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ABSTRACT The shock response spectrum (SRS) applied to pyroshock designs and tests for space systems
does not include input acceleration time history; therefore, it cannot be used directly in structural nonlinear
dynamic analysis before acceleration time history is synthesized. Existing synthesis methods typically rely on
certain experimental data. In this study, a combined method for pyroshock acceleration synthesis is presented
using a series of wavelets at low frequencies and damped sines at medium-high frequencies in the absence
of experimental data. To improve the quality of the synthesized SRS, we develop an improved adaptive
genetic algorithm (IAGA) with nonlinear adaptive adjustments of crossover and mutation probabilities.
Numerical tests show that combined with the developed IAGA, the new method achieves higher accuracy
and practicability in the synthesis of pyroshock acceleration compared with traditional methods. This
work is expected to improve the calculation accuracy of spacecraft structure response under pyroshock
loads.

INDEX TERMS Genetic algorithm, optimization, pyroshock acceleration synthesis, shock response spec-

trum, aerospace simulation.

I. INTRODUCTION

In the design of launch vehicles and satellites, many
pyroshock devices are frequently used to achieve the sep-
aration of loads, the deployment of solar panels and other
appendages, and the activation of propellant valves and other
systems [1], [2]. These pyroshock devices can generate a
pyroshock environment with an extremely high acceleration
amplitude and a wide frequency range. The acceleration
amplitude can reach as high as 10*-10° g within 20 ms when
the frequency range is 100 Hz to 100000 Hz [3]. In general,
pyroshock slightly influences the main structure of spacecraft
but may result in major functional failures of electronic and
optical components; ultimately, total or partial loss of a mis-
sion may occur [4]. Electronic and optical equipment must be
designed with the capability to prevent pyroshock damage.
In recent years, the demand for numerical simulations to
predict the responses of structures against pyroshock has
been increasing [5] to reduce the cost and effort required in

The associate editor coordinating the review of this manuscript and
approving it for publication was Mustafa Servet Kiran.

132682

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the initial design. Thus, accurately simulating the response
of components under pyroshock loading is important in the
design stage of launch vehicles and satellites.

The shock response spectrum (SRS) is an effective stan-
dard tool for engineering analysis and environmental impact
quantification [6]-[8]. It describes the relationship between
the maximum absolute response and natural frequency of a
series of single-degree-of-freedom (SDOF) oscillators in a
given base excitation. SRS can be used directly as input load
to solve the linear dynamic response that meets the modal
superposition criteria. However, when the equipment or sec-
ondary subsystems exhibit a nonlinear dynamical behaviour,
the acceleration time history that satisfies the given SRS must
be used as the input load for simulation [9], [10]. In exist-
ing aerospace structural shock design and test specification
documents, only the specification requirements of SRS are
given, whereas temporal information is missing. Accurately
reproducing the temporal information in the inverse trans-
form is difficult due to the lack of phase information after
the temporal waveform is converted to SRS.
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To date, some studies have focused on solving this
problem. Hale and Adhami [11] researched SRS synthesis
using time-frequency analysis based on experimental data.
Hemez and Doebling [12] demonstrated that the predic-
tion of the temporal moment model associated with SRS
can be used to generate time histories with the same SRS
characteristics as those of the original experimental signal.
Hwang and Duran [13] proposed an acceleration time wave-
form synthesis method using the probability density function
of each major parameter of the damped sinusoid. The prob-
ability density function was obtained through the statistical
analysis of considerable experimental data of spacecraft sep-
aration shock experiments. Chong et al. [14] presented a laser
shock signal reconstruction method for simulating the sepa-
ration shock waveform under point source explosion. On the
basis of this study, Kim ez al. [15] reconstructed the shock
waveform of line source explosion separation. Shi et al. [16]
used a local mean decomposition method to decompose the
measured pyroshock waveform and generate a pyroshock test
environment that satisfies the given SRS via cluster analysis
and optimization combination.

However, all the aforementioned methods rely on a consid-
erable amount of experimental data. Synthesizing temporal
waveforms that satisfy the specified SRS without experimen-
tal signals to guide the initial design of spacecraft has become
a major problem among engineers. To date, minimal research
on synthesizing temporal waveforms has been conducted
without sufficient experimental data. In the absence of exper-
imental data, the simplest approach to synthesize the major
characteristics of SRS is through simple shocks (e.g., half-
sine, rectangular shock, or saw-toothed pulses). However,
these simple shocks recreate only the most salient feature of
SRS. To impose the same damage as an actual pyroshock,
the summation of either damped sine terms or wavelets is
becoming the most common technique for waveform syn-
thesis [7], [8]. Ma et al. [17] used a genetic algorithm (GA)
to optimize the waveform parameters of damped sine waves
in SRS time domain synthesis. The results are within the
given tolerance range, which indicates the feasibility using
GA in SRS synthesis optimization. However, the substantial
difference between the results and the target SRS indicates
that solving similar optimization problems can still be con-
siderably improved. Monti and Gasbarri [18] attempted to
improve matching degree with the target SRS using a com-
bined GA and sequential quadratic programming optimiza-
tion method, but the results were not ideal. In their method,
the modal characteristics of the analyzed structure should
be obtained beforehand. Brake [19] developed a method for
calculating the inverse of an arbitrary SRS using three sets
of well-characterized basis functions, namely, an impulse
function, a sine function/damped sine function, and a mod-
ified Morlet wavelet, in which only the SRS specified data
are available. Although SRS is well matched with the target
spectrum via GA optimization, Alexander [9] indicated that
the “manufactured” waveform differs considerably from the
actual pyroshock. The aforementioned analysis shows that
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an acceleration synthesis method that can obtain consistent
results compared with a real pyroshock wave and that can
improve matching accuracy between the obtained SRS and
the specified SRS should be developed.

