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ABSTRACT This paper investigates the predictive sliding mode control problem of networked control
system with long-time delay and consecutive packet dropout in both sensor-controller link and controller-
actuator link. A newmodeling method that uses only oneMarkov chain to describe the time delay and packet
dropout in a unified model is proposed. As a modification of the original law, a new chattering-free reaching
law that is suitable for multiple-input systems is proposed and is later used as the reference trajectory of the
designed predictive sliding mode controller. To overcome the influence of time delay and packet dropout,
a novel predictive sliding mode controller equipped with a logic zero-order-holder and delay compensator
is proposed, and the proposed compensation strategy is theoretically proven to be able to make the system
completely free from the influence of long-time delay and consecutive packet dropout. Finally, a simulation
example is given to illustrate the validity of the proposed controller.

INDEX TERMS Networked control systems, sliding mode control, predictive control, time delay, packet
dropout.

I. INTRODUCTION
Recently, networked control systems (NCSs) have attracted
much attention because of their theoretical and practical
significance. In NCSs, the actuators, controller and sen-
sors of a physical plant are distributed in a large physical
space and linked together by a communication network. The
advantages of NCSs, such as low cost, reduced weight, and
easy installation and maintenance, which were unavailable
in the past, have been widely recognized [1], [2]. Despite
these advantages, the introduction of communication network
will inevitably lead to time delay, packet dropout, packet
disordering, communication constraints, quantization errors,
etc., which may cause degradation or even instability of the
NCSs [3]–[9]. Among all the challenging issues that have
emerged, time delay and packet dropout are recognized as the
most common and critical problems of NCSs and thus have
attracted considerable research interest [3], [4], [10]–[14].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zonghua Gu.

System modeling and controller design serve as two main
aspects of the study on NCSs with time delay and packet
dropout. Various approaches have been proposed to model
the time delay and packet dropout in NCSs so that their
effects on system stability and performance can be fully
examined. For NCSs with only time delay, time delay sys-
tem (TDS) theory can be directly used by simply regarding
the network-induced delay (or even data packet dropout as
well) as a delay parameter of the control system [15], [16]. For
NCSs with only packet dropouts, one of the most commonly
used modeling methods is the switched systems approach,
where a set of subsystems is constructed and the switching
between subsystems is decided by the packet dropout con-
ditions [17], [18]. However, in a real network, time delay
and packet dropout usually exist simultaneously. Therefore,
it is important to establish a model to handle packet dropout
and time delay in a common framework. Moreover, con-
sideration of the time delay and packet dropout in both the
sensor-controller (S-C) link and controller-actuator (C-A)
link is necessary because it can make the established model
more practical [19]. A popular modeling method used by

134280 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6609-583X


Y. Zhang et al.: New Predictive SMC Approach for NCSs With Time Delay and Packet Dropout

researchers to model NCSs with both time delay and packet
dropout is called the stochastic system approach, where
NCSs with time delay and packet dropout are transformed
into systems with stochastic parameters with known expecta-
tion and variance. One way is to model packet dropout and
time delay as stochastic variables satisfying the Bernoulli
random binary distribution, with the probability of packet
dropout or time delay being a given constant [20]–[22]. This
method is usually used for NCSs considering only a ‘‘one-
step’’ time delay and without consecutive packet dropout. For
example, in [23], the random one-step transmission delays
and packet dropouts are modeled by a Bernoulli distribution,
and an observer-based feedback controller is designed to
make the closed-loop networked system robustly and expo-
nentially stable in terms of the mean square. Another stochas-
tic system modeling method is to describe time delay and
packet dropout as a Markov process taking values in a finite
set [4], [9], [10], [14], [24]–[26]. For example, [14] consid-
ered time delay and packet dropout as a random Markov
process, based on which a new packet reordering approach
was proposed to copewith packet disordering; similarly, three
Markov chains were used in [26] to describe time delays and
packet dropouts in both S-C and C-A links. The Bernoulli
process can be regarded as a special type of Markov process,
but when used for system modeling, a difference between
them exists; thus, they are discussed separately here. Notably,
the abovementioned stochastic system modeling methods all
focus on the time delay and packet dropout of the controller
output signal rather than the actuator input signal, which
means that the pattern of signals actually received by the actu-
ator in each sampling period is not clear. However, this can
result in two problems. One is the use of outdated data even
when updated information is already available; the other is
packet disordering. To address this problem, [27] introduced
a zero-order-hold (ZOH) for actuators to ensure the use of the
latest arrived signals. However, only packet dropout (actually,
only time delay) is considered in [27]. Another serious prob-
lem is that most of the papers mentioned above consider time
delay and packet dropout as two different phenomena that
occur independently. However, when, for example, a control
signal fails to reach the actuator on time, whether time delay
or packet dropout occurs is usually difficult to determine,
and when long-time delay and consecutive packet dropout
are considered, the situation may worsen. Motived by the
above discussion, this paper first focuses on how to establish
a unified model to describe simultaneous long-time delay
and consecutive packet dropout and how to reflect the inner
connection between them.

Regarding controller design, sliding mode control (SMC)
is well known for its robustness in handling uncertain-
ties such as external disturbances and system modeling
errors [7], [13], [24], [28]–[30]. Moreover, SMC allows the
decoupling of overall system motion into partial components
of lower dimensions, i.e., sliding motion and approaching
motion. As a result, sliding mode controller design is com-
posed of two steps. In the first step, a sliding surface is

designed such that the plant dynamics is restricted to the
surface equations and is robust to system parametric uncer-
tainties and external disturbances. In the second step, a feed-
back control law is designed to make the system trajectory
converge to the sliding surface in finite time [31]. These
advantages make SMC a good choice for NCSs with network
problems and uncertainties. For example, [32] proposed an
event-triggered SMC for a class of uncertain NCSs with
stochastic perturbation, exogenous disturbance and network-
induced communication constraints. Reference [33] designed
an integral SMC for a stochastic system under an imper-
fect quantization mechanism; packet dropout was also con-
sidered. Despite the mentioned advantages, the undesired
chattering produced by the high-frequency switching of the
control may be considered a problem in implementing the
SMC methods for some real applications, especially for dis-
crete time systems [34]. Moreover, the existence of time
delay and packet dropout usually intensifies the chattering
problem because the control signal needs to be switched
immediately once the sliding mode state crosses the sliding
surface. To overcome this problem, contributions have been
made by researchers, and in recent years, the combination
of model predictive control (MPC) and SMC has been sug-
gested as an appropriate solution [30], [34]–[37]. Reference
[34] proposes a good example of using predictive sliding
mode control (PSMC) for time delay systems, suggesting
that PSMC can be a good choice for systems with time
delay. However, only state delay is considered in [34]. The
situation of input delay is considered in [38], where a linear
transformation method is adopted to eliminate the time delay
term in the system expression and a sliding mode predictive
controller is designed. However, this linear transformation
method can be used only when the input delay information
of the current sampling period is available to the controller.
In other words, the controller needs to foresee the delay of
the control signal even before the signal is sent out, which is
fairly hard to realize in practice. Therefore, this paper aims to
propose a new PSMC strategy where time delay and packet
dropout can be properly compensated for and no foreseen
information is required by the controller.

