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ABSTRACT In this paper, aiming at the emergency coverage for vehicular network, we consider the problem
of resource allocation for unmanned-aerial-vehicle (UAV) enabled vehicular communications, where UAV
work as a temporary cellular base station. Our objective is to maximize the sum achievable rate of vehicle-to-
infrastructure (V2I) communications and ensure the reliability of vehicle-to-vehicle (V2V) communications
by dynamic coverage provided by UAV. Firstly, through theoretical analysis, optimal transmission power
expressions for cellular users (CUEs) and device-to-device users (DUEs) are given, respectively. Secondly,
by utilizing 3-partite graph matching and Hungarian algorithm, we present two graph-based methods for
spectrum sharing and resource block assignment of UAV enabled vehicular network. Moreover, considering
the mobility of UAV, we adopt the Q-Learning algorithm to control the trajectory of UAV in order to adapt
to the time-varying channel. Finally, the feasibility of the presented schemes are verified by simulation and
compared to randomized matching scheme. The simulation results show that the sum achievable rate of
V2I links increases with the increase of the maximum transmission power of CUEs and the interruption
probability of V2V links, and decreases with the increase of the ratio of DUEs to CUEs and the minimum
capacity requirement of single V2I link. Moreover, the sum achievable rate of V2I links is enhanced by
controlling the trajectory of UAV in real time.

INDEX TERMS Resource allocation, vehicular communications, UAV, graph theory, D2D, Q-learning.

I. INTRODUCTION
In some emergent events, e.g., earthquake and typhoon,
vehicles cannot communicate with the base station directly
after disaster. At this time, unmanned-aerial-vehicle (UAV)
can play the role of a temporary base station in a wireless
communications system to service the vehicles [1]. UAV
is superior to the existing terrestrial base stations in terms
of convenient deployment, easy control, and variability of
coverage area [2]. According to discussions about connected
UAV in 3GPP Release15 [3], a 100% line-of-sight (LOS)
probability is assumed when UAV flies above a given height,
which can provide better signal quality and greater through-
put. Due to diverse application requirements of intelligent-
transport-system (ITS), both vehicle-to-infrastructure (V2I)
communications and vehicle-to-vehicle (V2V) communica-
tions need to be supported. V2I link can maintain stable
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communications of vehicles [4], whereas V2V communi-
cations can reduce the costs for transmission over cellular
network [5], and V2V link is more suitable for safety-critical
applications. The existing technical solutions for vehicle-to-
everything (V2X) communications include ad-hoc commu-
nications based on IEEE 802.11p standards and LTE-V2X
communications based on LTE network. However, these two
solutions need to be further improved to better meet the
strict quality-of-service(Qos) requirements of vehicular com-
munications [6]–[8]. By introducing device-to-device(D2D)
technology into vehicular communications, the hop gain of
D2D communications meets the low latency requirement of
V2X communications, and the proximity gain of D2D com-
munications meets the high reliability requirement of V2X
communications [9]. In addition, considering UAV enabled
vehicular communications, the establishment of D2D link can
extend the coverage of UAV [10].

Although there are many studies of UAV in wireless com-
munication, e.g., UAV as base station [11], UAV as relay [12],

132806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0697-2287
https://orcid.org/0000-0001-9595-527X
https://orcid.org/0000-0002-5688-164X
https://orcid.org/0000-0002-4312-0040


L. Deng et al.: Joint Resource Allocation and Trajectory Control for UAV-Enabled Vehicular Communications

and UAV as terminal [13]. As far as we know, little is known
about UAV enabled vehicular communications except for the
recent studies on vehicular ad hoc network (VANET) against
smart jamming and routing protocol of UAV enabled vehicu-
lar network [14], [15]. For instance, Xiao et al. [14] utilized
UAV to relay the message of an onboard unit (OBU) and
improve the communications performance of VANET against
smart jammers, where the proposed scheme was proved to
reduce the bit error rate of the OBU message effectively.
Seliem et al. [15] proposed a routing protocol that used the
infrastructure UAV for boosting VANET communications to
achieve a minimum vehicle-to-UAV packet delivery delay,
and the closed-form expression for the probability distribu-
tion of the vehicle-to-UAV packet delivery delay on a two-
way highway was also given. Different from the studies of
above two papers, we mainly consider the problem of joint
resource allocation and trajectory control in UAV enabled
vehicular communications.

