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ABSTRACT Stroke is one of the prime reasons for paralysis throughout the world caused due to impaired
nervous system and resulting in disability to move the affected body parts. Rehabilitation is the natural
remedy for recovering from paralysis and enhancing the quality of life. Brain Computer Interface (BCI)
controlled assistive technology is the new paradigm, providing assistance and rehabilitation for the paralysed.
But, most of these devices are error prone and also hard to get continuous control because of the dynamic
nature of the brain signals. Moreover, existing devices like exoskeletons brings additional burden on the
patient and the caregivers and also results in mental fatigue and frustration. To solve these issues Artificial
Muscle Intelligence with Deep Learning (AMIDL) system is proposed in this paper. AMIDL integrates user
intentions with artificial muscle movements in an efficient way to improve the performance. Human thoughts
captured using Electroencephalogram (EEG) sensors are transformed into body movements, by utilising
microcontroller and Transcutaneous Electrical Nerve Stimulation (TENS) device. EEG signals are subjected
to pre-processing, feature extraction and classification, before being passed on to the affected body part. The
received EEG signal is correlated with the recorded artificial muscle movements. If the captured EEG signal
falls below the desired level, the affected body part will be stimulated by the recorded artificial muscle
movements. The system also provides a feature for communicating human intentions as alert message to
caregivers, in case of emergency situations. This is achieved by offline training of specific gesture and online
gesture recognition algorithm. The recognised gesture is transformed into speech, thus enabling the paralysed
to express their feelings to the relatives or friends. Experiments were carried out with the aid of healthy and
paralysed subjects. The AMIDL system helped to reduce mental fatigue, miss-operation, frustration and
provided continuous control. The thrust of lifting the exoskeleton is also reduced by using light weight
wireless electrodes. The proposed system will be a great communication aid for paralysed to express their
thoughts and feelings with dear and near ones, thereby enhancing the quality of life.

INDEX TERMS Artificial muscle intelligence, assistivetechnologies, BCI, EEG, exoskeleton, healthcare,
intelligent solutions, deep learning system, paralyzed, stroke.

I. INTRODUCTION
The recent survey by reeve foundation revealed the impact
of paralysis on world population, affecting approximately
5.4 million people [1], [2]. The survey also identified stroke
(33.7%) as the major cause for paralysis. Paralysis is the
deficiency of brain to activate muscle function of any body
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part. Paralyzed persons find it difficult to perform their
routine activities without assistance. Rehabilitation is one
of the natural ways of healing paralysis. Because of this
there is increasing interest and involvement in the field of
post stroke rehabilitation. Exoskeleton-assisted technologies
have emerged as a reliable means for rehabilitation of the
affected upper and lower limbs [3]. Exoskeleton movements
were controlled using sensors like gyroscopes, accelerome-
ters, and potentiometers. Recently the focus is on controlling
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exoskeleton using Brain Computer Interface (BCI) [4].
Antelis et al. demonstrated upper limb movement of the
paralyzed using EEG signals [5]. A closed loop is estab-
lished between human thought and movement of paralyzed
limb using non-invasive BCI [6]. Android feedback based
BCI training is employed to enhance brain rhythms during
motor imagery task. The realistic feedback is realized in
training session using humanoid robot [7]. Humanoid robot
is navigated in real-time indoor environment based on human
intentions. The asynchronous BCI systemwas designed using
two level classifiers [8]. Co-operation and co-ordination of
dual robotic arm is demonstrated using EEG based system.
SSVEP (Steady-State Visual Evoked Potentials) are utilized
to improve the user concentration level [9]. Electromyog-
raphy (EMG) sensors are also used to control exoskeleton
movements, EMG returns the information regarding human
muscular activity [10]. The motor adaptability of upper limb
is predicted using resting state functional connectivity. The
system could identify effectiveness of robotic upper limb
rehabilitation in different patients [11]. However, the sys-
tem does not investigate real time human behaviors and
thoughts. The clinical trials to investigate the effectiveness
of BCI training sessions on stroke patients with upper limb
paralysis are carried out. The results of the trial indicate
that BCI based assistive devices are effective for post stroke
rehabilitation [12]. Human intentions measured through cor-
tical potentials were used to control upper-limb exoskele-
ton movements. The BMI system eliminated the need for
recalibration but resulted in large false positive rates [13].
Grasping feature is incorporated into the assistive device for
amputees using non-invasive EEG control. The participants
were able to grasp the objects, but resulted in low success rate
without sufficient training [14]. Brain activity is modulated
to control robotic arm with multiple degrees of freedom.
The system demonstrated the effective control of robotic
arm with few training sessions, but increased the latency
periods during certain operations [15]. Hybrid BMI system
based on sensorimotor cortical desynchronization (ERD) and
electromyography (EMG) activity was designed to control
upper limb movements. The integration of BMI, NMES and
exoskeleton improved the system accuracy, but increased the
system complexity [16]. The linear control of upper limb is
demonstrated using motor imagery based BCI and Functional
Electrical Stimulation (FES), support is provided to the arm
using passive exoskeleton. The generated limb movement
is evaluated to identify the precise positioning [17]. The
self-induced EEG variations based on ERD/ERS is utilized
for controlling upper limb movements. Distinguishable pat-
terns are obtained for left and right-hand movements in both
motor imagery and motor execution experiments [18]. Online
robot control using motor imagery based BCI is designed
with high classification accuracy. The mental imagination
of hand movement is detected for controlling the robot
movements [19]. An integrated platform consisting of BCI
controlled exoskeleton, functional electric stimulation (FES)
with proprioceptive feedback is developed. Goal directed