The quality of a synthesized SRS is a minimum opti-
mization problem that is evaluated by comparing it with
the target SRS. GA can be used to solve such optimization
problems [17]-[19], but its optimization results easily fall
into local optimal values because of its fixed crossover and
mutation probabilities. In the optimization field, adaptive
GA (AGA) with adaptive crossover and mutation probabili-
ties has been developed to strengthen the global optimization
capability of GA [20]-[26]. Nevertheless, existing AGAs still
exhibit the shortcomings of prematurity, slow convergence,
and low stability; thus, a more efficient algorithm is nec-
essary. A key point of the current work is to propose an
improved AGA (IAGA) to help the algorithm jump out of
the local optimal solution and overcome the shortcoming of
prematurity. The benefit of using this novel IAGA in opti-
mizing pyrotechnic acceleration synthesis via the proposed
combined synthesis method is expected to improve the calcu-
lation accuracy of structural response under pyroshock loads.
The proposed IAGA is also applicable to other optimization
problems.

The remainder of this paper is organized as follows.
The basic acceleration synthesis methods based on damped
sine and wavelet waveforms are presented in Section II.
Section III describes the optimization process via GA, which
is illustrated by comparing the numerical results of three
examples. Section IV demonstrates the newly combined
acceleration synthesis method and explains the importance
of crossover and mutation probabilities by comparing the
numerical results before and after parameter sensitivity analy-
sis. Section V presents the new IAGA based on the analysis of
existing AGAs. Section VI applies IAGA to the optimization
of pyroshock acceleration synthesis. Section VII provides the
conclusions.

Il. BASIC ACCELERATION SYNTHESIS METHOD

SRS transforms time domain impact excitation into frequency
domain representation, which can be defined in the form
of displacement, velocity, or acceleration. Among different
types of SRS, absolute acceleration SRS (AASRS) has been
commonly used for shock test specifications and environment
adaptability design in aerospace, electronics, and other indus-
tries [1], [8], [27]. AASRS is a calculation function based
on acceleration time history that reflects mapping between
acceleration shock excitation in the time domain and the
maximum absolute acceleration response in the frequency
domain. Acceleration time domain excitation is applied to
a series of SDOF oscillators with different natural frequen-
cies. The improved slope-invariant digital filter recursive
algorithm proposed by Smallwood [28] has become a com-
monly used numerical algorithm and engineering standard for
SRS [29], [30] because of its clear physical meaning, concise
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algorithm, fast calculation speed, and high computational
accuracy.

Two most commonly used techniques for waveform syn-
thesis to satisfy a given AASRS are the summation of damped
sines or wavelets because they are near actual shock acceler-
ation waveforms [7], [8].

The basic signal is a simple exponentially damped sine
wave as shown in (1) [8].

0, < tam
Apm exp[—Enwp(t — tgm)] (D

sin[y/1 — E2wm(t — tgm)],

Wm(t) =
1= tam

This model is characterized by four parameters per mode:
magnitude A,,, angular frequency w,, (0, = 27fn, fm 1S
the frequency), damping &,,, and delay time relative to zero
time t4,,.

Acceleration can also be synthesized using a series of
wavelets. An individual wavelet can be defined as (2) [8].

0, t < tgm
2
A SIn[ (1 = tg)]
m
W,(t) = N,
m(f) SIN[27fou(t — tam)l,  tam <t < tam + —o
2fm
0, t>t _n
> tam + 2fm
2)

where A, is the wavelet acceleration amplitude, f;, is the
wavelet frequency, N, is the number of half-sines in the
wavelet (an odd integer, N,,, > 3), and 74, is the wavelet time
delay.

Total acceleration at any time ¢ for a set of n damped sines
or wavelets can be expressed as (3).

n
V)= Wul0) 3)
m=1
where m is the ordinal of the analysis frequency point, and n
is the total frequency points with a resolution of at least 1/6
octave band for the natural frequency range of the AASRS
test specification [1].

