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ABSTRACT Attention deficit hyperactivity disorder (ADHD) is a kind of mental disease which often appears
among young children. Various machine learning techniques including deep neural networks have been used
to classify ADHD. As an alternative of deep neural networks, the deep forest or gcForest recently proposed
by Zhou and Feng has demonstrated excellent performance on many imaging tasks. Therefore, in this paper,
we are going to investigate using fMRI data and gcForest to discriminate ADHD subjects against normal
controls. Two types of features are extracted from the fMRI data, they are 1-D functional connectivity (FC)
feature and 3-D amplitude of low frequency fluctuations (ALFF) feature. We propose a revised gcForest
method which uses a combined multi-grained scanning structure to fuse the two features together, thus a
new concatenated feature vector can be formed for each sample. Moreover, considering the imbalanced
property of ADHD data, we utilize synthetic minority over-sampling technique combined with edited-nearest
neighbor to form synthetic minority concatenated feature vector samples for data balancing. Finally cascade
forest is used to take the concatenated feature vector samples as input for classification. We test our method
on the ADHD-200 public data sets and evaluate its performance on the hold-out testing data. We compare
our method with several methods in the literature. The experiment illustrates that our method performs better

than the reported methods.

INDEX TERMS Attention deficit hyperactivity disorder, classification, deep forest, fMRI.

I. INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a kind of
mental disease which often appears among young children.
ADHD is characterized by poor concentration, over activity
or lack of self-control. It is reported that millions of people
have been affected and about half of the grown patients are
still influenced by the disease diagnosed in their childhood.
However, the etiology is still unknown in most cases, without
a clear diagnostic criteria, many children can not receive
timely and proper treatment in the early stage of ADHD.
Effective methods are urgently needed to assist the diagnosis
of ADHD.

As neuroimaging technology, functional magnetic reso-
nance imaging (fMRI) has been widely used to examine
ADHD. FMRI measures brain activity by detecting changes
associated with blood flow [1]. This technique relies on
the fact that cerebral blood flow and neuronal activation
are coupled. When an area of the brain is in use, blood
flow to that region also increases. By detecting specific
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encephalic regions, like dorsal anterior cingulate cortex
(dACC), the ventrolateral prefrontal cortex (VLPFC) and the
putamen, abnormal brain activations can be found. Cao et al.
(2006) [2] found boys with ADHD has changed regional
homogeneity (ReHo) in the frontal-striatal-cerebellar circuits
region and occipital cortex. Castellanos (2008) [3] found
ADHD-related diseases by examining functional connectiv-
ity (FC) between anterior cingulate and precuneus/posterior
cingulate cortex regions. Zang (2007) [4] proved that children
with ADHD have changed the amplitude of low frequency
fluctuations (ALFF) in the right inferior frontal cortex, left
sensorimotor cortex, and bilateral cerebellum. Yang et al.
(2011) [5] investigated the amplitude of low frequency
fluctuations (ALFF) of fMRI and demonstrated abnormal
frontal activity in ADHD patient brain area. Tang et al.
(2017) [6] used fractional amplitude of low frequency fluctu-
ation (fALFF) to find the change of bilateral superior frontal
cortex, anterior cingulate cortex (ACC), and several other
brain areas in children with ADHD.

By utilizing fMRI data, various machine learning tech-
niques have been used to diagnose ADHD. Riaz et al.
(2017) [7] proposed a machine learning framework based on