motor task is used for training and subjects could complete
the task with minimum latency period [20].

In our previous works [21]–[23], we have demonstrated
an alternative technology to exoskeletons using non-invasive
brain signals. Also, exoskeletons with feedback mecha-
nism has also been implemented by us [22]. The para-
lyzed body part is stimulated using Transcutaneous Electrical
Nerve Stimulation (TENS) device and Microcontroller [24].
Because of the dynamic and uncertain nature of brain signals,
most of the BCI systems result in miss-operation, mental
fatigue and it is hard to produce continuous control. The
proposed system is designed to address the above gaps in
research.

AMIDL is designed to reduce miss-operation, user fatigue
and to enhance user capabilities. In the proposedwork, human
intentions are monitored in real-time employing 16 chan-
nel EEG sensors. TENS machine is integrated with Muscle
Inspired Algorithm (MIA) to produce movements on the
upper limb. Subjects are relieved from the task of carrying
exoskeleton structure. The system is designed to perform
six different movements on the affected upper limb. The
different hand postures used to trigger the rehabilitation pro-
cess are Release, Grasp, Rollup, Roll down, Rollup Release
and Rollup grab. In the offline phase, Artificial Muscle
movements corresponding to each posture are recorded to
create the database. The decoded EEG signals are trans-
formed into muscle activation signals in real-time environ-
ment. The captured EEG signal is converted into frequency
domain usingWalsh Hadamard Transform (WHT) for feature
extraction. The extracted features along with WHT coef-
ficients are utilized for the classification of different limb
movements. The activation signal is then correlated with
the recorded muscle movements. The signal with superior
characteristics is passed on to the upper limb electrodes
for inducing motion. In case of ambiguity or inadequate
EEG signal, the periodic activation of the affected body
part will be taken care by the artificial muscle move-
ments. If the activation is executed by brain signal, the pro-
duced gesture is recognized and passed on to the care
giver as voice command. Thus, AMIDL transforms human
thoughts into different movements on the unique upper limb
structure. The EEG activated movements are utilized for
communicating paralyzed person’s emergency need to the
caregivers.

The contributions of our research are,
• An Artificial Muscle Intelligence with Deep Learn-
ing (AMIDL) system without exoskeleton structure,
in whichmovements of paralyzed body part is controlled
based on user intentions.

• An adaptive mechanism based on recorded muscle
movements is integrated with the system to enhance
continuous control and facilitate rehabilitation.

• Designed flexible assembly, which can be customized
according to the degree of disability.