The main contributions of this paper are as follows: (i) A
new modeling method is proposed for NCSs with both
long-time delay and consecutive packet dropout, through
which time delay and packet dropout are established in a uni-
fied model described by one Markov chain, the time scale of
which is linear with respect to physical time. (ii) A chattering-
free sliding mode reaching law, which is a modification of
the original form such that it is suitable for multiple-input
systems, is proposed. (iii) A new predictive sliding mode
controller with a delay compensator, which uses the predicted
control signal sequence to compensate for time delay and
packet dropout, thus making full use of the unique feature
of ‘‘predictive control’’, is proposed.

The remainder of this paper is organized as follows. The
problem formulation and proposed NCS modeling method
are given in Section 2. The main results are presented in
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FIGURE 1. Scheme of NCSs equipped with logic ZOH and compensator.

Section 3, including the design of the chattering-free sliding
mode reaching law, the predictive sliding mode controller,
the logic-ZOH-based delay compensator, and the reachability
analysis. A numerical example is provided in Section 4, and
some conclusions are given in Section 5.

II. PROBLEM FORMULATION
A. PRELIMINARY DISCUSSION OF THE NCS EQUIPPED
WITH A LOGIC ZOH AND A COMPENSATOR
NCSs equipped with logic ZOH and compensator are
depicted in Fig. 1. At each time instant k , a state signal x(k)
and its time stamp are encapsulated into a data packet and sent
to the S-C channel logic ZOH through the communication
network, and in each sampling period, the ZOH outputs the
data packet x̄(k) that has the newest time stamp information.
Once this packet arrives at the controller, the controller imme-
diately calculates and generates a new control signal (which,
in this case, is a signal sequence Ū(k) = [ūT(k), ūT(k + 1),
. . . , ūT(k + M − 1)]T obtained from the PSMC). The sig-
nal sequence Ū(k) is then encapsulated into a data packet
with a time stamp and sent to the C-A channel logic ZOH
through the communication network. Next, the ZOH outputs
a signal sequence that has the latest time stamp information,
denoted as U(k), to the compensator. Finally, the compen-
sator chooses one control signal from U(k) according to its
time stamp information and sends the control signal to the
actuator.

The dynamics of the plant is given by:

x(k + 1) = Ax(k)+ Bu(k) (1)

where x(k) ∈ Rn is the system-state variable; u (k) ∈ Rm

is the control input; and A, B are matrices with appropriate
dimensions.

Several assumptions are stated for the NCS.
Assumption 1: The system is controllable, and all system

states are observable.
Assumption 2: The calculation time of the controller, ZOH

and compensator is small enough to be neglected.
Assumption 3: The S-C time delay τsc is bounded, with

the upper bound being τ̄sc, and the C-A time delay τca is
bounded, with the upper bound being τ̄ca. Packet dropouts
on both sides are also bounded, with ρ̄sc and ρ̄ca being the

largest number of consecutive packet dropouts of the S-C and
C-A channels, respectively.

B. A NEW MODELING METHOD FOR TIME DELAY
AND PACKET DROPOUT
Here, we first take into account the case of time delay and
packet dropout over the link from the controller to the actu-
ator; then, the cases over the link from the sensor to the
controller are addressed using a similar method. To illustrate
the proposed method clearer, we first discuss the case of
longtime delay, which is described by a specially defined
Markov chain. Then, the inner connection between time delay
and packet dropout is taken into account, and the time delay
transition probability matrix is used such that the case of
consecutive packet dropout is included as a special type
of time delay. Thereafter, a unified time delay and packet
dropout model is established. Notably, the existence of the
ZOH makes it possible to address time delay and packet
dropout in this way.

Assume that the C-A channel time delay at time instant k is
τca (k), which takes values in the set �τca = {0, 1, 2, ...τ̄ca}.
Suppose that τca (k) = i, (i < τ̄ca), where i is a nonneg-
ative integer; then, there are i + 2 possible cases of time
delay at the next time instant k + 1, that is, τca (k + 1) ∈
{0, 1, 2, ..., i+ 1}. Specifically, τca (k + 1) = 0 means that
the controller output at time instant k + 1 is successfully
transmitted to the actuator at k + 1 with no time delay;
then, the value of i changes from i to 0 at k + 1, and the
signals sent out earlier than k + 1 are not used afterwards.
τca (k + 1) = 1 means that the controller output at time
instant k + 1 has not arrived at k + 1. However, when the
signal sent out at time instant k arrives, the value of i changes
from i to 1 at k + 1, and the signals sent out earlier than
k are not used afterwards. The remaining cases except for
τca (k + 1) = i+1 can be explained in the same way. Finally,
τca (k + 1) = i+1means that no newly arrived signal appears
at k + 1 and that the control input at k + 1 remains the
same as that at k; then, the value of i is increased by one
period, thus becoming i+1. Specifically, when τca (k) = τ̄ca,
since the time delay is bounded, only τ̄ca possible cases exist
for τca (k + 1). Based on the above discussion, we denote
πij(i ∈ �τca , j ∈ {0, 1, . . . , i+ 1} ∩ �τca ) as the transition
probability parameter; then, the C-A channel time delay state
transition can be described as:
πij = Pr (τca(k + 1) = j |τca(k) = i )
τ̄ca∑
j=0

πij = 1, i ∈ �τca , j ∈ {0, 1, . . . , i+ 1} ∩�τca
(2)

Define 5 = πij as the C-A channel time delay transition
possibility matrix, which can be expressed as (3) shown at
the bottom of the next page.

Notably, the time scale adopted in this model is linear with
respect to physical time. In other words, the increase in time
delay over one sampling period is limited to one in this model.
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FIGURE 2. An example of the packet transition timing diagram when τ̄ca = 2 and ρ̄ca = 2.