The time domain acceleration waveform can be obtained
from Formulas (1) (or (2)) and (3). This information indicates
that the total acceleration time waveform is determined by
the key parameters of each waveform: A, &, fin, and 4, for
damped sines and A, fin, N, and tg, for wavelets. Differ-
ent total acceleration time waveforms can be obtained using
various parameter combinations. Therefore, the selection of
appropriate parameters to fulfill a given AASRS is a trial-
and-error process.

ill. OPTIMIZATION OF ACCELERATION

SYNTHESIS VIA GA

A. OPTIMIZATION PROCESS

The AASRS value at frequency point f;,, marked as SRS (f;,,)
of the synthetic acceleration can be obtained using the
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TABLE 1. Variation ranges of the decision variables.

Optimization variable Variation range

A (17410 1/3)A(2)
tim [0.0001, 2,1(s)

ém [0.001,0.1]

Ny, [5,27] (odd number)

calculation method described in Section II. The value of the
target AASRS at frequency point f;, is denoted as SRS¢ ().
A value of SRS (f,;) close to SRSy (f,) indicates excellent
results. A number of combinations of the key parameters are
presented in the acceleration waveforms. Searching for the
optimal solution via exhaustive and successive iterations is
time-consuming and laborious, and a better approach is to
adopt an optimization algorithm. Therefore, the problem can
be transformed into an optimization problem of finding the
optimal solution.

The objective function that should be optimized is defined
as (4).

n
F =min() _ ISRS(fn) — SRSo(fn)]) @)
m=1
where n is the number of frequency points obtained at 1/6
octave intervals within the desired frequency range. The min-
imum value of (4) is the target optimal solution.

GA is a search procedure based on the mechanism of
natural selection and natural genetics [31]-[33]. GA is used
to solve the optimization problem for acceleration synthesis.
The key parameters affect a single acceleration waveform
are used as decision variables. Three identical parameters are
present in the two waveforms, namely, magnitude A,,, fre-
quency f,, and delay time #4,,. An SRS (Q = 10) performed
on a shock signal has an amplitude of approximately 3 to
4 times higher than the maximum value of the acceleration
time history because of the transient nature of the signal [34].
Therefore, the amplitude of the acceleration time history for
a damped sine and wavelet is 1/4 to 1/3 of the amplitude
of the target SRS. Thus, A,, = (1/4 to 1/3) Ap (Ao is
the amplitude of the target SRS). Frequency f;, is related to
the selected computational frequency range, and the specific
value depends on the target SRS. ¢4, is the delay time rel-
ative to zero time and typically assumes a small value from
0.0001 to t4 (waveform duration). Two different parameters
are found in the two waveforms, namely, damping &,, in the
damped sine and N,, in the wavelet. For the damped sine,
0.001 < &, < 0.1. For the wavelet, 0.001 < N,, < 0.1.
The values of the decision variables are provided in Table 1.

GA is initialized to perform optimization with the

following settings:
(1) Population size is 50 to allow a large variety among

subpopulations.

(2) The initial population is formed by setting the variables
randomly within the value range (Table 1) for each
parameter.
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TABLE 2. Specification of the target SRS.

Near field Middle field Far field
Frequency Amplitude Frequency Amplitude Frequency Amplitude
(Hz) (2 (Hz) (€3] (Hz) (€3]
100 300 100 60 100 50

1000 3000 2000 3000 1000 1000
3000 10000 10000 3000 10000 1000
10000 10000

(3) The maximum generation size is set to 500.

(4) The selection operation is tournament selection, and the
tournament size is 4.

(5) The crossover probability P, and mutation probability
P,, are selected with the empirical values of 0.85 and
0.01 [35], respectively.

(6) The stopping criteria for GA are as follows: the maximum
number of generations is reached or the cumulative
change in the fitness value maintains a value of at
least 1.0 x 10710,

B. CASE STUDY

The pyroshock environment can be divided into near, middle,
and far fields in accordance with the magnitude of shock
response and the spectrum components following the source
type and size or strength and the distance from the pyroshock
source. The pyroshock environment is mostly distributed
within the frequency range of 100 Hz to 10000 Hz, which
is generally selected to analyze SRS response in engineering.
Three typical AASRS from the far, middle, and near fields
are selected as the target SRS and listed in Table 2.

The total duration of the pyroshock acceleration that should
be synthesized is determined using (5) [36].

1.5 1.5
t=—=—=0.015 5)
f min 100
where f,,i, is the lowest frequency in the target SRS.

In using the three standard spectra in Table 2 as target SRS,
41 frequency points are selected in the frequency band of
100 Hz to 10000 Hz with 1/6 octave intervals (the f;,,values
are 100, 112, 126, 141, 160, 178, 200, 224, 252, 283, 317,
356, 400, 449, 504, 566, 635, 713, 800, 898, 1008, 1131,
1270, 1425, 1600, 1800, 2016, 2263, 2540, 2851, 3200,
3529, 4032, 4525, 5080, 5702, 6400, 7184, 8063, 9051, and
10000). That is, n = 41 in (3). The tolerance that is most
commonly used in current aerospace applications is assumed
to be —3 dB/+6 dB across the full spectrum [8].