• Communication aid is incorporated in the system using
gesture recognition
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• The subject concentration is improved by using multi-
media feed back

The rest of the paper is organized into four sections in
which section 2 describes different existing methods used in
BCI controlled upper limb movements.

II. RELATED WORKS
In this section, we discuss few existing devices controlled by
Brain-Computer Interface designed specifically for paralyzed
people. But the problemwithmost of them is that the users are
unable to get continuous control over the device. The users are
required to have high level of concentration to get sufficient
control on the device, which results in mental fatigue and
frustration. Additionally, there is no arrangement to take care
of the miss-operations. The subjects are also burdened with
the task of carrying the load of exoskeleton on the affected
body parts. Our research focus on overcoming these major
problems and provides an efficient and flexible solution,
which can enhance the post stroke recovery process. Our
system also provides a communication aid for the paralyzed
to express their feelings.

The assistive rehabilitation devices and its EEG con-
trol techniques are systematically reviewed and the major
gaps are identified [25]. Three-dimensional robotic assistance
using motor imagery task for upper limb rehabilitation is
demonstrated with multi-joint exoskeleton. Desynchroniza-
tion of sensorimotor oscillations in the β-band is measured
to control the different robotic hand movements [26]. Dif-
ferent upper limb exoskeletons like Track hold [27] and
Armeospring [28] are employed to track upper limb move-
ments. Both these devices have integrated passive robots
with virtual reality environment to help patients carry out
their daily routine activities. Control of assistive robots are
improved by integrating electroencephalography (EEG) and
electrooculography (EOG). This hybrid approach called as
brain/neural-computer interaction (BNCI) is adopted to con-
trol grasping movements of a hand exoskeleton [29]. Mul-
timodal signal approach is further used to enhance control
system for external device connected to the upper limb. EEG
and EMG signals are integrated to improve the classification
accuracy and to reduce the false positive rate [30]. Upper
limb robotic orthosis, FES, and wireless BCI are combined
in an efficient way on account of EEG signals. EMOTIV
EEG device is employed to measure EEG signal, which is
used to control grasp/release of an object [31]. An integrated
passive robotic system is developed for assisting the para-
lyzed. The system employs a robotic device which compen-
sates gravitational effects to allow exercise, virtual engines
to facilitate interaction and EEG to monitor brain activities.
The three components are coordinated in real-time to enhance
the rehabilitation process [32]. The effects of BCI therapy on
post stroke rehabilitation is analyzed based on motor imagery
tasks. The analysis is performed by measuring coherence of
EEG in different regions of the brain and the best result for
motor recovery is obtained for the activation of lesion hemi-
sphere [33]. The online BCI coupled with hand exoskeleton

is employed to address the issues related to proprioceptive
feedback on the regulation of cortical oscillations. The results
show an enhancement in SMR desynchronization with pro-
prioceptive feedback during flexing and extending fingers
of the exoskeleton [34]. Multimodal architecture based on
BCI, exoskeleton and an active vision system is proposed
to enhance BCI control and rehabilitation process. The VR
environment coupled with bio feedback help to reduce men-
tal fatigue and improve user interactions [35]. Few studies
have also been conducted in related areas recently [36]–[42]
Al-Turjman et al. proposed another interesting system using
optimal haptic communications [43]. Xu et al. [44] pro-
posed a three-dimensional animation to guide upper limb
movements using EEG signals. Feature extraction is car-
ried out by Harmonic Wavelet Transform (HWT) and lin-
ear discriminant analysis (LDA) classifier was utilized to
classify the patterns for controlling the upper limb move-
ments. MR-compatible robotic glove operates pneumatically
and doesn’t cause any disturbance to functional Magnetic
Resonance imaging (fMRI) images during rehabilitation
process [45]. The resistance to mechanically actuated move-
ments in exoskeleton robot is measured based on spastic-
ity. The relevant guidelines for practical neuro-rehabilitation
robot design based on degree of spasticity and resistance is
established [46]. In most of the design it is hard to get con-
tinuous control on the exoskeleton due to the non-stationary
nature of the EEG signal. Moreover, the subjects experience
metal fatigue and frustration due to lack of superior control.
None of the device in the literature focused on providing
communication aid for the paralyzed. Our research focus on
solving these issues in an efficient manner using AMIDL
system proposed in this paper. Table 1 shows the comparisons
between AMIDL and existing systems in the literature.