137913


https://orcid.org/0000-0002-5605-5540

IEEE Access

L. Shao et al.: Deep Forest in ADHD Data Classification

support vector machine (SVM) with integration of imaging
data and non-imaging data to investigate functional con-
nectivity alterations between ADHD and control subjects.
Miao and Zhang (2017) [8] proposed a feature selection
algorithm based on relief algorithm and verification accuracy
(VA-Relief), which uses the feature subset obtained by pre-
processing and feature selection of fractional amplitude of
low-frequency fluctuation (fALFF) in resting-state functional
magnetic resonance imaging (rs-fMRI). Du et al. (2016) [9]
proposed a discriminative subnetwork selection method to
mine frequent and discriminative subnetworks from ADHD
and control group. The main features extracted from these
discriminative subnetworks by using kernel principal com-
ponent (PCA) were applied to the classification of ADHD.
Qureshi et al. (2017) [10] calculated the global connectivity
maps from the fMRI images and used the average of the
connectivity measure of each atlas-based cortical parcella-
tion as a feature for hierarchical extreme learning machine
classifier input. Sen et al. (2018) [11] studied structural
MRI image features and fMRI features, utilizing them to
train a linear support vector machine (SVM) classifier for
ADHD classification. Shao et al. (2018) [12] proposed a
bi-objective ADHD classification scheme based on L1-norm
support vector machine (SVM) model to achieve ADHD
classification.

Recently, deep learning has also been used in ADHD
classification. Kuang et al. (2014) [13] created a deep belief
network with three layers to discriminate ADHD and normal
control group. Zou et al. (2017) [14] built a 3-D convolutional
neural networks (CNN) model to investigate the local spatial
patterns of MRI features and designed a multi-modality CNN
architecture to combine fMRI and sMRI features. Atif et al.
(2018) [15] proposed a deep fMRI model which consists of
three networks taking fMRI raw time-series signals as input.
However, deep neural networks (DNNs) are with too many
hyper-parameters and the performance depends heavily on
parameter tuning.

As an alternative to deep neural networks, the deep forest
or gcForest recently was proposed by Zhou and Feng [16].
It has been shown that the deep forest approach is highly
competitive to deep neural networks. The deep forest uses
a multiple layer structure where each layer contains many
random forests. It is actually an ensemble of decision tree
ensembles. In contrast to deep neural networks which require
large-scale training data and great effort in hyper-parameter
tuning, gcForest is easier to train and it works well even
with small-scale training data. These characteristics make
gcForest a suitable classifier for ADHD diagnosis.

Therefore, in this paper, we are going to investigate using
gcForest to aid the diagnosis of ADHD. Our main contribu-
tions are as follows.

1) We propose a revised gcForest method which fuse 1-D
FC feature and 3-D ALFF feature with multi-grained
scanning to generate a concatenated transformed fea-
ture for classification. Compared with only using 1-D
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TABLE 1. Description of the data sets of ADHD-200 competition.

Data sets Peking KKI NYU NI
Training subjects 194 83 216 48
ADHD subjects 78 22 118 25
Control subjects 116 61 98 23
Hold-out testing subjects 51 11 41 25
ADHD subjects 24 3 29 11
Control subjects 27 8 12 14

FC feature or 3-D ALFF feature, using the fused feature
can improve the performance of classification.

2) We test our revised gcForest method on the ADHD
global competition data sets, experimental results on
the public hold-out testing data sets show that our
method outperforms the reported methods in the litera-
ture.

The rest of the paper is organized as follows. In Section I,
the procedure of data preprocessing and methods for comput-
ing functional connection and ALFF of fMRI are introduced.
In section III, we make a brief description of gcForest, and
then we propose our revised gcForest method for ADHD clas-
sification with fMRI data. Moreover, for data balancing, syn-
thetic minority over-sampling technique (SMOTE) combined
with edited-nearest neighbor (ENN) is also introduced to
generate synthetic minority samples. In section IV, we show
some experimental results and we compare our method with
several reported methods in the literature. In section V,
we draw the conclusion.

Il. MATERIALS

The ADHD fMRI data we used are from ADHD-200 Global
competition (http://fcon_1000.projects.nitrc.org/indi/adhd
200/index.html). We do experiments on four data sets, namely
Peking (Peking University), KKI (Kennedy Krieger Insti-
tute), NYU (New York University Child Study Center) and
NI (Neuro Image Sample). It needs to be noted that these
data sets from different centers were collected with different
parameter settings. A brief overview of these data sets is
shown in Table 1.