We can now take consecutive packet dropout into consid-
eration. Packet dropout can be viewed as a special kind of
time delay or infinite time delay. On the other hand, since
the time delay is bounded, time delays beyond a predefined
boundary can be viewed as packet dropout. This situation
explains the inner connection between time delay and packet
dropout. In this model, since the ZOH is applied and, as men-
tioned above, the increase in time delay is limited to one
period, packet dropout can be directly included by expand-
ing the transition probability matrix. However, a difference
between the packet dropout model and time delay model
exists, which needs to be considered when expanding the
transition probability matrix. To clearly show how consecu-
tive packet dropout is modeled, an example with τ̄ca = 2 and
ρ̄ca = 2 is given first, the packet transition timing diagram of
which is shown in Fig. 2.

Fig. 2 assumes that ū (k − 1) is successfully received
by the actuator at time instant k − 1, which means that
τca (k − 1) = 0. Then, at time instant k , as explained above,
only two conditions exist: τca (k) = 0 and τca (k) = 1. Then,
if τ (k) = 1 (ū (k) doesn’t arrive at k), three time delay
conditions for time instant k+1 exist: τca (k + 1) = 0, which
means that ū (k + 1) arrives at k + 1; τca (k + 1) = 1, which
means that ū (k + 1) does not arrive but ū (k) does arrive; or
τca (k + 1) = 2, which means that no newly arrived signal
appears and ū (k − 1) remains the control input. Similarly,
if τca (k + 1) = 2, four time delay conditions for time instant
k + 2 exist, with τca (k + 2) = 0, 1, 2 sharing the same
explanations as for the previous time instant. However, if the
case of no newly arrived signal continues, since the upper
bound of the time delay is τ̄ca = 2, then packet ū (k) is
certainly lost. However, because of the existence of the ZOH,
ū (k − 1) remains the control input, and the time delay of this
condition can be viewed as τca (k + 2) = 3. Subsequently,
if τca (k + 2) = 3, then four time delay conditions for time
instant k + 3 exist, with τca (k + 3) = 0, 1, 2 sharing the
same explanations as for the previous time instant. If the

case of no newly arrived signal persists, then packet ū (k + 1)
is also lost, and ū (k − 1) remains the control input, thus
yielding τca (k + 3) = 4. The case of τca (k + 3) = 3 is not
possible because it can occur only when ū (k) arrives at k+3,
but, as explained above, ū (k) is already lost. Finally, when
τca (k + 3) = 4, only three time delay conditions for time
instant k + 4 exist because the largest number of consecutive
packet dropouts is ρ̄ca = 2, which means that τca (k + 4) can
be only 0, 1 or 2.

Based on the illustration above, we denote τ̂ca as the C-A
channel equivalent time delay that considers both time delay
and packet dropout. Then, the transition probability matrix
of τ̂ca is as follows as (4) shown at the top of the next page.
Therefore, we define �τ̂ca = {0, 1, 2, ..., (τ̄ca + ρ̄ca)},

and then the transition of equivalent time delay τ̂ca can be
described as:
πij = Pr

(
τ̂ca(k + 1) = j

∣∣τ̂ca(k) = i
)

τ̄ca+ρ̄ca∑
j=0

πij = 1,

i ∈ �τ̂ca , j ∈ {0, 1, . . . , i+ 1} ∩�τ̂ca ∪ {i+ 1}

(5)

In the same way, the S-C channel equivalent time delay
τ̂sc is given. We define �τ̂sc = {0, 1, 2, ..., (τ̄sc + ρ̄sc)}, and
then the transition of the equivalent time delay (considering
packet dropout) can be described as (7) shown at the top of the
next page:

δij = Pr
(
τ̂sc(k + 1) = j

∣∣τ̂sc(k) = i
)

τ̄sc+ρ̄sc∑
j=0

δij = 1,

i ∈ �τ̂sc , j ∈ {0, 1, . . . , i+ 1} ∩�τ̂sc ∪ {i+ 1}

(6)

The transition probability matrix of the S-C channel equiv-
alent time delay is defined as 1 = δij, and we have
Subsequently, since the time delay and packet dropout

in forward and backward channels can be described by

5 =



π00 π01 0 0 · · · 0
π10 π11 π12 0 · · · 0
...

...
...

. . .
. . .

...

π(τ̄ca−2)0 π(τ̄ca−2)1 π(τ̄ca−2)2 · · · π(τ̄ca−2)(τ̄ca−1) 0
π(τ̄ca−1)0 π(τ̄ca−1)1 π(τ̄ca−1)2 · · · π(τ̄ca−1)(τ̄ca−1) π(τ̄ca−1)τ̄ca
πτ̄ca0 πτ̄ca1 πτ̄ca2 · · · πτ̄ca(τ̄ca−1) πτ̄ca τ̄ca


(3)
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5 =



π00 π01 0 . . . 0
π10 π11 π12 0 · · · 0
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

πτ̄ca0 πτ̄ca1 · · · πτ̄ca τ̄ca πτ̄ca(τ̄ca+1) 0 · · · 0
π(τ̄ca+1)0 π(τ̄ca+1)1 · · · π(τ̄ca+1)τ̄ca 0 π(τ̄ca+1)(τ̄ca+2) 0 · · · 0
π(τ̄ca+2)0 π(τ̄ca+2)1 · · · π(τ̄ca+2)τ̄ca 0 0 π(τ̄ca+2)(τ̄ca+3) 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

π(τ̄ca+ρ̄ca−2)0 π(τ̄ca+ρ̄ca−2)1 · · · π(τ̄ca+ρ̄ca−2)τ̄ca 0 0 · · · 0 π(τ̄ca+ρ̄ca−2)(τ̄ca+ρ̄ca−1) 0
π(τ̄ca+ρ̄ca−1)0 π(τ̄ca+ρ̄ca−1)1 · · · π(τ̄ca+ρ̄ca−1)τ̄ca 0 0 · · · 0 0 π(τ̄ca+ρ̄ca−1)(τ̄ca+ρ̄ca)
π(τ̄ca+ρ̄ca)0 π(τ̄ca+ρ̄ca)1 · · · π(τ̄ca+ρ̄ca)τ̄ca 0 0 · · · 0 0 0



(4)

1 =



δ00 δ01 0 . . . 0
δ10 δ11 δ12 0 · · · 0
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

δτ̄sc0 δτ̄sc1 · · · δτ̄sc τ̄sc δτ̄sc(τ̄sc+1) 0 · · · 0
δ(τ̄sc+1)0 δ(τ̄sc+1)1 · · · δ(τ̄sc+1)τ̄sc 0 δ(τ̄sc+1)(τ̄sc+2) 0 · · · 0
δ(τ̄sc+2)0 δ(τ̄sc+2)1 · · · δ(τ̄sc+2)τ̄sc 0 0 δ(τ̄sc+2)(τ̄sc+3) 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