Graph theory has been utilized to solve the resource alloca-
tion problem in wireless communications [16]–[19]. In [16],
interference relationships among different D2D and cellular
communications links were formulated as a newly designed
interference graph, and an interference graph-based resource
allocation scheme was proposed to obtain a near optimal
solution at the base station with low computational complex-
ity. In [17], the problem of cooperative communications for
scheduling in vehicular networks was formulated as a prob-
lem of bipartite graph matching, and Kuhn-Munkres algo-
rithm was adopted to achieve maximum weighted matching.
In [18], by modeling constrained radio broadcast scheduling
into a constrained maximum weighted bipartite matching
problem, this paper propose a branch-and-bound algorithm
to solve the resource allocation problem in radio broadcast
scheduling. By formulating the spectrum sharing problem as
a weighted 3-D matching problem, Liang et al. [19] pro-
posed a baseline graph-based resource allocation algorithm,
a greedy resource allocation algorithm, and a randomized
resource allocation algorithm to achieve the performance-
complexity tradeoffs. In this paper, we will also utilize the
knowledge of graph theory to solve the problem of resource
allocation.

In this paper, joint optimization of uplink resource allo-
cation and trajectory control in UAV enabled vehicular net-
work is studied, where UAV acts as a flying base station.
Meanwhile, D2D technology is applied to V2V link to ensure
reliable communication. UAV provides communications ser-
vices for the vehicles with the help of resources of the adja-
cent cell. Adopting the concept of almost blank subframe
in LTE [20], data of vehicular communications transmits
in these blank subframes. It is almost impossible to track
fast changing channels in the vehicular network. Therefore,
resource management is based on slow fading parameters
and channel statistics rather than instantaneous channel state
information (CSI) [21]. To support high bandwidth applica-
tions, we maximize the capacity of V2I links. And in order to
achieve reliable communication between vehicles, the V2V

link interruption probability is considered as a constraint.
We formulate spectrum sharing and resource block assign-
ment as a 3-partite graph matching problem. By utilizing
k-partite graph matching theory proposed in [22], and the
Local Ratio algorithm proposed in [23], the 3-partite graph
matching problem can be solved. Besides, without consid-
ering the selection of resource block, the problem of V2I
link multiplexing V2V link can be modeled as a bipartite
graph matching problem, and Hungarian algorithm can be
adopted to solve the problem. Moreover, mobility of UAV is
exploited to further improve the sum achievable rate of V2I
links. But we only consider four flight directions of UAV at
a fixed height for convenience of description in this paper.
Considering high propulsion power consumption and com-
munications power consumption of UAV, tethered multi-rotor
UAV is capable to provide communications guarantee for
disaster areas to support long-time hovering [24]. The main
contributions of this paper can be summarized as follows:
1) The resource allocation problem in UAV enabled vehic-

ular network is studied for the first time. Referring to
baseline graph-based resource allocation algorithm pro-
posed by L. Liang et al. [19], the problems of spec-
trum sharing and resource block assignment aremodeled
as a 3-partite graph matching problem and solved by
k-partite graph matching theory and Local Ratio algo-
rithm in this paper.

2) Considering the mobility of UAV, Q-Learning algorithm
is introduced to control the trajectory of UAV in real time
when the sum achievable rate of V2I links is regarded
as a reward. And the trajectory of UAV is explored by
simulation results by setting up a reasonable scenario.

The remainder of this paper is organized as follows.
Section II summarizes the related works on joint optimization
of resource allocation and trajectory design. Section III pro-
vides a brief description of the system model and formulates
the resource allocation problem. Graph-based schemes for
resource allocation and Q-Learning algorithm for trajectory
control of UAV are proposed in Section IV. In Section V,
simulation results are presented and discussed. Finally,
Section VI concludes this paper.