The acceleration synthesis of the three target SRS
in Table 2 is optimized using the aforementioned optimization
method. To minimize evaluation noise from the possible con-
tingency of randomness and nondeterminism, each program
is executed 20 times with the same parameter settings. The
number of 20 runs is selected as a compromise between the
number of replicates for statistically significant results and
the computation time required to repeat GA runs [37]. The
comparison results of the two waveforms of damped sine and
wavelet are presented in Fig. 1.
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FIGURE 1. Comparison results of damped sine and wavelet.

As indicated in Fig. 1, the synthesized SRS from the
damped sine acceleration waveform is closer to the SRS
specification than the wavelet at medium to high frequen-
cies (above 317 Hz). By contrast, the wavelet acceleration
waveform moves the SRS closer to the SRS specification
than the damped sine at low frequencies. The results clearly
indicate that the wavelet is appropriate for low-frequency
pyroshocks, whereas the damped sine is suitable for medium-
high frequency pyroshocks.

IV. NEW COMBINED APPROACH FOR SYNTHESIZING
PYROSHOCK ACCELERATION

A. NEW PROCESSING METHOD

In this section, a new combined synthesis method for the
pyroshock acceleration time domain waveform is proposed
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Randomly select the values of A ,
N, and ty, according to Table 1

Randomly select the values of A,
& and ty, according to Table 1

Calculate W, (t) using Calculate W, (t) using
Equation (2) Equation (1)

\ |

Calculate total acceleration ¥ (t) using
Equation (3)

End

FIGURE 2. Flowchart of the new combined approach for synthesizing
pyroshock acceleration signals.

with the wavelet in the low frequency range and the damped
sine in the medium-high frequency range. In the frequency
range of 100 Hz to 10000 Hz with 1/6 octave interval, the fre-
quency points below 400 Hz are 100, 112, 126, 141, 160, 178,
200, 224, 252,283,317, 356, and 400. Considering the calcu-
lation results of the three comparative examples in Section 11,
the 11 frequency points of 100, 112, 126, 141, 160, 178, 200,
224,252, 283, and 317 Hz adopt wavelet synthesis, whereas
the 30 other frequency points between 356-10000 Hz use
the damped sine waveform. The specific operations are as
follows. In (3), when synthesizing acceleration, m = 1 — 11
using (2); m = 12 — 41 using (1). The flowchart of the new
combined approach for synthesizing pyroshock acceleration
signals is presented in Fig. 2.

B. OPTIMAL COMPUTATION BY GA

The proposed new method (marked as wavelet & damped
sine) is used to recalculate the SRS of the three specifications
in Table 2. The comparison results obtained via GA are shown
in Fig. 3.

The average value, best optimal value, and standard devia-
tion of the final optimization objective function (4) calculated
20 times in the three examples are listed in Table 3.

As shown in Fig. 3 and Table 3, the results of the pro-
posed new hybrid method are considerably closer to the target
pyrotechnic SRS than those of the traditional methods of
wavelet or damped sine alone. Moreover, the values of the
objective function (4) of the new method are the smallest
among the three methods. Nevertheless, the matching degree
for the target SRS is not very good, and some frequency
points exceed the tolerance range of —3 dB/+4-6 dB. This
phenomenon may be attributed to the use of empirical values
of the crossover probability P, and mutation probability P, of
GA, and the two probabilities remain constant throughout the
optimization process. However, whether the values of P, and
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Frequency (Hz)
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FIGURE 3. Comparison results among damped sine, wavelet, and the
proposed new method.

P, exert considerable influences on the final optimization
results requires further investigation.

C. SENSITIVITY ANALYSIS OF Pc AND Pp,

In the optimization process of GA, a large value of P,
indicates the fast generation of new individuals. However,
an excessively large P, may destroy the genetic model.
By contrast, a small value of P, implies a slow search process;
an excessively small P, will cause evolution to stagnate. The
suitable value of P, is between 0.3 and 0.9 [20]. The mutation
probability P, controls the speed at which new genes are
introduced into the population. P, should be appropriate to
ensure the diversity of individuals. In the current application
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TABLE 3. Comparison results among wavelet, damped sine, and the proposed method (SD: Standard deviation, W&D: Wavelet & damped sine).

Method Near field Middle field Far field

Average  Best SD Average Best  SD Average Best SD
Wavelet 1.461e03 634.166 500.304 444.838 254.013 119.044 183.072 93.742 53.196
Damped sine  162.735 138.675 27.145 97.852 61.233 41.529 36.051 23.599 8.513
W&D 137.549 90.955 26.745 53.369 30.342 12.352 29.217 17.775 5.261

200-

| Illpm=0.01
Wex-0.03
| Ipm=0.05

Min
“ “ “ “ “ =
0.8 0

Wlpm=0.09
03 04 05 06 07 9

150+

100

Average value (20 times)

50r|

Probability of crossover, Pc

FIGURE 4. Parameter sensitivity analysis results.