δ(τ̄sc+ρ̄sc−2)0 δ(τ̄sc+ρ̄sc−2)1 · · · δ(τ̄sc+ρ̄sc−2)τ̄sc 0 0 · · · 0 δ(τ̄sc+ρ̄sc−2)(τ̄sc+ρ̄sc−1) 0
δ(τ̄sc+ρ̄sc−1)0 δ(τ̄sc+ρ̄sc−1)1 · · · δ(τ̄sc+ρ̄sc−1)τ̄sc 0 0 · · · 0 0 δ(τ̄sc+ρ̄sc−1)(τ̄sc+ρ̄sc)

δ(τ̄sc+ρ̄sc)0 δ(τ̄sc+ρ̄sc)1 · · · δ(τ̄sc+ρ̄sc)τ̄sc 0 0 · · · 0 0 0



(7)

equivalent time delay τ̂ca and τ̂sc, then according to [9], the
equivalent time delay can be combined as τ̂ = τ̂ca + τ̂sc,
and the Markov chain used to describe the transition of the
lumped equivalent time delay can be obtained by combining
the Markov chains generated by5 and 1.
To further illustrate the novelty of the proposed method,

we compare it with the widely used Markov-chain-based
modeling method [10, 14, 25, 26, 37]. In these articles, the
time delay is usually described as follows. Assume that the
random delay τ (k) takes values in the set �τ = {1, 2, ...τ̄ }
with the following mode transition probabilities:

πij = Pr (τ (k + 1) = j |τ (k) = i )
τ̄∑
j=1

πij = 1, i, j ∈ �τ
(8)

The transition probability matrix is defined by

5 =


π11 π12 · · · π1τ̄
π21 π22 · · · π2τ̄
...

...
. . .

...

πτ̄1 πτ̄2 · · · πτ̄ τ̄

 (9)

First, this model does not consider the probability of
τ (k) = 0, which means that all data packets suffer from
time delay. However, for a normal network, we believe that
τ (k) = 0 should be considered. Moreover, the time scale of
this model is not linear over physical time, which may result
in packet disordering. Finally, if we choose τ̄ = 5, then the
transition probability matrix (9) will be a 6 × 6 full matrix
with 36 nonzero entries (where τ (k) = 0 is also considered),
but for the proposed model of this paper, only 26 nonzero
entries are required, which reduces the work in obtaining the
transition probability matrix.

In addition, for NCSs with time delay and packet dropout,
the existing modeling methods usually introduce another
Markov chain or an extra Bernoulli process to describe the
state of packet dropout [14, 25, 26], but the modeling method
proposed in this paper uses only one Markov chain to realize
description of the time delay and packet dropout.

Therefore, the novelty of the proposed modeling method
can be concluded as follows:

(i) It innovativelymodels a long time delay and consecutive
packet dropout in a unified model described by only one
Markov chain;

(ii) The time scale adopted in our Markov chain is linear
over the physical time, i.e., the state transition in our Markov
chain always occurs in one physical time instant;

(iii) Compared with traditional models, the transition prob-
ability matrix of our model is not a full matrix, and thus, less
work is required to obtain the transition probability matrix.
Remark 1: Since we do not use the input hold strategy

to compensate for the equivalent time delay, the equivalent
time delay term τ̂ (k) is not added directly to the expression
of system (1) as u(k − τ̂ (k)) but will be considered when
designing the compensator-based PSMC.

III. MAIN RESULTS
A. DESIGN OF A CHATTERING-FREE REACHING LAW
First, for system (1), the linear sliding surface is defined by

s(k) = Cx(k) (10)

where C ∈ Rm×n is a constant matrix chosen such that CB is
invertible and an appropriate value of C can be determined
through the pole placement method such that the system
state on the sliding surface can converge to the equilibrium
point [39].
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The reaching-law-based SMC approach was first intro-
duced in [40], and the reaching law for the sliding mode was
designed as:

s(k + 1) = (1− qT )s(k)− εTsgn(s(k)) (11)

with ε > 0, q > 0, 0 < 1− qT < 1.
However, the controller designed based on this approach

cannot drive the system trajectory to the equilibrium point but
only to its neighboring area with |s (k)| ≥ εT/(2−qT ), and if
|s (k)| = εT/(2− qT ), then |s (k + 1)| = |s (k)| = εT/(2−
qT ), the result of which is equal-amplitude chattering [41].

To avoid the chattering problem of classic SMC, a new
chattering-free sliding mode reaching law is proposed
inspired by [34]. However, the reaching law in this paper is
proposed for a multiple-input system, which means that slid-
ing surface s(k) is not a scalar but a vector; hence, the switch-
ing condition of the reaching law should be newly defined.
Since it is a multiple-input system with u (k) ∈ Rm, then m
sliding surfaces will exist. The vector form of the reaching
law is given below:

s(k + 1)=ξ (s(k))(1− qT )s(k)−ϕ(s(k))εTsgn(s(k)) (12)

where

ξ (s(k)) =

{
1, ‖s(k)‖∞ > η

0, ‖s(k)‖∞ ≤ η
(13)

ϕ(s(k)) =


Im×m, ‖s(k)‖∞ > η

diag
{
|s1(k)|2 , |s2(k)|2 , . . . , |sm(k)|2

}
η

,

‖s(k)‖∞ ≤ η

(14)

with 0 < 1− qT < 1, 0 < εT < 1 and η = εT
1−qT .

The reachability of the PSMC proposed based on this
reaching law and how it is able to minimize chattering will
be proved later in the last part of this section.

B. SYNTHESIS OF PREDICTIVE SLIDING MODE
CONTROLLER WITH CHATTERING-FREE
REACHING LAW
We take reaching law (12) as a reference sliding mode trajec-
tory, which is defined as

sr(k + p) = (1− qT )sr(k + p− 1)ξ (sr(k + p− 1))
−εTsgn(sr(k + p− 1))ϕ(sr(k + p− 1))

sr(k) = s(k) = Cx(k)
(15)

where the definitions of ξ (s(k)) and ϕ(s(k)) are the same as
those in (12).

Using (1) as the prediction model, the predicted sliding
mode state at time k + p at time instant k is calculated
according to system (1) and sliding surface (10) as:

sp (k + p/k)
= Cx (k + p)
= CAx (k + p− 1)+ CBu(k + p− 1)

= · · · = CApx(k)+
p∑
i=1

CAi−1Bu(k + p− i) (16)

Considering the predicted sliding mode state at time k+1,
k + 2, . . . , k + N at time k , a vector form of (16) can be
obtained:

Sp(k + 1) = 8X(k)+9U(k) (17)

where

Sp(k + 1/k)

= [sp(k + 1/k), sp(k + 2/k), . . . , sp(k + N/k)]T ,

X(k) =
[
xT(k), xT(k), · · · , xT(k)

]T
,

U(k) = [uT(k),uT(k + 1), . . . ,uT(k +M − 1)]T,

8 = diag
{
CA,CA2, · · · ,CAN

}
,

9 =



CB 0 · · · · · · 0
CAB CB · · · · · · 0
· · · · · · · · · · · · · · ·

CAM−1B · · · · · · CAB CB
· · · · · · · · · · · · · · ·

CAN−2B · · · · · · CAN−MB CAN−M−1B
CAN−1B · · · · · · CAN−M+1B CAN−MB


,

with N being the prediction horizon andM being the control
horizon.