II. RELATED WORKS
There are some advanced works considering the issue of joint
resource allocation and trajectory control for UAV enabled
communications are presented by researchers [25]–[27].
In [25], Li et al. decoupled the joint optimization problem
into two subproblems, i.e., the optimal resource allocation
for a given UAV trajectory and the trajectory optimiza-
tion of UAV for a given resource allocation policy. The
authors transformed the first subproblem into Lagrange
dual problem to solve it, and obtain a suboptimal solu-
tion for the second subproblem by utilizing the differ-
ence of convex programming. Cui et al. [26] proposed a
double-loop algorithm to solve joint optimization problem for
NOMA based UAV communication systems with the aid of
penalty dual decomposition technique. In the inner loops, the
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transformed augmented Lagrangian problem was solved via
block coordinate descent method. In the outer loops, dual
variable and penalty coefficient are updated according to
the equality constraint violation. Sun et al. [27] investi-
gated the resource allocation and trajectory design for mul-
ticarrier solar-powered UAV communication systems. The
authors considered two cases, i.e., optimal offline resource
allocation design by assuming non-causal knowledge of the
channel gains and online resource allocation design which
only requires causal CSI. The offline resource allocation
problem was rewritten as a monotonic optimization prob-
lem, and solved by sequential polyblock approximation algo-
rithm. For online resource allocation problem, the authors
proposed a iterative suboptimal algorithm based on the suc-
cessive convex approximation to strike a balance between
computational complexity and optimality. These three papers
are all about downlink resource allocation. Different from
these three papers, this paper considers resource allocation of
uplink and the users are vehicles. The paper divides the joint
optimization problem into resource allocation and trajectory
control. Besides, resource allocation subproblem is solved
in two steps. The case of a single RB, a single V2I link,
and a single V2V link is first considered, and we can get
optimal transmission power of CUE andDUE. Thenwe adopt
two graph-based algorithm, i.e., 3-partite graph matching
and Hungarian algorithm, to solve the resource allocation
problem with the case of multiple RBs, multiple V2I links,
and multiple V2V links in polynomial time. When the UAV
moves in any of four directions we defined, the distances
between UAV and vehicles will be changed, which will affect
the achievable rate of a single V2I link and the result of
matching will changed accordingly. Therefore, the value of
the sum achievable rate of V2I links will also be changed.
We adopt Q learning algorithm to control the trajectory of
UAV with the goal of getting bigger sum achievable rate of
V2I links. But in order to balance exploration and exploita-
tion, we eventually adopted ε-greedy policy.

III. SYSTEM MODEL
As shown in Fig. 1, UAV is not only the user of cell 1, but
also the service base station of UAV cell where the vehicles
locate. We assume that cell 1 can provide enough resources
required by the UAV cell. M vehicles establish V2I links
(links between vehicles and UAV), which are recorded as
CUEs (cellular users). And K pairs of vehicles constitute
K V2V links, which are recorded as DUEs (D2D users).
we denote the set of CUEs as ϕ = {1, 2, · · · ,M} and
the set of DUEs as ψ = {1, 2, · · · ,K }. The total number
of resource block(RB) is F , and the set of RB is denoted
as ζ = {1, 2, · · · ,F}. CUEm represents the m-th CUE in
the V2I link. DUEk represents k-th DUE in a V2V link.
RBf represents f -th RB. The uplink resource by orthogonal
allocation for CUEs, i.e., those RBs, are reused by DUEs,
which can increase spectral efficiency and reduce the burden
of cell 1. A centralized resource allocation is performed by
UAV, and the statistical characteristics of small-scale fading

FIGURE 1. UAV-enabled vehicular communication for both V2I and V2V
links.

TABLE 1. Key mathematical symbols.

parameters are assumed to be known through periodical feed-
back or channel estimation. The notation of keymathematical
symbols are given in Table 1.

The channel coefficient, hC2Um,f , which defines the channel
from CUEm to UAV over RBf , is written as

hC2Um,f = gm,U ,f βm,ULd
−α
m,U , (1)

where gm,U ,f stands for fast fading factor obeying an expo-
nential distribution with parameter of 1, βm,U is a random
variable of shadow fading obeying log-normal distribution, L
is the path loss constant, d is the distance between CUEm and
UAV, α is the path-loss exponent factor. Symbol γm,U is used
to indicate the large-scale fading effects, i.e.,

γm,U = βm,U Ld
−α
m,U . (2)

Correspondingly, hD2Uk,f , h
C2D
m,k,f , h

D2D
k,f are defined similarly.

