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ABSTRACT Anovel rotary ultrasonic motor using only the longitudinal vibrationmode was proposed in this
paper, which avoided the frequency degeneration ofmulti-modal coupling ultrasonicmotors. The structure of
the ultrasonic motor was designed; the ultrasonic motor was mainly made up of two longitudinal transducers,
a rotor, a basement and two mounting bases for adjusting the relative position between longitudinal
transducers and the rotor. Two transducers were arranged symmetrically about the axis of the rotor, which
drove the rotor under the frictional forces. The operating principle was discussed. The modal characteristics
of the longitudinal transducer were investigated by the Finite Element Method (FEM). Two longitudinal
transducers have the same structures and vibration modes, first order longitudinal vibration is used for drive;
the ultrasonic motor is simple in structure and flexible in design, so it is suitable for industrial production.
Furthermore, as the transducers’ sizes and relative position between the transducers and the rotor are easy to
vary, the mechanical characteristics of the proposed motor can be changed flexibly. The experimental rotary
speed of the proposed ultrasonic motor at the voltage of 300 Vp−p is 350 revolutions; and the maximum
torque is 186 N·mm.

INDEX TERMS Ultrasonic motor, longitudinal transducer, finite element method (FEM).

I. INTRODUCTION
Ultrasonic motors have merits of fast response, high power
weight ratio, high resolution of displacement and a lack of
electromagnetic radiation [1]–[5]. They have been widely
used in systems, such as optical instrument, aerospace manip-
ulator and biomedical science [6]–[10].

Travelling wave type ultrasonic motors have been indus-
trialized in the field of digital camera autofocus. Neverthe-
less, ultrasonic motors with relatively high output power
are still in demand. Comparing with the travelling wave
type ultrasonic motors, the clamped type standing wave ones
have advantages of high velocity, large stroke and large
force [11]–[15]. Yamaguchi et al. studied the bolt-clamped
Langevin-type ultrasonic motor used at ultralow temperature;
the motor rotated at 65 rpm in helium gas, the rotation speed
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is 60 times that of previous motors of the same size [16].
Zhang et al. designed a frog shaped piezoelectric actuator
using the clamped type longitudinal transducer, and a max-
imum speed and a thrust of 287 mm/s and 11.8 N were
achieved [17].

Many multi-modal standing wave ultrasonic motors have
been researched [18]–[22]. The desired motion trajectories,
usually elliptical ones, are generated by composting two
orthogonal vibration modes [23]–[25]. Frequency degenera-
cies of multi-modal are the necessary process of most stand-
ing wave ultrasonic motors, which make the change of sizes
complicated. Yang et al. tuned of the resonance frequencies
of the first longitudinal and fourth bending modes to be close
at about 58 kHz [26]. Al-Budairi et al. proposed a mode
degeneration method that converts the longitudinal response
excited by the axially poled piezoceramic discs in the trans-
ducer into combined L–T vibration in the transducer front
mass using geometric modifications of the wave path [27].
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FIGURE 1. Structure of the proposed ultrasonic motor.

And the equal frequencies of vibration modes should be
obtained. FEM analysis is a commonly used method to
match the modal frequencies by parameter sensitivity analy-
sis [28], [29]. Changing the sizes of these ultrasonic motors,
design work will be repeated as the sensitivities of different
vibration modes are various. In addition, with the wear and
tear during the working process, the resonance working fre-
quencies will vary, which may lead to the inconformity of
the vibration frequencies. Finally, deterioration of the output
characteristics will be occurred.

A rotary ultrasonic motor using two longitudinal trans-
ducers is proposed in this paper, the structures of the two
transducers are identical, the longitudinal vibration mode is
utilized for driving the rotor, and thus, only one excitation
voltage is used. The two transducers are arranged symmet-
rically about the axis of the rotor, the rotor is driven under
the frictional force. The contact positions between the trans-
ducers and the rotor can be adjusted flexibly, thus we can
change the output characteristics easily. In addition, there is
no need of modal degeneracy; therefore, the size of the longi-
tudinal transducer can be adjusted easily, which is benefit for
the industrialization. The design of the motor, the operating
principle and experimental performances will be introduced
in Part II, III and IV, respectively.