Then, the error between the actual sliding mode state s(k)
and its predicted value at time k−p is introduced as feedback
compensation to correct the future predicted sliding mode
state sp(k + p/k). The predicted sliding mode state of s(k)
at time k − p is denoted as sy(k/k − p), which is obtained
according to (16) as:

sp(k/k − p) = CApx(k − p)+
p∑
i=1

CAi−1Bu(k − i) (18)

Define the prediction error as e(k) = s(k) − sp(k/k − p);
then, we have

ŝp(k + p) = sp(k + p/p)+ hpe(k)

= CApx(k)+
p∑
i=1

CAi−1Bu(k + p− i)+ hpe(k)

(19)

where ŝp(k + p) is the predicted value of the sliding mode
state at time k + p after feedback compensation is introduced
and hp ∈ Rm×m is the correction coefficient.

Similarly, the vector form of (19) is:

Ŝy(k + 1) = Sy(k + 1)+HpE(k) (20)

where

Ŝp(k + 1) = [ŝp(k + 1), ŝp(k + 2), . . . , ŝp(k + N )]T ,

E(k) = [s(k)−sp(k/k − 1), · · · , s(k)−sp(k/k − N )]T ,

Hp = diag{hp1,hp2, ...,hpn}.

Subsequently, since PSMC aims to minimize the error
between the predicted sliding mode state and its desired
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counterpart given by the reference trajectory, the following
cost function is defined:

jp =
N∑
i=1

qi[ŝp(k + i)− sr(k + i)]2 +
M∑
j=1

ri[u(k + j− 1)]2

(21)

where qi is a nonnegative weight coefficient matrix that deter-
mines the weight of errors of different sampling points in the
performance index jp and ri is a positive weight coefficient
matrix that is used to constrain the control variables.

Notably, the cost function is not a globally invariant func-
tion but a rolling updated performance index, which is usually
a minimized value in a limited time horizon.

The vector form of (21) can be rewritten as:

Jp = [Ŝy(k + 1)− Sr(k + 1)]TQ[Ŝy(k + 1)− Sr(k + 1)]

+U(k)TRU(k)

= [8Z(k)+9U(k)+ 0(k)+HpE(k)− Sr(k + 1)]TQ

· [8Z(k)+9U(k) + 0(k)+HpE(k)− Sr(k + 1)]

+U(k)TRU(k) (22)

where

Q = diag[q1, q2, · · · qN ]andR = diag[r1, r2, · · · , rM ].

Let ∂Jp
∂U(k) = 0, yielding the PSMC law:

U(k)=−(9TQ9+R)−19TQ [8X(k)+HpE(k)−Sr(k+1)]

(23)

Note that U(k) = [uT(k),uT(k + 1), . . . ,uT(k +M − 1)]T

is not one control signal but a sequence of control signals.
Normally, when time delay and packet dropout are not con-
sidered, only the first signal u(k) is used as the control input.
However, when considering time delay and packet dropout,
the subsequent control signals u(k+1), . . . ,u(k+M−1) can
be ideal choices for compensation. In this way, the concept
of ‘‘predictive control’’ is fully utilized in addressing NCS
network problems.

C. SYNTHESIS OF PSMC WITH LOGIC-ZOH-BASED
DELAY COMPENSATOR
First, since time delay and packet dropout are consid-
ered, we denote the U(k) obtained in (23) as Ū(k) =
[ūT(k), ūT(k+1), . . . , ūT(k+M−1)]T, which indicates that
it is the controller output. Then, we denote the ZOH output
as U(k). Considering the lumped equivalent time delay τ̂ (k),
the relation between Ū(k) and U(k) is:

U(k) =


Ū(k) τ̂ (k) = 0
Ū(k − 1) τ̂ (k) = 1
...

...

Ū(k − ¯̂τ ) τ̂ (k) = ¯̂τ

(24)

where ¯̂τ = τ̄ca + ρ̄ca + τ̄sc + ρ̄sc is the upper bound of the
lumped equivalent time delay τ̂ (k).

Then, the compensator considering time delay and packet
dropout is designed according to the following logic: If
τ̂ (k) = 0, the newest signal sequence is U(k) = Ū(k), and
then the first control signal of Ū(k), i.e., ū(k), is used as the
actuator input, which can be denoted as ū(k)k . If τ̂ (k) = 1,
the newest signal sequence is U(k) = Ū(k − 1), and then
the second control signal of Ū(k−1), i.e., ū(k−1+1), is used
as the actuator input, which can be denoted as ū(k)k−1. If we
set the control horizon as M = ¯̂τ + 1, then the compensator
can provide compensation signals for all possible time delay
and packet dropout conditions, i.e., ū(k − ¯̂τ + ¯̂τ ) can be used
as the actuator input if the equivalent time delay is τ̂ (k) = ¯̂τ ,
which is denoted as ū(k)k−¯̂τ . The above compensation strat-
egy can be described by the following function:

u(k) = g(τ̂ (k))U(k) = g(τ̂ (k))Ū(k − τ̂ (k)) (25)

where

g(x) =
[
g0, g1, . . . , gi, . . . , gτ̄+ρ̄

]
,

gi =

{
Im×m i = x
0m×m i 6= x

(26)

That is,

u(k)

=



[Im×m,0, . . . ,0]Ū(k) = ū(k)k τ̂ (k) = 0
[0, Im×m, . . . ,0]Ū(k − 1) = ū(k)k−1 τ̂ (k) = 1
...
...

[0...0︸︷︷︸
τ̂ (k)

, Im×m,0 . . .0]Ū(k − τ̂ (k)) = ū(k)k−τ̂ (k)

τ̂ (k) = τ̂ (k)
...
...

[0, . . . ,0, Im×m]Ū(k − ¯̂τ ) = ū(k)k−¯̂τ τ̂ (k) = ¯̂τ
(27)

Remark 2: The superscript of control input ū(k) designates
the sampling period on which the control input is calculated.
The subscripts of the predicted value of ū(k) in different
sampling periods are different because the reference trajec-
tory is updated in every sampling period according to the
newest sliding mode state s(k). However, we later prove that
if the system model is precise enough and the disturbance
is small enough to be neglected, then the predicted value of
ū(k) at different sampling points can remain the same; thus,
the influence of the time delay and packet dropout can be
eliminated.