hD2Uk,f is the interference channel coefficient from DUEk to
UAV over RBf . hC2Dm,k,f is the interference channel coefficient
from CUEm to DUEk over RBf . hD2Dk,f is the channel coeffi-
cient between DUEk vehicles over RBf . Then the SINR of
V2I link for CUEm at UAV can be written as

ηCm,f =
PCm,f h

C2U
m,f

σ 2+
∑

k Im,k P
D
k,f h

D2U
k,f

, (3)
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and the SINR of DUEk at the receiver of V2V link is given as

ηDk,f =
PDk,f h

D2D
k,f

σ 2+
∑

m Im,f P
C
m,f h

C2D
m,k,f

(4)

where PCm,f is the transmission power of CUEm over RBf ,
and PDk,f is transmission power of DUEk over RBf . Im,f and
Im,k are indicator factors. Im,f indicates that whether CUEm
occupies RBf , and Im,k indicates that whether DUEk reuses
CUEm resources. σ 2 is noise power.
The QoS requirements of V2I link is different from V2V

link. V2I link requires large system capacity, and reliable
communications between vehicles. Therefore, we maximize
the sum achievable rate of all V2I links, and ensure the
reliability of V2V links by setting the SINR threshold and the
threshold of interruption probability. In addition, the achiev-
able rate of a single V2I link also should satisfy the threshold
requirement. Therefore, the optimization problem can be for-
mulated as

max{
Im,f ,Im,k
PCm,f ,P

D
k,f

}∑
m

∑
f

Im,f log2
(
1+ ηCm,f

)

s.t. C1 : Pr
{
ηDk,f ≤ η

D
0

}
≤ p0, ∀k, f

C2 : log2
(
1+ ηCm,f

)
≥ rC0 , ∀m, f

C3 : 0 ≤ PCm,f ≤ P
C
max, ∀m, f

C4 : 0 ≤ PDk,f ≤ P
D
max, ∀k, f

C5 :
∑

m
Im,f ≤ 1, ∀f

C6 :
∑

f
Im,f = 1, ∀m

C7 :
∑

m
Im,k = 1, ∀k

C8 :
∑

k
Im,k ≤ 1, ∀m

C9 : Im,f , Im,k ∈ {0, 1} . ∀m, k, f , (5)

where ηD0 , p0 are the minimum SINR and interruption prob-
ability threshold for DUEs to establish reliable V2V links,
respectively, rC0 is the minimum achievable rate requirement
for a single V2I link, PCmax, P

D
max are the maximum transmis-

sion power of CUE and DUE, respectively. The constraint C5
indicates that a RB can be occupied by one CUE at most, and
C6 indicates that each CUE will occupy one RB. C7 indicates
that a V2V link will reuse the uplink resource of one V2I
link. C8 indicates that V2I link can allow only one V2V link
to sharing resource. Both Im,f and Im,k take value from 0 or 1.
If the value of Im,f is 1, it means CUEm will occupy RBf .
If the value of Im,k is 1, it means CUEk will share resource
block with DUEk .

IV. RESOURCE ALLOCATION SOLUTIONS
Firstly, we consider the case of a single RB, a single V2I link,
and a single V2V link. And the problem of resource allocation

is simplified as

max{
PCm,f ,P

D
k,f

} log2 (1+ ηCm,f )
s.t. C1 : Pr

{
ηDk,f ≤ η

D
0

}
≤ p0,

C2 : log2
(
1+ ηCm,f

)
≥ rC0 ,

C3 : 0 ≤ PCm,f ≤ P
C
max,

C4 : 0 ≤ PDk,f ≤ P
D
max . (6)

For C1, it can be further derived as

Pr
{
ηDk,f ≤ η

D
0

}
= Pr

{
PDk,f gk,f γk

σ 2 + PCm,f gm,k,f γm,k
≤ ηD0

}

= Pr

gk,f ≤ η
D
0

(
σ 2
+ PCm,f gm,k,f γm,k

)
PDk,f γk


=

∫
∞

0

[∫ λ

0
e−gk,f dgk,f

]
e−gm,k,f dgm,k,f

= 1−
PDk,f γke

−
ηD0 σ

2

PDk,f γk

PDk,f γk + η
D
0 P

C
m,f γm,k

≤ p0. (7)

where

λ =
ηD0

(
σ 2
+ PCm,f gm,k,f γm,k

)
PDk,f γk

. (8)

Equation (7) shows that there exists a certain constraint
relationship between the transmission power of CUE and
DUE in order to meet the reliability requirements of V2V
links. For ease of expression, let

E = e
−

ηD
0 σ

2

PDk,f
γk , (9)

Fm = gm,U ,f γm,U , (10)

Fk = gk,U ,f γk,U . (11)

Taking the predefined threshold as the interruption proba-
bility, we can get an equation relationship of the transmission
power of CUE and DUE.