II. DESIGN OF THE ULTRASONIC MOTOR
The structure of the ultrasonic motor is shown in Fig.1,
which is mainly composed of two longitudinal transducers,
one rotor, two adjustment bases, two fixed bases and one
basement. The relative position between the rotor and the
transducer can be changed by the adjustment bases; the
fixed base can move along the adjustment base to change
the X direction displacement; the adjustment base can move
along the basement to change the Z direction displacement.
Therefore, in addition to change the amplitude, frequency and
phase of the input voltage to change the output performances,
we can also vary the output performances by changing the
relative position between the rotor and the transducers. Disc
springs are set between the transducer and the fixed base.
Disc springs are utilized to adjust the preload between the
driving foot of the transducer and the rotor by adjusting the

FIGURE 2. The longitudinal transducer.

screw tightening degree. Two longitudinal transducers are
set rotational symmetrically to drive the rotor synchronously,
which not only increases the thrust torque, but also avoids
the bending deformation of the rotor under unilateral force.
The rotor makes up of one deep groove ball bearing and
one flange. The outer ring of the bearing contacts with the
transducers, and the inner ring of the bearing is assembled
with the shaft of the flange by interference fit.

Two transducers have the same structure; each trans-
ducer mainly consists of six pieces of piezoelectric ceramic
plate, one front cap, one driving foot, one back cap, one
isolation ring and six pieces of electrode sheets, as shown
in Fig. 2(a). Six pieces of beryllium bronze electrode sheets
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TABLE 1. Main structural parameters of the transducer.

with thickness of 0.2 mm are set between the PZT ceramic
plates to apply excitation voltage on the PZT ceramic plates.
The PZT ceramic plates are polarized along OZ direction,
the polarization directions are shown in Fig. 2(b). The polar-
ization directions of two adjacent piezoelectric ceramics are
opposite. With the sine signal, the PZT ceramic plates will
shorten and elongate along the OZ direction. The type of
the PZT ceramic plate is PZT4, the density, Poisson’s ratio
and modulus of elasticity of which are 7600 kg/m, 0.32 and
76.5 GPa, respectively. The materials of the front cap and the
driving foot are set as duralumin with density of 2810 kg/m3,
Poisson’s ratio of 0.33 and modulus of elasticity of 4.72 GPa.
The materials of the back cap and the bolt are set as steel,
the density, Poisson’s ratio andmodulus of elasticity of which
are 7800 kg/m, 0.3 and 206 GPa, respectively. The piezoelec-
tric matrix d , stiffness matrix cE, and dielectric matrix εT of
the PZT4 are as follows:

d =

 0 0 0 0 5 0
0 0 0 5 0 0
−1.6 −1.6 3.3 0 0 0

× 10−10C/N

(1)

cE =


15 8.4 6.8 0 0 0
8.4 15 6.8 0 0 0
6.8 6.8 12.9 0 0 0
0 0 0 3.3 0 0
0 0 0 0 2.8 0
0 0 0 0 0 2.8

× 1010N/m2

(2)

εT =

 8.1 0 0
0 8.1 0
0 0 6.7

0

× 10−9F/m (3)

The first order longitudinal vibration mode is selected as
the working mode. The sizes of the transducer are designed
by the finite element and parameter sensitivity analysis meth-
ods. The transducer is composed of six pieces of PZT ceramic
plates with 30× 30× 2 mm3; the radius of the driving foot is
2.5 mm; the length of the front cap is 30 mm. In this way,
the total length of the longitudinal transducer is 65.7 mm.
The specific structure sizes of the transducer are shown
in Table I.

The finite element model of longitudinal transducer is
established in ANSYS. Fixed boundaries are applied on the
holes of the back cap. The element type of the model is set
as SOLID227. Modal extraction method of Block Lanczos is
used in this design process. Flexible hinges are used to fix

FIGURE 3. The first order longitudinal vibration mode of the transducer.

FIGURE 4. The main structural parameters of the transducer.

transducers to minimize the impact on longitudinal vibration
mode. The first order longitudinal vibration mode of the
transducer is shown in Fig. 3. The maximum displacement
occurs at the driving foot, which is used for driving.

As the first order longitudinal vibration mode of the
transducer is easy to find out, the workload of the finite
element analysis has been reduced greatly. The frequency
of the designed longitudinal transducer is calculated to be
39088 Hz. The longitudinal transducer has a simple structure
and the relative position between the transducer and the rotor
is easy to adjust, which ensures the proposed ultrasonic motor
convenient for manufacture, suitable for industrial production
and easy to vary the output performances.

III. OPERATING PRINCIPLE
When sine signal is applied to the designed ultrasonic motor,
the first order longitudinal vibration mode of the transducer
will be excited; displacement along the OZ direction will
be produced. Figure 4 shows the operating principle of
the proposed ultrasonic motor. The output displacements
and forces of two transducers are the same, which are
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FIGURE 5. Operating principle of the proposed rotary ultrasonic motor.