We use DPARSF toolbox (http://rfmri.org/DPARSF) to
perform data preprocessing. The preprocessing includes
removing of the first ten images, slice time correction, motion
correction, normalization, band pass filtration and smoothing.

Then according to the work of Tzourio-Mazoyer et al. [17],
for each fMRI data, we divide the cerebella brain image
into 90 brain regions. Each region in the cerebra is used
to calculate an average time series of all voxels. For any
pair of the average time series, we calculate the Pearson
correlation coefficient to form a functional connection (FC)
matrix [18]. The flowchart of FC matrix acquisition is shown
in Figure 1. Since the FC matrix is a symmetric matrix,
we use the lower left triangular of the matrix to form a feature
vector. Simply by concatenating the first-row vector to the
last-row vector of the lower left triangle, the feature vector
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FIGURE 1. Functional connection matrix acquisition flowchart.

fMRI Images

ALFF Image

,‘\ bt Preprocessed
40
m
Y SN p
410
’ 198

Bandpass filtered

e

Power
800 Spectrum

‘I
450 v
]
0
1y 198
v

w
:
2 i *
:

Standardization

0
001  008Hz

FIGURE 2. ALFF image processing flowchart.

can be obtained. The dimension of the FC feature vector is
((90 x 90 —90)/2) = 4005.

Moreover, we also obtain the ALFF image of an fMRI
by REST (http://restfmri.net). The processing procedure for
generating ALFF is shown in Figure 2. Firstly, the filtered
time series corresponding to the fMRI voxels are transformed
into frequency domain signals with fast Fourier transforma-
tion in order to obtain the power spectrum. Then the square
root of the power spectrum at each frequency is calculated.
The averaged square root across 0.01 ~ 0.08Hz at each
voxel is taken as the ALFF value. Finally, for standardization,
the ALFF of each voxel is divided by the global mean ALFF
value. For each fMRI sample in our experiment, we obtain its
three dimensional ALFF image with the size of 61 x 73 x 61.

lll. METHODS
In this section, we first review the gcForest method, then we

are going to show our revised gcForest method to classify
ADHD with fMRI.

A. GCFOREST

Tree-based ensemble machine learning techniques like ran-
dom forest [19] have advantages in dealing with non-
linear classification problems and overfitting. Recently,
a new tree-based ensemble method called gcForest was pro-
posed [16]. GcForest generates a deep forest ensemble and
achieves high performance in representation learning and
high dimensional data learning problems. GcForest has two
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major structures, namely multi-grained scanning and cascade
forest. Given a set of raw input data, it will be processed by the
multi-grained scanning to generate transformed concatenated
feature vectors. Then the concatenated feature vectors will be
fed into the cascade forest structure to achieve classification
task.

Here we take a binary classification problem as an exam-
ple to show how gcForest works. Suppose we have a data
set with 100 dimensional features, i.e. the size of the data
is 100 x 1. For each training sample, it will go through
the multi-grained scanning structure (see Figure 3) to form
a new concatenated feature vector. As it can be seen in
multi-grained scanning, sliding window technology is used
to construct new instances from the original data. Suppose
that the sliding window size is 10 x 1 and the step size is 1,
then for each sample, 91 of 10-dimensional instances would
be generated. Next each instance is fed into two different
forests respectively to output a 2-dimensional vector as class
distribution vector. Furthermore we concatenate all the output
class vectors as one. Therefore a new 91 x 2 x 2 = 364-
dimension transformed feature vector is obtained as the out-
put of multi-grained scanning.