PCm,f =
γk [E− (1− p0)]
γm,k (1− p0) ηD0

PDk,f . (12)

When k-th V2V link reuse m-th V2I link resources over
RBf , the corresponding achievable rate of CUEm is recorded
as Cm,k,f , i.e.,

Cm,k,f = log2(1+
PCm,f h

C2U
m,f

σ 2+PDk,f h
D2U
k,f

). (13)

VOLUME 7, 2019 132809



L. Deng et al.: Joint Resource Allocation and Trajectory Control for UAV-Enabled Vehicular Communications

By substituting (12) into (13), then get

Cm,k,f = log2

1+
Fm [γk E− (1− p0) γk ](
σ 2

PDk,f
+ Fk

)
(1− p0) ηD0 γm,k

 . (14)

Equation (14) shows that the sum achievable rate of V2I
links increases with the transmission power of DUE on the
premise of satisfying the reliability requirements of V2V
links. Intuitively speaking, when the transmission power of
CUE increases, the achievable rate of V2I link will increase.
Considering the constraints of the maximum transmission
power, the above analysis shows that the optimal transmission
power of CUE and DUE are

P∗Cm,f = min
(
PCmax,P

C(Dmax)
m,f

)
, (15)

P∗Dk,f = min
(
PDmax,P

D(Cmax)
k,f

)
, (16)

respectively. where P
C(Dmax)
m,f is the transmission power of a

CUE that satisfies (12) when the transmission power of the
DUE is maximized. P

D(Cmax)
k,f is the transmission power of a

DUE that satisfies (12) when the transmission power of the
CUE is maximized. If the transmission power of CUE and
DUE are optimal, the corresponding achievable rate of V2I
link will also get optimal value.

Based on the above analysis and derivation, the resource
allocation problem in the case of multiple RBs, multiple
V2I links, and multiple V2V links can be formulated as
follows:

max
{Im,f ,Im,k}

∑
m

∑
f

∑
k

Im,f Im,k C∗m,k,f

s.t. C2 : log2
(
1+ ηCm,f

)
≥ rC0 , ∀m, f

C5 :
∑

m
Im,f ≤ 1 , ∀f

C6 :
∑

f
Im,f = 1 , ∀m

C7 :
∑

m
Im,k = 1, ∀k

C8 :
∑

k
Im,k ≤ 1, ∀m

C9 : Im,f , Im,k ∈ {0, 1} , ∀m, k, f (17)

where C∗m,k,f denotes optimum.
Next, we will consider the sharing of resource block for

V2I links and V2V links. The hypergraph matching theory
will be adopted to solve the problem, and we need to relax
the equality constraints, i.e, C6 and C7, before matching.

C6 :
∑

f
Im,f ≤ 1 , ∀m

C7 :
∑

m
Im,k ≤ 1, ∀k (18)

The linear programming problem for the weighted hyper-
graph matching problem is formulated as

max
∑
e∈E

we xe

s.t. x (δ (v)) ≤ 1 , ∀v ∈ V

xe ≥ 0 , ∀e ∈ E (19)

where we is the weight of hyperedge e ∈ E . δ (v) is the
hyperedge set which containing vertex v.

By graph theory, we construct ϕ, ψ , and ζ into three
parts of a 3-partite graph. If the value of Im,f is 1, there
is a connection between CUEm and RBf . If the value of
Im,k is 1, there is a connection between CUEm and DUEk .
3-partite graph matching is based on hypergraph matching
theory. There are three vertices in a hyperedge. If RBf , CUEm,
DUEk constitute a hyperedge, then the corresponding weight
of the hyperedge isC∗m,k,f . V2I link occupies different RB and
V2V link reuse the resource of different V2I link, which will
form different hyperedge, and the corresponding hyperedge
weight is therefore not equal. Our goal is to achieve the
maximum weighted matching under the constraints of C5-C9.
Assuming thatH = (V ,E) represents a 3-partite hypergraph,
V is the vertex set of the hypergraph and E is the edge set.