Shock response spectrum (near field)

SRS (g)

—* Before sensitivity analysis ||
~o- After sensitivity analysis
""""""" Specification
Upper tolerance (+6 dB)
""""" Lower tolerance (-3 dB)

10"

Frequency (Hz)

FIGURE 5. Comparison results between empirical and optimization
parameters for near-field SRS.

of GA to optimization problems, a fixed small value of P,,
between 0.01 and 0.1 is adopted. The acceleration synthesis
optimization problem of near-field SRS is selected, and the
parameter sensitivity analysis of the values of P, and P,, is
conducted. P, is set between 0.3 and 0.9 with an interval of
0.1, whereas P,, is set between 0.01 and 0.09 with an interval
of 0.02. The average result of 20 calculations is presented
in Fig. 4.

As shown in the figure, P, = 0.4 and P,, = 0.01 are
the optimal parameters of GA for the near-field target SRS.
The near-field acceleration synthesis problem is reoptimized,
and the comparison results with Section 4.2 using empirical
P, =0.85 and P,, = 0.01 are presented in Fig. 5.

As shown in Fig. 5, the SRS obtained after parameter sen-
sitivity analysis is closer to the target SRS than the empirical
parameters. Furthermore, the value at each frequency point
is completely consistent with the target specification SRS.
At this point, we conclude that the values of P. and P,
considerably affect the optimization results.
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FIGURE 6. Comparison results between empirical and optimization
parameters for medium and far fields.

To better supporting this conclusion, we use the parameter
set (P, = 0.4, P, = 0.01) to optimize the two other examples
of the middle and far fields. The comparison results of the
SRS curves are shown in Fig. 6.

The figure indicates that the optimized combination of
parameters does not improve the results of the middle and
far fields as those of the near field. The results calculated
using the empirical parameters are nearly the same as those
calculated using the optimization parameters. Some data are
far from the specification at many points in the low frequency
range, whereas other data exceed the tolerance range of
—3 dB/+6 dB. This situation occurs because the combination
(P, = 0.4, P,, = 0.01) obtained by the parameter sensitivity
analysis is based on the near-field target SRS. However, when
this set of parameters is applied to the middle and far fields
of different problems, their advantages disappear.

The aforementioned comparative analysis results show that
the values of P, and P, in GA exert an important influ-
ence on the optimization results. For different problems,
the optimal parameter combination also varies even if slight
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differences occur. No uniform parameter exists for all
problems. Thus, the most suitable GA parameters should be
identified for each problem.

V. IAGA

The performance of GA depends considerably on P, and
P, which largely determine whether GA can efficiently find
an optimal or near-optimal solution [38]. A poorly selected
P, and P, may lead GA to converge prematurely to sub-
optimal solutions or direct it to search too widely for the
fitness function without fully using current knowledge to find
improved solutions. However, identifying values for P, and
P, to produce near-optimal solutions remains a difficult task.
Values are generally found using a trial-and-error approach,
which can be extremely time-consuming. Given that GA is
easily trapped in a local optimum, AGA is used, in which
P, and P,, can be adjusted adaptively such that the fitness
value changes to help the algorithm converge to the globally
optimal solution [20]-[26], [39].

A. AGA
The adaptive ability of GA should be reflected in the capa-
bility of individuals in a population to automatically find the
characteristics and laws of the environment depending on the
changes in the surrounding environment. The most obvious
environmental feature is the fitness of an individual, whereas
the most evident evolution rule is the relationship between
individual and average fitness values and the minimum and
maximum fitness values in a population. In the evolution pro-
cess, an organism does not remember the generation to which
it has evolved, but whether it has improved its ability to adapt
to the environment should be a concern. If an improvement
occurs, then a good pattern is found, and this pattern should
be preserved as much as possible in the algorithm design.
Otherwise, the pattern is likely to be eliminated by nature.
The major difference between traditional GA and AGA
is the selection of P, and P,,. In conventional GA, the two
probabilities are randomly determined or based on a preset
reference. By contrast, AGA relies on the fitness function to
select optimal values. Several versions of AGA are found in
the literature. Since the first introduction of AGA by Srinivas
and Patnaik [20] in 1994, many researchers have proposed
improved methods for AGA [21]-[26]. In order to describe
the improved AGA proposed in our paper conveniently,
the improved methods in references [21]-[26] are still labeled
as AGA. In accordance with the adjustment methods for P,
and P,,, AGA can be classified into two categories: dynamic
linear [21]-[23] and nonlinear [24]-[26] adjustments.