In cascade forest structure (see Figure 3), gcForest employs
multilevel ensembles of decision tree forests. Each cascade
level contains several forests, each forest will output a class
distribution vector. Then we concatenate all the class vectors
generated by the forests in the same level with the output of
multi-grained scanning as the input vector to the next level.
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For the binary classification example we considered, sup-
pose there are four random forests in each level, we can
see that each forest outputs a 2-dimensional vector and the
output of each cascade level is a 4 x 2 = 8-dimensional
vector. Concatenating the 8-dimensional vector with the the
original 364-dimension feature, the input of the following
cascade level is a 372-dimensional vector. Cascade levels
are increased gradually until the convergence of validation
performance. The final prediction would be the the max value
in the averaged class vector obtained from the last cascade
level. It should be noticed that forests in gcForest are not
limited to normal random forests, which can be replaced by
completely- random forests or other classifiers that can output
class distribution vectors.

B. REVISED GCFOREST FOR FMRI CLASSIFICATION

The framework of the revised gcForest for fMRI data classi-
fication can be seen in Figure 4. For all the fMRI samples,
we extract their FC and ALFF features. Then in the train-
ing process, the training data will go through multi-grained
scanning, SMOTE with ENN for data balancing and cas-
cade forest to train the model parameters. After the training,
the testing data will go through the multi-grained scanning
and the trained cascade forest to evaluate the performance of
the classifier.

1) FEATURE-FUSED MULTI-GRAINED SCANNING STRUCTURE
In order to fuse the 1-D FC feature with the 3-D ALFF feature,
in this section, we are going to propose a feature fusion
structure, which consists of two multi-grained scanning, see
Figure 5.

For each sample x;, its FC feature is an 1-D array. A 1-D
sliding window with fixed step size will be used for scan-
ning the FC data into multiple instances. All these instances
will be fed into a fixed number of random forests to output
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FIGURE 5. Feature-fusion multi-grained scanning.

class vectors. The concatenation of these class vectors is the
final output of 1-D scanning.

Similarly, for the ALFF feature of sample x;, since it is a
3-D array, a 3-D sliding window with fixed step size is used to
generate multiple instances. All these instances will be input
into a fixed number of random forests to output class vectors.
Therefore, the final output of 3-D scanning for each sample
is the concatenation of these class vectors.

Finally the output of the 1-D and 3-D multi-grained scan-
ning are concatenated together to form a new vector as the
transformed fused feature of FC and ALFF.

2) DATA BALANCING

The ADHD data sets we utilized in our experiments are
imbalanced data sets, i.e., the positive and negative samples
are not balanced. Since standard learning algorithm may
generate suboptimal classifiers [20], it is necessary to deal
with the imbalanced problem.

SMOTE algorithm is a kind of random over sampling algo-
rithm which generates new synthetic samples by analyzing
neighbors of minority samples. Suppose S4 € S, where S
is the set of all samples and S4 is the set of minority sam-
ples. SMOTE algorithm works as follows. For each sample
X; € Sa, its k nearest in S4 is calculated. Then one of the k
nearest sample y; is randomly chosen, and the new synthetic
minority sample can be calculated as:

Xy =Xxi+ (i —x)*r (D

where r is a random number between [0, 1] and x; is the new
synthetic sample. However, SMOTE algorithm generates new
samples by using the original minority samples without con-
sidering its neighboring samples. It may generate minority
samples that lie among majority samples. This may increase
the overlapping between different classes, thus lead to poor
classification results.

In order to improve the performance, in our study, SMOTE
with ENN is adopted to balance the training sets. ENN is
used to remove new synthetic samples that differ from two
of its three nearest neighbors [21]. Figure 6 clearly shows
the difference between SMOTE algorithm and SMOTE with
ENN algorithm. Since the size of the original fMRI data
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FIGURE 6. Comparison of SMOTE and SMOTE with ENN.

is too big, to save computational time, in our experiment,
SMOTE with ENN is used after the multi-grained scanning
to directly produce new synthetic transformed concatenated
fused features for minority samples.

3) CASCADE FOREST

In the experiment, we used two random forests and two
completely-random forests at each level of the cascade forest.
During the training process, the transformed feature vector
will be fed into the cascade forest to train the model param-
eters. During the testing process, the transformed feature
vectors will be fed into the trained cascade forest model to
output the prediction results.