Algorithm 1 3-partite Graph Matching Algorithm
Find an optimal extreme point solution x to (19).
Remove every hyperedge e with xe = 0.
Initialize G← φ.
for i from 1 to |E| do
(a) Find a hyperedge e with

∑
e∈N [e]

xe ≤ 2.

(b) Set ei← e and mark e with i.
(c) G = G ∪ {ei}.
(d) Remove e from |E|.

end for
M ← Local Ratio(G, w), where w is the weight vector of
the hyperedges.
return M
Local Ratio Algorithm:
Remove from G all hyperedges with non-positive weights.

Choose the hyperedge e from G with the smallest index.
Decompose the weight vector w = w1 + w2 where

w1(e1) =
{
w(e) if e1 ∈ N [e]
0 otherwise

M1← Local Ratio(G, w2)
if M1 ∪ {e} is a matching then
M = M1 ∪ {e}.

else
M = M1.

end if
return M
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FIGURE 2. Assignment representation for resource allocation in the
vehicular network.

The 3-partite graph matching algorithm is summarized in
Algorithm 1.N (e) denotes the set of hyperedges that intersect
hyperedge e.
In Algorithm 1, step 1 and step 2 intend to find out the

edges that can constitute the hyperedges of 3-partite graph
and mark them with a serial number. The Local Ratio algo-
rithm started in step 3 is a proximity search algorithm, based
on the sequence number of the hyperedges provided by step 2.
The output of Local Ratio algorithm is a 2-approximate solu-
tion of 3-partite graph matching, and the cost of matching
is at least 1/2 of the optimal matching [22]. In other words,
the Local Ratio algorithm does not achieve optimal matching,
or even maximum matching. It is a NP problem to solve
3-partite graph optimal matching directly, whereas the Local
Ratio algorithm can implement a 3-partite graph matching
in polynomial time. However, in order to apply Local Ratio
algorithm to the resource allocation problem above, it moti-
vates us to make some modifications to the algorithm.

As Fig. 2 shows, this is a diagram of the resource allocation
problem. If second V2I link occupys first RB, meanwhile,
the K -th V2V link reuses the resource of second V2I link.
Then RB1, CUE2 and DUEK form a hyperedge, and the
weight of hyperedge is C∗12,K . It is necessary to ensure that
all V2I links are allocated, and all V2V links reuses the
uplink resources of V2I links. Based on the matching found
by the Local Ratio algorithm, the hyperedges with weights
greater than the set threshold w0 from G are added to the
matching until all CUE and DUE vertices are saturated. And
we improve the value of weight threshold when the maximum
maching is ensured in order to approach closer to optimal
matching.

The mobility of UAV can be exploited to enhance the
channel conditions so as to make full use of the resources
provided. We assume that UAV is floating on a fixed height
H and has four flight directions. Two directions are parallel
to the road, and another two directions are perpendicular to
the road. When UAVmoves in any direction, it will affect the
channel power gain, which will further affect the achievable
rate of the corresponding link and the result of resource
matching. Therefore, Q-Learning algorithm is adopted to
work out the optimal trajectory of UAV. Here, we adopt

Q learning algorithm based on time difference. Four direc-
tions of UAV are considered as the action set, and recorded
as A ={a1, a2, a3, a4}. The position of UAV is denoted as
the state value, and the state at i timestep is recorded as
si = (xi, yi,H ). The sum achievable rate of V2I links is
regarded as the reward value R. And in order to balance
exploration and exploitation, we consider ε−greedy policy,
i.e.,

π (a|s) =

{
ε/|A| + 1− ε, if , a = argmax Q(s, a)
ε/|A|, otherwise

(20)

If the generated random number is less than ε, a greedy
strategy is adopted, i.e., UAV always chooses the action that
can get the maximum reward value. Otherwise, UAV will
select one of the four actions randomly. Q(s, a) denotes the
expected maximum benefit of taking action a under state s,
while R denotes the immediate benefit.