1) LINEAR ADJUSTMENT OF AGA

In this AGA, the P, and P, of an individual are linearly
adjusted between the average and maximum or minimum
fitness values on the basis of the fitness of the individual, and
the minimum P, and P,, are not zero. This type of AGA can
be further divided into the following two types depending on
whether the probabilities are adjustable at both branches of
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the average fitness value, i.e., one branch is fixed, whereas

the other branch is adjusted linearly (using the average fitness

value as the demarcation point) [21], [22]. Both branches are

linearly adjusted [23].

(1) One branch is fixed, whereas the other is adjusted linearly
(labeled as AGA-1).

(2) Both branches are linearly adjusted (labeled as AGA-2).

2) NONLINEAR ADJUSTMENT OF AGA
AGA-1 and AGA-2 enable adaptive and linear adjustment of
P, and P,,. Although AGA-2 can escape from the local opti-
mum with a higher probability than AGA-1, it does not solve
the problems of local optimum and premature convergence,
as reported in [24]-[26]. In the current study, the nonlinear
adjustment strategy is used to avoid disadvantages, such as
premature convergence, low stability, and slow convergent
speed. Nonlinearly adjusted AGAs can be classified into two
types depending on whether the probabilities are adjusted at
both branches of the average fitness value: (1) one branch is
fixed and the other is adjusted nonlinearly (using the average
fitness value as the demarcation point) [24], [25] and (2)
one branch is adjusted linearly, and the other is adjusted
nonlinearly [26].
(1) One branch is fixed, whereas the other is adjusted non-
linearly
According to the difference nonlinear adjustment strategies,
this type can be divided into two types: one is an exponential
function [24], labeled as AGA-3, the other is a sigmoid
function (A = 9.903438) [25], labeled as AGA-4.
(2) One branch is liner and the other is nonlinear (labeled as
AGA-5) [26]

To improve the comparison and analysis of differ-
ent AGAs, their probability adjustment curves are plotted
in Fig. 7. For a convenient description, the adjustment curves
for P. and P,, are expressed in a unified manner as P because
the shape of their curves is the same. In Fig. 7, fin, finax and
Javg Tepresent the minimum, maximum and average fitness
values, respectively; P1 > Puux > P2 > Pz € (0,1),
Ppin = P3. This figure shows that the curve of P in AGA-1,
AGA-2, and AGA-5 become steep when fy,, and fy, are
near each other. Thus, the probabilities of these individuals
considerably vary from one another even if a slight differ-
ence occurs with their individual fitness values. Thus, most
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individuals only have a low P, thereby causing evolution to
stagnate. To avoid the aforementioned situation, the adaptive
adjustment curve of P should be first changed slowly at and
near fuy, to considerably improve the P value of individuals
with fitness close to fuye. Second, the adaptive adjustment
curve at f,,;, should be smoothed to ensure that better indi-
viduals in the current population will still have large enough
crossover and mutation probabilities. Although the adaptive
adjustment curve in AGA-3 is smooth near f,,, it retains a
large probability value near f,;,, which is not conducive to
retaining superior individuals in the later stage of evolution.
In AGA-4, however, the adaptive curve of P varies slowly
in the f,¢ of the population, and the crossover and mutation
rates of individuals close to f,, are substantially improved.
Simultaneously, the pattern of individuals near f,,;, is pre-
served as much as possible, and their probabilities are lower
but higher than 0. This explains why the algorithm strives to
jump out of local convergence.

B. NEW IAGA
A new IAGA based on the aforementioned comparative anal-
ysis is presented in this section.

The global optimization performance of previous AGAs
can be further improved through the following three aspects.
First, we smooth the adaptive adjustment curve near fuye
and enable the individuals close to f;,, to have considerably
improved probability values. Second, we reduce the proba-
bility value of the individuals near f;,;, to preserve excellent
individual patterns. Third, we ensure that the individuals
with less than the ideal value (from fjuqx 10 faye for minimal
optimization) maintain high crossover and mutation rates.
Therefore, the values of P, and P, are tuned adaptively
and nonlinearly at both branches via the following sigmoid
function:

P+ PP
’ 2as =)\’
1+ A8 )
P ( favg _fmin -1
fmin <f ffavg
Py + bioh
2 favg + fmax —f ’
2
1+ A
P = P (f _favg)(fmax _f) (6)
favg <f < favg +fmax
Py 4 Py — P
2 ,
1+ exp (A(l _ 20~ Javg) _f‘”g))>
fmax _favg
favg ‘;fmax <f Sfmax

where, A = 9.903438.

The adjustment curve of probability is presented in Fig. 8.
This figure shows that the new IAGA proposed in this
work causes the crossover and mutation curves to vary
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FIGURE 8. Adaptive P of the new IAGA for the minimum optimization
problem.
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FIGURE 9. Flowchart of the new IAGA.

Fitness evaluation

Optimization results
are obtained

nonlinearly via nonlinear adjustments, which smoothes the
adaptive curve at any point. The new IAGA will pull away
majority of the individuals around the average fitness when
the individuals are similar, which can drive the progress
of evolution. This phenomenon is important in eliminating
local convergence and preventing the algorithm from stalling.
The optimization flowchart of the new IAGA is presented
in Fig. 9.