D. REACHABILITY ANALYSIS
As shown in (1), no modeling error or external disturbance
occurs; in other words, the established system model is pre-
cise enough and the external disturbance is small enough to
be neglected. Now, we prove the sliding mode reachability
under this condition.

Considering the predicted control signal sequence Ū(k)
given by (23), we assume that no constraint exists for the
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control variable, and thus, we have R = 0. Then, (23)
becomes:

Ū(k) = −9−1 [8X(k)+HpE(k)− Sr(k + 1)] (28)

Since no modeling error exists and the external disturbance
is small enough to be neglected, we can say that no error exists
between the slidingmode state sp(k/k−p) and its actual value
s(k), thus making e(k) = s(k)− sp(k/k − p) ≈ 0. Therefore,
(28) can be further written as:

Ū(k) = −9−1 [8X(k)− Sr(k + 1)] (29)

Then, the control input u(k) for different equivalent time
delay conditions is calculated according to (29) as:

u(k) = ū(k)k−τ̂ (k)

= (−CB)−1
[
CAC−1sr (k)k−τ̂ (k) − sr (k + 1)k−τ̂ (k)

]
(30)

Now, we prove how the control signal can be free from
the influence of equivalent time delay τ̂ (k)if the proposed
compensation strategy is applied.

First, we assume that the control signal sequence at time
instant k0 arrives on time, i.e., τ̂ (k0) = 0. Then, according
to (30), we have

u(k0) = ū(k0)k0−0
= (−CB)−1

[
CAC−1sr (k0)k0 − sr (k0 + 1)k0

]
(31)

From the reference trajectory function (15), sr (k0) =
s(k0) = Cx(k0); thus, we have

u(k0)= ū(k0)k0=(−CB)
−1 [CAx(k0)−sr (k0+1)k0] (32)

Then, the actual sliding mode state at time instant k0+ 1 is

s(k0+1)=Cx(k0+1)=C [Ax(k0)+Bu(k0)]
=CAx(k0)−CAx(k0)+sr (k0+1)k0=sr (k0+1)k0

(33)

Equation (33) means that the actual sliding mode state at
time instant k0 + 1 is the same as the one defined in the
reference trajectory at time instant k0. Then, according to (15)
and (33), we have

sr(k0 + 2)k0+1 = (1− qT )sr(k0 + 1)k0+1ξ (sr(k0 + 1)k0+1)
− εTsgn(sr(k0 + 1)k0+1)ϕ(sr(k0 + 1)k0+1)

= (1− qT )sr(k0 + 1)k0ξ (sr(k0 + 1)k0 )

− εTsgn(sr(k0 + 1)k0 )ϕ(sr(k0 + 1)k0 )
= sr(k0 + 2)k0 (34)

Therefore, if τ̂ (k0 + 1) = 0, then

u(k0 + 1)

= ū(k0 + 1)k0+1

= (−CB)−1
[
CAC−1sr (k0 + 1)k0+1 − sr (k0 + 2)k0+1

]
= (−CB)−1

[
CAC−1sr (k0 + 1)k0+1 − sr (k0 + 2)k0+1

]
(35)

If τ̂ (k0 + 1) = 1, then

u(k0 + 1)= ū(k0 + 1)k0

= (−CB)−1
[
CAC−1sr (k0+1)k0 − sr (k0 + 2)k0

]
(36)

Based on (33) and (34), the control signals calculated
in (35) and (36) are the same, i.e.,

u(k0 + 1) = ū(k0 + 1)k0+1 = ū(k0 + 1)k0 (37)

which means that the time delay τ (k0 + 1) = 1 does not
affect the final used control input signal and is equivalent
to the situation of τ (k0 + 1) = 0. Then, in the same way,
by repeating the above process, the system can be proved
to be free from the influence of equivalent time delay if
τ̂ (k) ≤ M − 1. This outcome means that if Ū(k) arrives on
time, then the followingM − 1 control periods are free from
the influence of time delay and packet dropout. Thus, if we
set M = ¯̂τ + 1, we can say that the system can be totally
free from the influence of time delay and packet dropout from
time instant k onward. Apparently, the first control signal is
expected to arrive on time such that the system can be free
from the influence of time delay and packet dropout from the
very beginning. This scenario can be realized by setting the
time instant at which the first control signal sequence arrives
as the initial time. This consideration is reasonable because
no control input exists before the first control signal sequence
arrives and the system state remains the same as that at the
actual initial time.
Now, we prove the reachability of the resulting SMC law.

First, based on the above analysis, the resulting compensator-
based sliding mode controller for system (1) is

u(k) = ū(k)k−τ (k) = ū(k)k

= (−CB)−1 [CAx(k)− sr (k + 1)k ]

= (−CB)−1 [CAx(k)− (1− qT )s(k)ξ (s(k))

+ εTsgn(s(k))ϕ(s(k))] (38)

Theorem 1: For NCSs in the form of (1), if the linear
sliding surface is chosen as (10) and the SMC law is chosen
as (38), then the trajectory of system slidingmode state si (k) ,
(i = 1, ...,m) will enter the sliding surface neighborhood
region � from any initial state within at most m∗i steps and
then will never escape from it, where

� =

{
si(k) : |si(k)| ≤ η =

εT
1− qT

}
(39)

m∗i = [mi]+ 1 (40)

mi =
s2i (0)− η

2

η2
(41)

Proof: First, we prove that system sliding mode state
si (k) , (i = 1, ...,m) will enter the region � within at most
m∗i steps if it is not in it at the beginning.
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Substituting (38) into system model (1), and according to
sliding mode function (10), we have

s(k + 1) = Cx(k + 1) = C [Ax(k)+ Bu(k)]

= (1− qT )s(k)ξ (s(k))− εTsgn(s(k))ϕ(s(k)) (42)

We can write (42) in the following component-wise form:

si(k + 1) = ξ (s(k))(1− qT )si(k)− ϕ(s(k))εTsgn(si(k))

(43)

Considering the ith sliding surface si (k), if si (k) is outside
the region �, which means that si (k) > η or si (k) < −η,
then ‖s(k)‖∞ > η. Therefore, (43) becomes

si(k + 1) = (1− qT )si(k)− εTsgn(si(k)) (44)

Defining a Lyapunov function Vi (k) = s2i (k), the follow-
ing is obtained:

1Vi (k) = s2i (k + 1)− s2i (k)

= − [qTsi(k)+ εTsgn(si(k))]

· [2si(k)− qTsi(k)− εTsgn(si(k))] (45)

Then, the following two conditions are discussed:
¬ If si (k) > η, then

1Vi (k) = − [qTsi(k)+ εT ] · [2si(k)− qTsi(k)− εT ]

(46)

Since si (k) > η = εT
1−qT , we have

qTsi(k)+ εT ≥ qT ·
εT

1− qT
+ εT =

εT
1− qT

= η > 0

(47)

Then, from si(k) > εT
1−qT , the following can also be

obtained:

si(k) > qTsi(k)+ εT (48)

Therefore, we have

2si(k)− qTsi(k)− εT ≥ qTsi(k)+ εT ≥ η > 0 (49)

Consequently,

1Vi (k)=− [qTsi(k)+εT ]·[2si(k)−qTsi(k)−εT ]≤−η2<0

(50)

 If si (k) < −η, then, by a similar proof procedure,
the relation 1Vi (k) ≤ −η2 can be shown to still hold.