The formula for updating Q value based on time difference
is

Q(s, a)← Q(s, a)+ α[R+ γ maxQ(s′, a′)− Q(s, a)] (21)

In this paper, we set the value α to 1. Therefore, the updated
formula of Q value is simplified to

Q(s, a)← R+ γ maxQ(s′, a′) (22)

where s is the current state, and a is the current action. s′ is the
next state, and a′ is the next action. γ is reward decay factor,
and we set the value of γ to 0.9 in this paper.
The Q learning algorithm is summarized in Algorithm 2.

s0 is the initial position of UAV.

Algorithm 2 Q-Learning Algorithm
Initialize s = s0, and Initialize Q(s, a) = 0.
Set the value of ε to 0.9.
Loop
Generate a random number num.
if num > ε then
UAV chooses an action from the action set randomly.

else
UAV chooses the action which can get the largest Q
value from action set.

end if
update Q value:
Q(s, a)← R+ γ maxQ(s′, a′).

update state:
s← s′.

end Loop.

Without considering resource block, the resource alloca-
tion problem can be modeled as bipartite graph matching
problem, which can be solved by Hungarian algorithm. Hun-
garian algorithm is a combinatorial optimization algorithm
for solving task assignment problem in polynomial time, and
detailed algorithm refers to [28]. This is to say, only V2V link
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multiplexing V2I link will be considered. Then the problem
of resource allocation can be formulated as

max{
Im,k ,PCm,P

D
k

} log2 (1+ ηCm)
s.t. Pr

{
ηDk ≤ η

D
0

}
≤ p0, ∀k

log2
(
1+ ηCm

)
≥ rC0 , ∀m

0 ≤ PCm ≤ P
C
max, ∀m

0 ≤ PDk ≤ P
D
max, ∀k∑

m
Im,k = 1, ∀k∑

k
Im,k ≤ 1, ∀m

Im,k ∈ {0, 1} . ∀m, k (23)

The derivation and analysis process similar to the 3-partite
graph can be applied to the bipartite graph matching by
referring to [28], and we omit the detailed derivation and
analysis process here.

Next, we will analyze the complexity of of two resource
allocation algorithm, i.e., 3-partite graph matching algorithm
and Hungarian algorithm. First, we need to calculate the opti-
mal power of CUE andDUE to get the optimal achievable rate
of single V2I link for all CUEs. For 3-partite graph matching
algorithm, these steps will take O(FMK ). For Hungarian
algorithm, these steps will takeO(MK ). For the convenience
of analysis, let us assume that F = K = M. As for 3-partite
graphmatching algorithm, it will take polynomial time to find
optimal extreme point solution to (19). Assume that we adopt
binary tree to store hyperedges. When constructing matrixG,
it will take O(M ) time to iterate over the set of hyperedges.
In each iteration, we need to find the hyperedges that satisfies
xe ≤ 2, and add the hyperedges to the set ofG as well as delete
the hyperedges in set of E , which will take O(M2logM ).
So the time complexity to construct matrixG isO(M3logM ).
In Local Ratio algorithm, we need to iterate over the set of
hyperedges and decompose the weight function, which will
take O(M3). At last, to search for hyperedges whose weight
greater than w0 based on the matching found by the Local
Ratio algorithm, the time complexity is O(M ). Therefore,
the total complexity of 3-partite graph matching algorithm is
O(M3logM ). As for Hungarian algorithm, it will takeO(M3)
time to solve the bipartite graph matching problem in the
worst case.

V. SIMULATION
A. SIMULATION PARAMETERS
In this section, the presented resource allocation algorithms
in UAV enabled vehicular network will be validated by
computational simulation.The LOS transmission model in
WINNER+B1 [29] will be used as the path loss model of
V2V link, and the LOS model in RMA-AV scenario of TR
38.901 [3] will be used as the path loss model of V2I link.
Vehicle-related parameters will be referred to freeway case in

TABLE 2. Simulation parameters.

TABLE 3. Channel model.

FIGURE 3. CDF of sum achievable rate of V2I links with M = 10, K = 10
using 3-partite graph matching algorithm.

TR 36.885 [30], and UAV-related parameters will be referred
to TR 38.901 [3].