III. MATHEMATICAL MODEL
This section presents and discusses the mathematical mod-
elling of the proposed system. The system is designed to per-
form six different movements on the affected upper limb. The
different hand postures used to trigger the rehabilitation pro-
cess are Release, Grasp, Rollup, Roll down, Rollup Release
and Rollup grab. In the offline phase, Artificial Muscle move-
ments corresponding to each posture are recorded to create
the database. The decoded EEG signals are transformed into
muscle activation signals in real-time environment.

In Hand Posture Release operation, the voltage and current
applied to electrodes are assumed as VH−P−R & IH−P−R.
Similarly, the voltage and current applied to electrodes in the
other postures are defined as,

Hand Posture Release→ VH−P−R IH−P−R
Hand Posture Grasp→ VH−P−G IH−P−G
Hand Posture Roll up→ VH−P−Ru IH−P−Ru
Hand Posture Roll down→ VH−P−Rd IH−P−Rd
Hand Posture Role up Release→ VH−P−R−R IH−P−R−R
Hand Posture Roll up Grasp→ VH−P−R−G IH−P−R−G
The voltage for Hand Posture Release, VH−P−R 6= Hand

Posture Grasp, VH−P−G. If they are same the hand posture
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TABLE 1. AMIDL comparisons with existing system (Sorted by success rate).

will be stable. If VH−P−R > VH−P−G, then Hand Posture
Release will be activated compared to Hand Posture Grasp.

The other parameters in the system is defined as follows.
The diameter of EEG electrode is DE. The scalp resistance is
SR. The conductivity of the EEG electrodes depends upon the
multiplying factor is assumed as ‘T’.

When the multiplying factor ‘T’ is more, the conductivity
will be more & vice versa. The multiplying factor depends
on the positioning of EEG electrodes, the diameter of EEG
electrodes and scalp resistance.

The VH−P−T denotes the Hand Posture Threshold. The
threshold varies depending on the different types of postures.

A. THE POSTER ACTIVATION REGION
The Hand Posture Current in the system is given by,

IH−P =
DE
SR

∫ VH−P−final

VH−P−inital
T
(
EQ
)
dV initial−final (1)

For the condition from Hand Posture Grasp to Hand Pos-
ture Release with the Hand Posture Threshold acting as an
intermediate, the Hand Posture Release current is given by,

IH − P− R =
DE
SR

∫ VH−P−R

VH−P−G
T
(
EQ
)
dVR− G (2)

where EQ is the net potential to EEG electrodes. Also,
we have,

EQ = VH−P−R − VH−P−T − VH−P−G (3)

If EQ is positive then, VH−P−R is dominating VH−P−T&
VH−P−G. The reguired potential to EEG electrodes will be
analyzed and the Hand Posture Release operations will be
performed.

For VH−P−G < VH−P−T ≤ VH−P−R, neglecting the
surrounding areas of EEG electrodes and conductive loss. The
hand posture for release will be activated as,

IH−P−R = VH−P (VH−P−G,VH−P−R) (4)

Similar relation can be developed for the remaining
postures.

If the movement is a combination of different postures, say
Roll up and Release, then,

Let say the initial posture is in grasp stage,

IH−P−R−R

=
DET
SR

{∫ VH−P−Ru

VH−P−G
(VH−P−Ru−VH−P−T−VH−P−G) dVG−Ru

+

∫ VH−P−R

VH−P−Ru
(VH−P−R−VH−P−T−VH−P−Ru) dV Ru−R

}
(5)
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FIGURE 1. System architecture: AMIDL EEG acquisition and muscle stimulation modules.

Using the current value in the first integral and in the
second integral we will have,

IH−P−R−R = IH−P−G−Ru (VH−P−G,VH−P−G−Ru)

+IH−P−Ru−R (VH−P−Ru,VH−P−R) (6)

The mathematical model of the system can be summarized
as IH−P, as shown at bottom of the next page.