VI. APPLICATION OF THE NEW IAGA TO THE
OPTIMIZATION OF PYROSHOCK

ACCELERATION SYNTHESIS

A. OPTIMIZATION RESULTS

The new TAGA is applied to recalculate the three pyroshock
acceleration synthesis examples of near-, middle- and far-
field target SRS in Table 2 using the proposed synthe-
sis method. To increase the clarity of the analysis results,
the five AGAs and two other classic optimization algo-
rithms, particle swarm optimization (PSO) and simulated
annealing (SA) are selected for comparison. GA and AGA
have the same parameters except for P. and P,. All
the parameters are listed in Table 4. The evolutionary
number of the five AGAs is 500 generations, and the
maximum iterations of PSO and SA is 500, therefore,
these nine methods are labeled as GA(500), AGA-1(500),
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TABLE 4. Parameters of GA and AGA.

Parameters Values Parameters Values
Population (P) 50 Pnax for AGA-1, AGA-3, and AGA-4 0.75
Maximum generation (G) 500 P pnin for AGA-1, AGA-3, and AGA-4 0.3
P, for GA 0.85 P, for AGA-2, AGA-5, and IAGA 0.1
P,, for GA 0.01 P,» for AGA-2, AGA-5, and IAGA 0.05
P, for AGA-2, AGA-5, and IAGA 0.9 P,z for AGA-2, AGA-5, and IAGA 0.01
P, for AGA-2, AGA-5, and IAGA 0.6 Poumax for AGA-1, AGA-3, and AGA-4  0.075
P for AGA-2, AGA-5, and TAGA 0.3 Pumin for AGA-1, AGA-3, and AGA-4 0.01

Shock response spectrum (near field)

SRS (g)

—+—GA(500)
—®—IAGA(500)
—=—TAGA(200)
AGA-4(500)
PSO(500)
SA(500)
«s Specificatis

Frequency (Hz)

(a) Near field

Shock response spectrum (medium field)
T

SRS (g)

—*— GA(500)

—8—IAGA(500)

—=—JAGA(200)
AGA-4(500)
PSO(500)
SA(500)

ation
==+ Upper tolerance(+6 dB)
=="Lower tolerance(-3 dB)

Frequency (Hz)

(b) Medium field

Shock response spectrum (far field)

SRS (g)
5

—+— GA(00)

—*—IAGA(500)

—=—IAGA(200)
AGA-4(500)

.
10’
Frequency (Hz)

(c) Far field

FIGURE 10. Comparison results among GA, IAGA, AGA-4, PSO, and SA.

AGA-2(500),

AGA-3(500),

AGA-4(500),

AGA-5(500),

TAGA(500), PSO(500) and SA(500), respectively. Further-
more, the 200 evolutionary number of the new TAGA was
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added as a comparison to show the superiority of the new
IAGA in terms of convergence speed, which labeled as
TAGA(200). All the aforementioned results are provided
in Table 5. The results in Table 5 show that the opti-
mized values obtained by the new IAGA(500) are the small-
est among the nine algorithms, followed by AGA-4(500),
thereby demonstrating the advantage of the new IAGA in
solving the pyroshock acceleration synthesis optimization
problem. The optimization results of ITAGA(200) and AGA-
4(500) are equivalent; thus, the IAGA proposed in this study
can improve convergence speed toward the global optimal
solution. A slight difference is observed in the optimization
results among various random initializations with TAGA,
which can be measured by the standard deviation of 20 cal-
culations compared in Table 5. Table 5 shows that the
standard deviation of IAGA(500) in 20 calculations is the
smallest, thereby indicating the stability of the algorithm and
the consistency of optimization convergence. The numerical
results demonstrate that the adaptively and nonlinearly tuned
probabilities of P, and P,, enable IAGA to simultaneously
avoid the problems of premature, slow convergence and low
stability. Furthermore, Table 5 indicates that the calculation
time of [AGA(500) is slightly longer than that of AGA-4(500)
and GA(500), and the increase time of the middle field is
the longest, although it is only a 5.6% increase from that of
GA(500). Considering the improvement and enhancement of
TAGA to the optimization results, the increase in calculation
time is acceptable.

To increase the clarity of the analysis results, AGA-4,
which achieves the best optimization performance among the
five AGASs, the conventional GA, PSO and SA are selected for
graphical comparison analysis. The comparison results are
provided in Fig. 10. This figure indicates that the results of
TAGA(500) are considerably improved compared with those
of AGA-4(500) and GA(500), and are far better than those
of PSO(500) and SA(500). The obtained values of all the fre-
quency points of IAGA(500) are within the tolerance range of
—3 dB/4-6 dB, and the matching degree with the target spec-
ification SRS is substantially better than that of AGA-4(500)
and GA(500). The optimization results of IAGA(200) are
better than those of GA(500), thereby demonstrating that
the new TAGA exhibits the advantage of fast convergence
speed. When this method is used, we can easily find the
global optimal solution for solving the synthesis problem of
pyroshock acceleration.
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TABLE 5. Comparison results among GA, IAGA, AGAs, PSO, and SA.