B. SIMULATION RESULTS
Fig. 3 shows the CDF of sum achievable rate of V2I links
for 3-partite matching algorithm and Hungarian algorithm.
Fig. 4 shows that the sum achievable rate of V2I links
decrease if SINR threshold at the receiver of V2V link
increases. This is because the increase of SINR threshold at
the receiver of V2V link limits the transmission power of
CUEs. In Fig. 5we can observe that the sum achievable rate of
V2I links get larger when the interrupt probability threshold
of V2V links increases, which is due to the fact that V2V
links are more tolerant of interference from V2I links with
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FIGURE 4. Sum achievable rate of V2I links with varying ηD
0 using

3-partite graph matching algorithm.

FIGURE 5. Sum achievable rate of V2I links with varying p0 using
3-partite graph matching algorithm.

higher interrupt probability threshold. Moreover, it can be
seen from Fig. 4 and Fig. 5 that the sum achievable rate of V2I
links increases as the maximum transmission power of CUE
increases, because of larger allowed transmission power of
CUE. Besides, it can also be seen from Fig. 4 and Fig. 5 that
the sum achievable rate of V2I links with 3-partite match-
ing algorithm is higher than randomized matching. And the
result of comparison also shows the effectiveness of 3-partite
matching algorithm.

As shown in Fig. 6, the numerical results further illustrates
the relationship between the sum achievable rate of V2I links
and maximum transmission power of CUEs. The results in
both Fig. 6 and Fig. 7 show that the sum achievable rate of
V2I links decreases as Ratio increases, where Ratio refers to
the ratio of the number of DUEs to the number of CUEs.
The reason is that the interference caused by V2V links
will increase if the number of CUEs increase relatively. The
curves of Fig. 7 seem to indicate that when the achievable rate
threshold for a single V2I link increase, the sum achievable
rate of V2I links will increase. In Fig. 8, however, this does
not seem to be the case. This is because the sum achievable
rate of a single V2I link is relatively large when UAV acts as a
base station. If achievable rate threshold is set small, the result

FIGURE 6. Sum achievable rate of V2I links with varying PC
max using

Hungarian algorithm.

FIGURE 7. Sum achievable rate of V2I links with varying DUE ratio using
Hungarian algorithm.

FIGURE 8. Sum achievable rate of V2I links with varying DUE ratio using
hungarian algorithm.

of matching and sum achievable rate of V2I links will not be
affected by raising threshold for the achievable rate of single
V2I link.

We set up a simple but reasonable simulation scenario to
explore the trajectory of UAV using Q-learning algorithm
in Fig. 9, and the simulation result is shown in Fig. 10.
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FIGURE 9. Simple scenario: M = 2, K = 2.

FIGURE 10. The trajectory of UAV when M = 2, K = 2.

TABLE 4. Performance comparison in two cases.

In order to better observe the trajectory of UAV, the number
of vehicles in two directions on the freeway is set differently.
From Fig. 10, we can see that the UAV will change its
position when the vehicle moves.

To further illustrate that the real-time trajectory con-
trol of UAV is beneficial, we compare the performance of
UAV enabled vehicular network in two cases, i.e., control-
ling the trajectory of UAV according to real-time commu-
nications conditions and UAV hovering at a fixed height.
We assume that the positions of vehicles obey poisson dis-
tribution. The simulation results are recorded in Table 4.

Through observation, we can find that the sum achievable
rate of V2I links in the case that the trajectory of UAV was
controlled is larger than the case that UAV hovered at a fixed
position. In other words, the result shows the effectiveness of
the trajectory controlling for UAV.

VI. CONCLUSION
This paper considers UAV as a temporary base station in
disasters to restore vehicular communications. The mobil-
ity of UAV is exploited to enhance the channel conditions.
Whereas the power consumption of UAV is a challenge.
The propulsion power consumption of UAV is usually higher
than communications power consumption (e.g., hundred of
watts versus a few watts) [31]. Although there is a teth-
ered UAV, it limits the mobility of UAV to a certain extent.
Therefore, energy-efficient UAV-enabled system design is
desirable. And the 3-partite graph matching algorithm can be
further extended in this paper. Our algorithm only achieve
a maximum weighted matching for 3-partite graph, but not
optimal.
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