IV. SYSTEM ARCHITECTURE
The architecture of the proposed system is presented
in figure 1.

A. AMIDL EEG ACQUISITION MODULE
The system architecture is designed using modular approach,
it consists of three main modules. They are 1) EEG
Acquisition Module, 2) Muscle Stimulation Module and
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3) Gesture to Voice Conversion Module. Figure 1 indicates
the two main modules of the system. The system captures
brain signal using EEG sensor module, which has 14 elec-
trodes to make measurement and two acts as reference. The
acquired signal undergoes pre-processing, feature extraction
and classification. The low amplitude EEG signal is amplified
using high gain instrumentation amplifier with a gain of
approximately 1000-2000 db. The signal is band limited by
employing band pass filter having a pass band frequency of
5-50Hz.Windowing and pattern selection is utilized for get-
ting finite response. Feature coefficients of the signal are
extracted using Walsh Hadamard Transform (WHT). These
extracted features are used to classify the thoughts into six dif-
ferent movements. The actual brain pattern is reconstructed
using the transmitter Hadamard coefficients. The decoded
brain pattern is given to the TENS device, which transforms
the thought into muscular actions. The muscle inspired algo-
rithm stored in the controller facilitates the process of con-
version. In the offline phase, muscle movements correspond
to the six different pre-defined hand postures are recorded to
create the database. The hand postures are recorded using
7 Electromyography (EMG) sensors on the different hand
muscles. Five EMG electrodes are placed on the finger mus-
cles to record finger activity. Two electrodes are placed on
either side of the elbow to identify roll movements. In the
online phase, brain signal based on the human thought is
acquired and transformed into muscle movement. This trans-
formedmusclemovement is then correlated with the recorded
muscle movements. The signal with superior characteristics
is selected by the controller for producing movements on
the affected body part. If the brain signal fails to provide
sufficient activation, periodic movements in the upper limb
will be triggered by artificial muscle.

B. AMIDL GESTURE TO VOICE CONVERSION MODULE
If the brain signal with superior features activate the upper
limb, the created gesture will be captured. Flex sensors placed
on each finger is used for acquiring the gesture. The captured
gesture will be recognized by the algorithm and transforms
it into voice commands for the care givers. Figure 2 depicts
the AMIDL gesture to voice conversion module. This module
is used to give emergency alert messages to the caregivers or
relatives.

The main hardware designed for the system has two parts
1) Acquisition module and 2) Muscle stimulation module.
The brain signals of the user are acquired by using the EEG
sensor. The non-invasive EEG sensor employed captures
human intentions using 16 electrodes placed in the struc-
ture.14 electrodes are used for capturing the signal and two
electrodes act as reference. Figure 3 depicts the capturing of

FIGURE 2. AMIDL gesture to voice conversion.

FIGURE 3. Signal acquisition using EEG sensor [21].

EEG signal using sensor from a human subject. The acquired
signal is amplified using high gain instrumentation amplifier.
The signal is band limited by employing band pass filter with
pass band frequency in range of 5-50Hz

Signal undergoes further pre-processing and filtering to
reduce the high frequency noise. Frequency domain conver-
sion of the signal is done by using WHT transform and finite
sample is selected using window technique. The design uses
microcontroller in the acquisition and muscle stimulation
module. The microcontrollers communicate with each other
using Bluetooth technology. Bluetooth is selected because
of short distance between modules and data rate required is
less than 1mbps. EEG sensor and other electronic circuits
are interfaced to the microcontroller to design the PCB. Fig-
ure 4 shows the electronic assembly used in our experimen-
tation.

The muscle stimulation module receives the data using
wireless module. The received data is converted into muscle
movements or stimulation using muscle inspired algorithm
stored in Arduino along with the TENS device interfaced
to it. The output of the TENS is connected to the EMG
electrode through EMG shield to activate the affected upper

IH−P =

 IH−P−R (VH−P−G,VH−P−R) for VH−P−G < VH−P−T ≤ VH−P−R
IH−P−G−Ru (VH−P−G,VH−P−Ru) for VH−P−G < VH−P−T ≤ VH−P−Ru
IH−P−Ru−R (VH−P−Ru,VH−P−R) for VH−P−Ru < VH−P−T ≤ VH−P−R
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FIGURE 4. PCB designed for the experimentation.