Method Near field . Middle field . Far field .
Average Best SD Time(s)Average Best SD Time(s) Average Best SD Time(s)
GA(500) 137.5490 90.9548 26.7499 297.7 53.3685 30.3419 12.3518 299.0 29.2165 17.7754 5.2607 299.7
AGA-1(500) 115.8557 85.3151 20.4581 351.6 42.6669 28.7353 8.4849 356.6 20.9901 16.9939 4.4202 366.8
AGA-2(500) 113.8151 79.6937 23.7920 347.1 35.8437 25.4056 8.9053 370.3 20.9084 16.8909 3.9467 291.3
AGA-3(500) 107.0615 76.4189 24.2404 361.8 35.6853 29.9937 8.9214 359.0 20.3375 16.065 4.165 362.5
AGA-4(500) 105.847 75.4775 17.4718 298.1 35.5530 24.264 8.3053 306.0 20.2598 15.8909 3.5668 291.3
AGA-5(500) 110.9206 92.7348 18.8243 362.0 39.7734 34.8098 8.3789 357.3 20.7755 16.6881 4.7641 354.0
IAGA(500) 98.6308 69.6588 15.7170 304.1 35.2208 24.0709 7.3702 315.8 20.0347 13.0493 3.5571 304.5
TIAGA(200) 116.5842 85.9044 18.6452 115.7 46.3234 25.3233 7.7105 115.6 28.1184 14.2614 4.8053 112.6
PSO(500) 273.979 174.1868 69.5891 131.5 95.6448 50.6845 34.2547 111.0 46.1634 32.6482 11.446 132.86
SA(500) 1191.1 746.4516 239.697 97.53 388.462 192.717 114.164 96.26 215.024 145.341 42.099 117.31

Near field

Acceleration (g)

Time (ms)
(a) Near field
Medium field

L
10

Acceleration (g)
=

5
Time (ms)
(b) Medium field
Far field

10

200

Acceleration (g)
=

-200-

5
Time (ms)

(c) Far field

FIGURE 11. Acceleration time history curve.

B. RATIONALITY VERIFICATION OF
ACCELERATION INFORMATION

The SRS obtained via IAGA and the target SRS match each
other well, but whether the synthesized acceleration infor-
mation is reasonable and effective still requires verification.
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FIGURE 12. Comparison results of SRS+ and SRS—.

The relevant standard document for pyroshock design and
verification [8] stipulates that the general method for judging
the validity of the acceleration that characterizes pyroshock is
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the consistency between positive SRS (SRS+) and negative
SRS (SRS—). If the difference between SRS+ and SRS—
does not exceed +/ — 6 dB at all the frequency points in
a given frequency range, then the acceleration waveform is
considered effective and reliable.

The acceleration time history curves obtained using IAGA
are shown in Fig. 11. The curves are relatively close to the
time domain waveform of pyroshock.

The SRS that corresponds to the three aforementioned
accelerations is calculated using the improved slope-invariant
digital filter recursive algorithm [28], and the obtained SRS+
and SRS— are presented in Fig. 12.

The results in Fig. 12 show that the acceleration obtained
by the presented IAGA exhibits a difference between SRS+
and SRS— within +/ — 6 dB at all the frequency points in the
given frequency band. This result demonstrates the validity
and reliability of the acceleration waveform optimized by
TIAGA, which can be used as pyroshock load to analyze and
calculate the structural response.

VII. CONCLUSION

A combined method that uses a series of wavelets at low
frequencies and damped sines at medium-high frequencies
is proposed for the synthesis of pyroshock acceleration in
the absence of experimental data. The quality assessment
of a synthesized SRS is a minimum optimization problem,
which is addressed using the IAGA proposed in this work.
The new IAGA is composed of crossover and mutation
probabilities of adaptive and nonlinear adjustments, which
make the IAGA more stable and can more easily to find the
global optimal solution with fewer evolutionary generations.
Although the new IAGA takes a slightly longer time than
conventional GAs under the same evolutionary generation,
the optimization results are considerably improved. In the
comparison analysis, we demonstrate that combined with the
developed IAGA, the new acceleration synthesis method can
remarkably improve numerical accuracy, and the results are
substantially closer to the target SRS than those of traditional
methods. The obtained acceleration waveforms are close to
the actual pyroshock waves and are verified by comparing
the difference between SRS+ and SRS—. The synthesized
acceleration waveform may be used as a base-driven input
transient to a finite element model to simulate modal tran-
sient responses. Thus, the waveform is helpful in solving the
problem of difficulty in predicting a pyroshock environment.
This study is important for guiding anti-pyroshock design in
space systems.
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