IV. EXPERIMENT AND DISCUSSION

We have downloaded the original gcForest algorithm from the
website http://lamda.nju.edu.cn/MainPage.ashx, and revised
it for ADHD classification with fMRI data. We conduct the
experiments on Peking, KKI, NYU, NI data sets. Different
experiments as follows have been carried out to show the
performance of the revised gcForest method.

A. RESULTS OF THE REVISED GCFOREST METHOD

For each data set, we use the training data set to train the
model and the hold-out testing set to test the model. We have
tried different parameter settings, and finally we select the
one which gives the best performance.

The fused multi-grained scanning and data balancing with
SMOTE with ENN are used. The sliding windows and
step sizes used in the multi-grained scanning for different
data sets are listed in Table 2. For all the data sets, one
random forest which consists of 50 trees is used in the
multi-grained structure, whereas two random forests and two
completely-random forests, each contains 101 trees, are used
in the cascade forest structure. It needs to be noted that
different parameter settings are selected for different data
sets, this may be due to that these data sets are collected from
different centers.
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TABLE 2. Sliding windows and step sizes of FC and ALFF features for the
four data sets.

Peking KKI NYU NI
FC sliding window 100 x1 200x1 200x1 200x1
FC step size 5 1 5 5
ALFF sliding window 5 X5 X5 5X5X5 3x3x3 9Xx9x%x9
ALFF step size 3 3 3 3

TABLE 3. The results of the revised gcForest method for different data
sets.

Data sets Peking KKI NYU NI
ave 64.87% 82.73% 73.17% 72.00%
best 78.05% 90.91% 78.05% 80.00%

TABLE 4. Comparison results with/without data balancing.

Performance Data balancing Peking — KKI NYU NI

ACC Yes 64.87% 82.73% 73.17% 72.00%
No 63.92% 72.73% 72.93% 71.60%
SEN Yes 64.72% 77.67% 83.00% 96.07%
No 65.49% 0%  78.87% 93.57%
SPE Yes 66.69% 87.23% 54.33% 67.21%
No 63.31% 72.73% 54.91% 67.39%
G-means Yes 65.52% 81.37% 67.07% 80.26%
No 6437% 0%  65.72% 79.19%

For each data set, the experiment was repeated ten times,
the average and best accuracy value for each data set obtained
by the revised gcForest method are shown in Table 3.

B. IMPACT OF DATA BALANCING

To investigate the impact of data balancing, experiments
with/without SMOTE with ENN after the fused multi-grained
scanning have been carried out. For each data set, the exper-
iments with/without data balancing are repeated ten times.
We calculate the average accuracy (ACC), sensitivity (SEN),
specificity (SPE), and g-means values on the hold-out testing
data sets, and list them in Table 4.

From Table 4, we can see that for KKI data set, the sensi-
tivity and g-means values without data balancing are zeros.
This may be due to that there are 22 ADHD subjects and 61
control subjects in the KKI training data set, which leads to
the trained classifier overfitting. Thus the classifier predicts
all samples as positive samples. Therefore, comparing the
two results, it is obvious that data balancing can improve
the performance of classification and thus effectively avoid
overfitting.

C. COMPARISON RESULTS WITH FUSED FEATURES AND
ONLY FC/ALFF FEATURES

We also compare the results of using fused features with
the results of using only FC or ALFF feature. For each data
set, we carry out the experiment ten times using only FC,
only ALFF and the fused feature, respectively. The average
accuracy and the best accuracy in the ten experiments are
shown in Table 5.
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TABLE 5. Average and best accuracy with different features for the four
data sets.

TABLE 7. Average accuracy on the hold-out testing data sets for different
methods.

FC ALFF FC and ALFF
Data sets
average best average best average best
Peking 62.94% 68.63% 63.73% 70.59% 64.87% 78.05%
KKI 74.55% 81.82% 77.27% 9091% 82.73% 90.91%
NYU 53.66% 60.98% 67.81% 73.17% 73.17% 78.05%
NI 58.00% 72.00% 68.00% 80.00% 72.00% 80.00%

TABLE 6. Average accuracy values for FC feature vectors with different
orderings.