FIGURE 5. Acquisition and stimulation process.

limb movements. The EMG shield helps to customize the
stimuli produced by the TENS device. The entire assembly
used for acquisition and stimulation is depicted in figure 5.

V. RESULTS AND DISCUSSION
Experimentation is carried out in two phases, offline training
phase and online recognition phase. Experimentation and
validation are done on 10 healthy and 10 paralyzed sub-
jects. In offline phase EEG activity of the paralyzed and
EMG activity of the healthy subjects were recorded. In the
training phase, subjects were given the familiarization of
six different intended actions like, Grasp, Release, Rollup,
Rolldown, Rollup Release etc. Multimedia feedback is given
to the subjects to enhance the brain patterns. The subjects are
enlightened by using encourages messages and appreciation
speeches in the feedback, rather than simple live streaming
the actions. Rollup-grasp, Rolldown-Release movements of
the upper limb are used for communicating the need to the
caregivers. In the online phase, user thoughts are recognized
and converted into muscular action. The generated muscular
action is correlated with the EMG activity of the healthy sub-
jects. Based on the correlation result microcontroller selects
the superior signal, which is used for stimulating the affected
body part.

A. RESULTS COMPARISON OF EEG ACTIVATED AND
POSTURE ACTUATED MOVEMENTS
Figure 6 shows the correlation of brain actuated real time
EMG and posture actuated EMG for the subject intention to

FIGURE 6. EMG activity for attempting grasp movements.

FIGURE 7. EMG variations corresponding to release movement.

FIGURE 8. EMG activity based on ROLL up upper limb movement.

grasp the object. The EMG activity is recorded using EMG
electrodes and measurement is done using Digital Storage
Oscilloscope (DSO). The graph shows the amplitude varia-
tions of EMG signal with respect to frequency. The amplitude
is normalized between+/− 0.5mv and frequency range used
is 0-500Hz.

Figure 7 indicates the EMG variations observed in brain
actuated and posture activated movements corresponding to
human intention of ‘‘Release’’. Based on the correlation result
brain actuated signal is selected for the stimulation of upper
limb. Figure 8 shows the real time and recorded EMG activity
for ‘‘Roll up’’ movement. Roll up movement is recorded
using two electrodes placed on the either side of the Elbow.
The rollup movement requires high intensity stimulation.
In most of the time brain actuated EMG fallen below the
desired level, so the stimulation of affected part is initiated
in this case by artificial muscle movements. Figure 9 shows
the EMG actuated by real time human Intention and the EMG
activity produced using the training of ‘‘roll down’’ hand
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FIGURE 9. EMG activity based on ROLL down upper limb movement.

FIGURE 10. EMG activity for the gesture roll down-grasp.

FIGURE 11. Electrode placement on the brain [21].

Posture. Roll down ideally requires low intensity signals, so
in this movement selection priority is given to signal with low
signal strength in the correlation. Figure 10 shows the EMG
data acquired for the gesture ‘‘Roll down-grasp’’. This EMG
activity is used for communicating the paralyzed subject’s
need to the caregivers.

B. RESULT OF EEG PATTERNS ON THE
REALISTIC HEAD MODELS
Realistic head models are used for the analysis of EEG
signals. EEG sensors with 16 electrodes are used for the
capturing the brain signals. The unique electrode placement
scheme used in this experimentation is shown in figure 11.
The placement scheme mainly concentrated on the frontal
and parietal regions of the brain.

The variations of brain patterns with different frequencies
are analyzed to facilitate the feature extraction and
classification process.

FIGURE 12. Brain pattern comparisons with and without multimedia
feedback [21].

TABLE 2. Data statistics for brain actuated Rollup signal.

In figure 12 red indicated the maximum interaction of
neuron and blue indicates minimum interaction of neurons.
The neuron connectivity in the head model on the left is
improved when multimedia feedback is used, compared to
the figure on right which does not use feedback.