D and FD, respectively. F0 is the preload between the driving
foot and the rotor. Ft and Fr are the frictional force and the
radial force of the rotor, respectively; and the rotor is driven
by two transducers with torque T.

T = 2Ftr = J
dω
dt
= J

d2θ
dt2

(4)

where Ft is the frictional force, r and J are the radius and
moment of inertia of the rotor, respectively, ω and θ are
the angular velocity and angular displacement of the rotor,
respectively.

Ft = µFr = µ

√
1

1+ µ2 (FD + F0) (5)

where µ is the frictional coefficient between the transducer
and the rotor.

FD = kD (6)

where k is the stiffness of the front cap. D is the output
longitudinal displacement of the transducer, which can be
calculated by the finite element method.

The rotor will rotate in one direction when the voltage
signal with designed resonance frequency is applied to the
proposed ultrasonic motor. Usually, we change the amplitude
of the input voltage to vary the output speed of the ultrasonic
motor; the phase of the input voltage is used to change the
rotating direction of the rotor. In addition, we can change
the position of the two transducers to change the output
performances of the ultrasonic motor.

IV. EXPERIMENTAL STUDY
Prototypes are manufactured to verify the feasibility and
to measure the output performances of the proposed ultra-
sonic motor. The photograph of the proposed ultrasonic
motor is shown in Fig. 5. The size of the basement is
60× 5× 3.5 mm3. The measured first order longitudinal
vibration mode frequency of the transducer by the ultrasound
impedance analyzer (ZX80A, Xuji Electric Co., China) is
approximately 39230 Hz; the deviation of which with the
simulation one is approximately 0.4 %.

FIGURE 6. Photograph of the proposed rotary ultrasonic motor.

FIGURE 7. Experimental setup of the proposed rotary ultrasonic motor.

The experimental setup, as shown in Fig. 7, composed of
the designed ultrasonic motor, a signal generator, a power
amplifier (ATA-4051, Agitek, China), an oscilloscope and the
load. The bearing of the rotor is a deep groove ball bearing
(6206, NSK). Sine signal is generated by a signal generator,
and then amplified by a power amplifier; the output sine
signal with 300 Vp−p and frequency of 39230 Hz is applied
to the proposed ultrasonic motor.

Figure 8 shows the relationship between the rotary
speed and the torque. With increasing of the output
torque, the rotary speed decreased. The maximum torque is
186 N·mm.

Figure 9 shows the relationship between the rotary speed
and voltage, the voltage ranges from 100 Vp−p to 300 Vp−p.
It indicates that the ultrasonic motor cannot work with the
lower voltage as the driving force cannot overcome the fric-
tion. Then, with increasing of the input voltage amplitude,
the rotary speed increases. The maximum rotary speed is
350 r/min with the voltage of 300 Vp−p.
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FIGURE 8. Relationship between the rotary speed and the torque.

FIGURE 9. Relationship between the rotary speed and voltage.

FIGURE 10. Relationship between the rotary speed and frequency.

The above results are measured with α is 45◦; α represents
the relative position between the piezoelectric transducer and
the rotor (as shown in Fig. 5). At last, we adjust the position
of the transducer relative to the rotor to measure the output
mechanical performances; set α equal to 60◦, the measured

FIGURE 11. The output performances under different conditions.

results are shown in Fig. 11. It indicates that the proposed
ultrasonic motor can vary the output performances not only
by changing the input voltage, but also by modifying the
relative position between the transducer and the rotor; and
the adjust method is flexible.

V. CONCLUSION
A novel rotary ultrasonic motor with two longitudinal trans-
ducers is proposed in this paper. Only first order longitudinal
vibration mode is used in the ultrasonic motor, which avoids
the frequency degeneration of modal coupling ultrasonic
motors. The relative position between the two transducers
and the rotor can be varied easily, which provides additional
method for changing the output mechanical performances.
Besides, we can also change the output mechanical perfor-
mances by the frequency, phase and amplitude of the input
voltage. The experimental results indicate that the frequency
deviation between themeasured first order longitudinal vibra-
tion of the piezoelectric transducer and the theoretical one
is approximately 0.4 %. Mechanical performances show that
the motor can obtain rotary speed of 350 r/min under the
voltage of 300 Vp−p, and the maximum torque is 186 N·mm.
The proposed ultrasonic motor has the advantages of simple
structure, easy to design and manufacture and convenient for
the industrial production.
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