Therefore, when si (k) /∈ �, it can be concluded that
1Vi (k) = s2i (k + 1)− s2i (k) ≤ −η

2 < 0.
Moreover, from (50),

1Vi (k) = s2i (k)− s
2
i (k − 1) ≤ −η2

⇔ s2i (k) ≤ s
2
i (k − 1)− η2 ≤ s2i (k − 2)− 2η2

≤ · · · ≤ s2i (0)− kη
2 (51)

This formula means that if

s2i (k) ≤ s
2
i (0)− kη

2
= η2 (52)

then we have si (k) ∈ �. Therefore, the solution k of
Eq. (52) would be the maximum step of the approaching
phase. However, the solution of (52) may not be an inte-

ger. Therefore, we denote mi =
s2i (0)−η

2

η2
as the real num-

ber solution of (52). Then, we can say that after at most
m∗i = [mi]+ 1 steps, the system sliding mode state will enter
the sliding surface neighborhood region �. Therefore, after
at most max

{
m∗i
}
, i = 1, 2, . . . ,m steps, all sliding mode

states will enter the region �.
Second, we prove that if si (k) ∈ �, then si (k + 1) ∈ �.
When si (k) ∈ �,−η ≤ si (k) ≤ η. However, since
‖s(k)‖∞ = max {|si(k)|} , i = 1, 2, . . . ,m, it cannot be
determined whether ‖s(k)‖∞ > η or ‖s(k)‖∞ < η. There-
fore, the following two cases are discussed.

1 When ‖s(k)‖∞ > η, Eq. (43) becomes

si(k + 1) = (1− qT )si(k)− εTsgn(si(k)) (53)

When 0 ≤ si (k) ≤ η,

si(k+1)= (1−qT )si(k)−εT ≤ (1−qT )
εT

1−qT
−εT =0

(54)

and

si(k+1)= (1−qT )si(k)−εT ≥−εT ≥−
εT

1−qT
=−η

(55)

Thus, we have −η ≤ si(k + 1) ≤ 0, which means that
si (k + 1) ∈ �.
Similarly, when −η ≤ si (k) ≤ 0, we obtain 0 ≤ si(k + 1)
≤ η and thus si (k + 1) ∈ �.
2 When ‖s(k)‖∞ < η, Eq. (43) becomes

si(k + 1) = −εT
|si(k)|2

η
sgn(si(k)) (56)

When 0 ≤ si (k) ≤ η, we have

si(k + 1) = −εT
|si(k)|2

η
≤ 0 (57)

and

si(k + 1) = −εT
|si(k)|2

η
≥ −εTη ≥ −η (58)

Therefore, if 0 ≤ si (k) ≤ η, then −η ≤ si(k + 1) ≤ 0,
which means that si (k + 1) ∈ �.
When −η ≤ si (k) ≤ 0, we have

si(k + 1) = εT
|si(k)|2

η
≥ 0 (59)

and

si(k + 1) = εT
|si(k)|2

η
≤ εTη ≤ η (60)

Therefore, if −η ≤ si (k) ≤ 0, then 0 ≤ si(k + 1) ≤ η,
which means that si (k + 1) ∈ �.
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Therefore, we can conclude that if si (k) ∈ �, then
si (k + 1) ∈ �.

We now discuss how the proposed method is able to sup-
press chattering.
Theorem 2: For NCSs in the form of (1), if the linear sliding

surface chosen is (10) and the SMC law chosen is (38), then
for an arbitrary small positive real number σ > 0, a positive
integer N exists such that for any k > N , |si (k)| < σ .

Proof:
According to Theorem 1, after at most max

{
m∗i
}
, i = 1,

2, . . . ,m steps, all sliding mode states will enter the region
�. Therefore, after at most max

{
m∗i
}
, i = 1, 2, . . . ,m steps,

we have ‖s(k)‖∞ < η, and Eq. (43) becomes

si(k + 1) = −εT ·
|si(k)|2

η
sgn(si(k))

= −εT ·
|si(k)|2

η

si(k)
|si(k)|

= −
εT |si(k)|

η
si(k) (61)

Since the trajectory of system sliding mode state si (k) is
in � with |si (k)| ≤ η and 0 < εT < 1, we have

|si(k + 1)| =

∣∣∣∣εT |si(k)|η
si(k)

∣∣∣∣ ≤ εT |si(k)| < |si(k)| (62)

Equation (62) proves that |si(k + 1)| < |si(k)| is always
true, which means that the value of |si(k)| decreases in every
step until it converges to zero and that the equal-amplitude
chattering case will never occur. In this way, chattering can
be minimized.
Remark 3: For discrete time systems, the accurate arrival of

the sliding mode state on the sliding surface is usually impos-
sible to realize; thus, complete elimination of chattering is
actually not possible in discrete time systems, and the expres-
sion ‘‘chattering-free’’ used here is just a conventional way to
describe these chattering suppression methods [39]–[42].

IV. SIMULATION EXAMPLE
In this section, a numerical example is given to illustrate
the effectiveness of the proposed methods. Consider the fol-
lowing aero-engine rotor speed and total pressure control
system small deviation linearization model given in [43],
where x = [nL nH p3]T and u = [mf A8]T, with nL being
the low-pressure rotor speed; nH being the high-pressure rotor
speed; p3 being the compressor exit total pressure; mf being
the fuel flow; and A8 being the critical section area of the
nozzle. The working condition of the aero-engine is set as
H = 0 km, Ma = 0, nH = 100%, thus yielding the
following parameter matrices for system (1):

A =

−0.8641 0.1491 −0.01559
−0.0073 0.9445 −0.00532
0.4759 −0.08775 0.5990

 ,
B =

 0.01935 0.00468
0.01731 0.01059
0.1853 −0.0959

 .
In the aero-engine control system small deviation lin-

earization model, the state variables and control inputs have

FIGURE 3. Distributions of τsc (k), τca(k) and τ (k).

been relativized. Therefore, we set the initial states of the
system as x (0) =

[
1.2 0.6 −0.8

]T , which means that the
initial deviations of nL, nH and p3 are 1.2%, 0.6% and -0.8%,
respectively. The system sampling interval is T = 10 ms.