C. STATISTICAL ANALYSIS OF GENERATED EMG SIGNAL
Statistical analysis is carried out to determine the correlation
between Brain actuated EMG signal and posture actuated
EMG signal. The data obtained during Rollup and Rolldown
movement of the upper limb are utilized for the analysis.

Correlation matrix help to identify whether the human
intentions match the recorded muscle movements. This
matrix acts as a second level of classifier before the final
actuation of the body part is made.

Correlation Matrix obtained
[1.0000 0.0867 0.0867 1.0000]
Correlation matrix obtained
[1.0000 −0.0640 −0.0640 1.0000]
Correlation matrix help to identify whether the human

intentions match the recorded muscle movements.
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TABLE 3. Data statistics for posture actuated Rollup signal.

TABLE 4. Data statistics for brain actuated Rolldown signal.

TABLE 5. Data statistics for posture actuated Rollup signal.

This matrix acts as a second level of classifier before the final
actuation of the body part is made.

D. RESULTS OF CLASSIFICATION ACCURACY OF
DIFFERENT SUBJECTS
The classification accuracy of the system is verified by
performing the test on 10 healthy subjects and 10 para-
lyzed persons. Maximum obtained 88% efficiency and on
an average 80.45% classification accuracy based on the six
different human intentions for upper limb movements. The
experimentation result shown in figure 13 is the summary
of results on 20 participants. U1-U10 are represent healthy
subjects, U11-U20 represents paralyzed persons. The reason
for improved accuracy for classification among subjects is

FIGURE 13. Classification accuracy of six different movements on
20 subjects.

due to systematic training undertaken and usage of feed-
back. The healthy subject U2 is an experienced user and is
more familiar with similar interfaces, obtained high accu-
racy. However, the unhealthy subjects U11 and U12 also
obtained high accuracy through their dedication and passion.
Visual feedback and voice encouragement are also given to
paralyzed during training. The participants U9 and U13 has
shown similar low classification accuracy due to their age and
unfamiliarity with the system

The authors used EEG signal to identify the human Inten-
tions and to control upper limb movements of the para-
lyzed person. Artificial muscle movements are integrated
into the system to get continuous movement of the affected
body part. Recorded muscle movements help to enhance the
rehabilitation process. The burden of carrying exoskeleton
is avoided by incorporating by using innovative assembly.
The communication aid for the paralyzed is provided by
implementing gesture recognition module. AMIDL obtained
better classification accuracy compared to many existing
methods mentioned in the literature. The two-level classifi-
cation employed in the system help to reduce false opera-
tions. The future research should focus on reducing human
workload by incorporating efficient controllers. Accuracy of
mapping human intentions with muscle movements has to
be increased. Machine leaning algorithms that can effectively
map human intentions to the desired muscle movements are
the way forward.

VI. CONCLUSION
AMIDL system with 3 different modular units is designed
and implemented. The system validation is carried out by per-
forming online and offline testing on 10 healthy and 10 par-
alyzed subjects. AMIDL is designed to perform six different
movements like Grasp, Release, Rollup, Rolldown, Rollup
Release, Rolldown Grasp on the paralyzed upper limb. WHT
transform is utilized for feature extraction and classification
of EEG signals. The EMG activity of the healthy subjects
are correlated with the real-time EMG signals generated by
the paralyzed. Selection criteria for the ideal signal is final-
ized based on the EMG analysis carried out on all six hand
postures. The two-level classification method improved the
accuracy of the system. The system produced continuous
response even in the presence of uncertain real-time inputs.
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Results indicate that mental fatigue and miss-operations are
reduced. The burden of carrying exoskeleton is minimized by
an innovative assembly having array of sensors and control
units. Periodic stimulation in the absence of ideal brain sig-
nal enhance the rehabilitation process. Gesture Recognition
method is utilized for providing communication aid for the
paralyzed. In our future work, we are trying to incorporate
closed loop controller with haptic feedback. Deep learning
algorithms will be used to effectively map EEG signals with
recorded EMG signals. The user experience can be enhanced
by measuring the user emotions while performing the differ-
ent activities.
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