Data sets .
FC feature vector Peking  KKI NYU NI
original 62.94% 72.73% 53.66% 58.00%
ordered 62.75% 72.73% 54.39% 58.80%
R1 62.75% 72.73% 53.90% 58.40%
R2 62.09% 70.91% 53.17% 57.60%
R3 62.09% 71.82% 53.17% 58.00%
R4 62.75% 72.73% 53.90% 57.60%
RS 62.75% 72.73% 53.17% 58.40%

Comparing the three experimental results in Table 5,
we can see that using ALFF feature obtains higher aver-
age (best) accuracy value than using FC feature, and using
the fused feature obtains the highest average (best) accuracy
value for all the data sets. The results also indicate that
the training model can learn more useful information and
be trained to be a better classifier using the fused feature
compared with using only FC or ALFF features. It also needs
to be noted that there are differences between the average
accuracy values and the best accuracy values. This is due to
that in each experiment multi-grained scanning will generate
different feature vectors, therefore different training models
and different accuracy values will be obtained.

D. IMPACT OF FC FEATURE ORDERINGS
The multi-grained scanning uses a sliding window along the
input data. For the vectorized FC data, if the order of two brain
regions are swapped, the multi-grained scanning will gener-
ate different features. Therefore, to investigate the impact of
FC feature orderings to classification results, we test seven
different FC feature vectors, namely
o the FC feature vector formed by concatenating the
first-row vector to the last-row vector of the FC lower
left triangle, labelled original
« the FC feature vector with elements being ordered from
big to small, labelled ordered
« five randomly ordered feature vectors obtained by per-
muting the order of the original vector, labelled from
R1toRS.

In the experiment, instead of fused features, only FC fea-
tures are used as the input of gcForst. The same hyper parame-
ters as the ones shown in Table 2 are used. For each FC feature
vector, the experiment was repeated ten times, the average
accuracy value for each data set is shown in the Table 6.

From Table 6, we can see that in general the average
accuracy values for the same data set are similar. For PU data
set, the average accuracy value with the original FC vector
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Data sets Peking KKI NYU NI
ADHD-200 Competition ~ 51.05%  61.90%  35.19%  56.95%
Riaz et al [7] 64.70%  81.80%  60.90%  44.00%
3D-CNN [14] 62.95%  72.82%  70.50% -
The proposed method 64.87% 82.73% 73.17%  72.00%

is higher than the ones with the ordered and R1 to RS. For
KKI, the highest average accuracy value was achieved on
the original, the ordered, R1, R4 and RS. For NYU and NI,
the ordered feature vector has the highest accuracy value.
Therefore, FC feature orderings do not affect the classifica-
tion results much.

E. COMPARISON OF DIFFERENT METHODS

Finally, we compare our revised gcForest method that used
fused feature with the method of ADHD-200 competition,
and the methods of [7] and [14]. We list the average accuracy
on the hold-out testing data sets in Table 7. From the results
we can see that for all the data sets we tested our proposed
method obtains the highest average accuracy value among
all the methods. Especially with NI and NYU data sets, our
method has obvious advantage.

V. CONCLUSION

In this paper, we have proposed a revised gcForest method
to identify ADHD and control subjects. In order to com-
bine FC and ALFF features, we have proposed a combined
multi-grained structure so as to fuse ALFF and FC feature.
Moreover, in order to handle the data imbalanced property,
we used the SMOTE with ENN to generate minority sam-
ples. Experimental results on the KKI, Peking, NYU and
NI data sets showed that our method did achieve superior
performance than the reported methods in the literature on the
hold-out testing data sets. Our method can also be applied to
other disease diagnosis with fMRI data, such as Alzheimerars
disease and autism etc. In this work, we used the average time
series for each brain region to calculate FC. In the future,
functional PCA type of approaches for fMRI data processing
can be considered.
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