The upper bounds of the C-A channel time delay and
consecutive packet dropout are τ̄ca = 2 and ρ̄ca = 2, and
those of the S-C channel are τ̄sc = 2 and ρ̄sc = 2. The
transition probability matrices5 and 1 are defined as:

5 =


0.8 0.2 0 0 0
0.6 0.3 0.1 0 0
0.4 0.3 0.2 0.1 0
0.3 0.3 0.3 0 0.1
0.5 0.4 0.1 0 0

 ,

1 =


0.7 0.3 0 0 0
0.5 0.4 0.1 0 0
0.3 0.3 0.2 0.2 0
0.4 0.2 0.2 0 0.2
0.4 0.4 0.2 0 0


According to the transition probability matrices, two

Markov chains are produced stochastically to show the dis-
tributions of the C-A and S-C channel equivalent time delay,
and then the distribution of lumped time delay τ̂ (k) is
obtained. The distributions of τ̂ca(k), τ̂sc(k) and τ̂ (k) are
shown in Fig. 3.

By choosing the pole location of the closed-loop system
as [−0.5], the sliding surface parameter is calculated through
the pole placement method as

C =
[
0.5028 1 0
24.5525 0 1

]
.

The selected sliding mode reaching law parameters are
q = 8 and ε = 0.5.
The selected PSMC parameters are as follows:
(1) The control horizon isM = ¯̂τ + 1 = τ̄sc + ρ̄sc + τ̄ca +

ρ̄ca + 1 = 9, and the predictive horizon is N = 12;
(2) The weight coefficient matrices Q and R chosen are

Q = I2N×2N and R = 02M×2M .
The simulation results of the proposed sliding mode pre-

dictive controller (denoted as PSMC) are compared with
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FIGURE 4. Response curves of state x1(k) for different controllers.

FIGURE 5. Response curves of state x2(k) for different controllers.

those of two other controllers. One is the predictive con-
troller proposed in [34], which is denoted as #1controller.
And #1 controller can also be described by control law (23)
with the same parameters, namely, M = 9, N = 12,
Q = I2N×2N and R = 02M×2M , and by linear sliding
surface (10), with the same parameter C as calculated above.
Meanwhile, the reference trajectory of #1 controller is set as
in (15), with q = 8 and ε = 0.5. However, compared with
the proposed controller, #1 controller does not have an input
delay compensator, which means that only the first signal of
Ū(k) = [ū(k), ū(k + 1), . . . , ū(k + M − 1)]T is sent out as
the controller output, i.e.,

ū(k) = [Im×m,0, . . . ,0]Ū(k) (63)

and when time delay or packet dropout occurs, the input hold
strategy is used for compensation.

The other controller used for comparison is the one with
the classic reaching law proposed in [40], denoted as #2con-
troller, which is used to reflect the effectiveness of the pro-
posed controller under chattering suppression. Compared
with that for the proposed controller, only the reference tra-
jectory has been changed to the classic reaching law (11). The
other parameters, as well as the delay compensation strategy,
remain the same as those for the proposed controller.

The response curves of the system states with the three dif-
ferent controllers are shown in Figs. 4-6. Notably, controllers
with the proposed compensator (PSMC and #2controller)

FIGURE 6. Response curves of state x3(k) for different controllers.

FIGURE 7. Evolution of control input u1(k) for different controllers.

FIGURE 8. Evolution of control input u2(k) for different controllers.

can drive the system states back to the equilibrium point.
By contrast, #1controller cannot guarantee system-state con-
vergence, and when the equivalent time delay increases, its
performance quickly declines. When long-time delay and
consecutive packet dropout exist, the input hold strategy is far
from sufficient to provide suitable compensation for the con-
trol input, thus hindering the SMC signal from being switched
in time when system states cross the sliding surface, resulting
in high chattering or even system instability. In addition,
compared with #2controller, the proposed controller stands
out in terms of low chattering, and the influence of the time
delay and packet dropout on the performance of the proposed
controller is minimal.
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FIGURE 9. Evolution of sliding function s1(k) for different controllers.

FIGURE 10. Evolution of sliding function s2(k) for different controllers.

Figs. 7 and 8 show the evolutions of the control input
u1(k) and u2(k). Comparing Figs. 7 and 3, we can see that
at approximately 1.4 s, the equivalent time delay increased to
5 and immediately resulted in a dramatic deterioration of the
performance of #1controller. Fig. 8 shows that the chattering
of #2controller is much fiercer than that of the proposed
controller; this fierce chattering may damage the actuator.
In this way, the superiority of the proposed controller is evi-
dent. Figs. 9 and 10 show the evolutions of sliding variables
s1(k) and s2(k), which lead to the same conclusions as those
obtained from the results given by Figs. 4-6.

V. CONCLUSION
This paper focuses on the SMC problem of networked con-
trol system with a long-time delay and consecutive packet
dropout in both controller-actuator link and sensor-controller
link. First, a new modeling method is proposed, in which
the logic ZOH is adopted to model the long-time delay and
consecutive packet dropout in a unified model described by
oneMarkov chain. In addition, since the transition probability
matrix is not a full matrix, the difficulty of obtaining the
parameters is reduced. Second, a chattering-free reaching
law, which is a modification of the original one to make it
suitable for a multiple-input system, is proposed, and the
simulation results indicate that if this reaching law is used
as the reference trajectory, it can effectively reduce chat-
tering. Third, a predictive sliding mode controller equipped
with a delay compensator is proposed. The combination of

the predictive sliding mode controller and logic-ZOH-based
compensator makes completely overcoming the influence of
time delay and packet dropout possible by using the pre-
dicted control signal sequence of the previous time instant
as the delay compensation. The proposed controller has been
proved theoretically to be able to guarantee the reachability
of the sliding mode dynamics and the chattering-free con-
vergence of system states despite the existence of long-time
delay and packet dropout, and simulation results also pro-
vide intuitive support for the effectiveness of the proposed
method. However, the analysis was carried out under only
the condition that the model established is precise enough
and the external disturbance is small enough to be neglected.
In our future work, we will concentrate on providing stability
analysis for a system with noticeable modeling errors and
external disturbances. Moreover, nonlinear systems will be
considered in our future research, and we will seek to test
the proposed method on a practical system so that the theory
proposed can be further completed.
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