gas
pressure regulators is competent for further application.
When the parameters or structures of gas regulator are
changed, accurate diagnosis results may not be obtained.
Even so, the proposed method is capable of diagnosing
more fault types effectively if requisite parameters men-
tioned in this paper are known. However, compound faults
in single regulators are not taken into account in this paper.
In future research, an improved approach which can identify
compound faults on single gas pressure regulators will be
considered.
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