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ABSTRACT A mesh adaptation method is proposed for solving optimal control problems with non-smooth
control. The original optimal control problem (OCP) is transcribed into a nonlinear programming (NLP)
problem by using the Runge-Kutta discretization method, in which the NLP can be solved by using standard
nonlinear programming codes. The method employs collocations from the dyadic background points, which
used for the second-generation wavelet (SGW) translation simultaneously. The SGW is used to approximate
the control variables and get the wavelet coefficients once they are obtained. In regions contain disconti-
nuities, the magnitude of the relevant wavelet coefficients is large than other regions. The corresponding
dyadic background points are reserved as the collocation points. Furthermore, the approximation error of
the control and/or state variables can be predicted by a given threshold. Thus, the accuracy and efficiency
can be balanced in a simple way. Finally, the method is demonstrated by three numerical examples from the
open literature.

INDEX TERMS Optimal control, mesh adaptation, adaptive collocation method, second generation
wavelets.

I. INTRODUCTION
Numerical method of optimal control has wide spread
application in aerospace field, such as flight trajectory
optimization, missile guidance, orbit transfer, et al. For
these nonlinear optimal control problems, although various
control methods have been developed [1], [2], the direct
transcription method is a general method. For the direct
transcription method, the original optimal control problems
are translated into nonlinear programming (NLP) problem,
and solved using the well-known NLP algorithm [3]. There
has been developed various method to solve optimal con-
trol problems numerically, i.e. multi-shooting method [4],
direct collocation method [5], pseudospectral method [6] and
others. To achieve the desired accuracy, the computational
mesh is often adjusted according to the estimated control or
state variables, and multiple iterations are required. There-
fore, mesh adaptation method is important for high precision
solution of the optimal control problems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianxiang Xi.

Various mesh adaptation method has been proposed to
deal with the contradiction between the accuracy and effi-
ciency for numerically solving optimal control problems. The
mesh adaptation method used in SOCS is based on integer
programming, and the goal is to minimize the maximum
integration error in the mesh adaptation process [7]. Ross
and Fahroo proposed the pseudospectral knotting method,
in which the original optimal control problem is divided into
multiple phases by discontinuity point of control, and add
linkage constraints [8]. In each phase, the pseudospectral
(PS) method is employed to obtain the discretization non-
linear programming problem. Darby, Hagar et al proposed
the hp-adaptive method, in which the method starts with
a global pseudospectral approximation, and then iteratively
determines the number of segments, the width of each seg-
ment, and the degree of the polynomial in each segment
until a specified error tolerance is satisfied [9]. In another
literature, they proposed an adaptive mesh adaptation method
using the idea of non-smoothness detection and mesh size
reduction [10]. The fundamental idea in above method is to
redistribute the mesh points according to the local integration
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or interpolation error. In addition, an intuitional strategy is to
use locally dense mesh in the region of discontinuities for the
control function or its higher order derivatives. A mesh adap-
tation method using multi-resolution analysis is proposed
in literature [11]. The method is based on the interpolating
wavelets. The error can be estimated about the local smooth-
ness of the solution in this method. The density function
method employs this strategy [12], and the redistribution of
mesh points is achieved by using the density function which
reflect the non-smoothness in the control function and its
higher order derivatives. For specific problems, some mesh
adaptive methods are also proposed, such as the adaptive
Gauss pseudospectral method for hypersonic re-entry vehicle
problem [13], mesh adaption for nonlinear model predictive
control [14], and the sensitivity-based adaptative mesh adap-
tation for chemical and biochemical process [15].

Mesh adaptation is a common topic in other areas. The
wavelet adaptive method for mesh adaptation has been used
in the computation fluid dynamics where capturing the fine
structure of the fluid field is required. Despite their popular-
ity in other fields, the wavelet adaptive method has rarely
been used for optimal control problems. Second generation
wavelet functions have well time/frequency local property,
which are suitable for fitting the function with localized struc-
tures or sharp transitions. The second-generation wavelet col-
location method has been proposed to construct non-uniform
space grids in time iteration step [16] for solving partial
differential equations with sharp transitions. In numerical
optimal control, there are a lot of problems whose control
functions are discontinuous. The second-generation wavelet
collocation method can also be applied to the optimal control
problem with discontinuous control.

Based on the above idea, we propose a novel mesh
adaptation method for numerically solving optimal con-
trol problems. The optimal control problem is transcribed
into a nonlinear programming (NLP) problem by using the
Runge-Kutta discretization method. The mesh adaptation
algorithm iteratively determines the suitable non-uniform
grid, over which the optimal control problem is discretized
and solved iteratively. Based on the magnitude of the wavelet
coefficients, more grid points around the discontinuity of the
control variables or the non-smoothness of the state variables
would be placed. The method uses a sequential optimization
technology, the process will end until the desired accuracy is
satisfied.

Compared to the multi-resolution analysis-based mesh
adaptation method, the second-generation wavelet has well
global characteristic than interpolating wavelets. Therefore,
the distribution of adaptive grid would be more reasonable,
and can balance both the global of local feature of control
variables. Compared to the integration error based method,
the proposed method can not only increase the points, but
also remove points around the region the control variables are
gently changed. It would be more effective potentially.

The paper is organized as follows. In Section II, the opti-
mal control problem is formulated, and the continuous

optimal control problem is transcribed into an NLP problem.
In Section III, second generation wavelets are described, and
the mesh adaptation algorithm for solving optimal control
problems is proposed. In Section IV, several applications of
the proposed method are provided. Finally, in Section V,
the concluding remark is provided.

II. PROBLEM FORMULATION
A. OPTIMAL CONTROL PROBLEM
In order to give a basic description, consider the follow-
ing optimal control problem. Determine the control function
u (·) and corresponding state function x (·) that minimize the
Mayer cost function:

J
[
x (·) , u (·) , tf

]
= M

[
x
(
tf
)
, tf
]

(1)

where t ∈
[
t0, tf

]
, x ∈ Rn, u ∈ Rm, M : Rn × R → R, and

L : Rn × Rm × R→ R. Subject to the state dynamics

ẋ (t) = f (x (t) , u (t) , t) (2)

the boundary conditions

ẋ (t0) = x0, ef
(
x
(
tf
)
, tf
)
= 0 (3)

where e : Rn × R→ Rn, and the constraints
Cu (u (t)) ≤ 0
Cx (x (t)) ≤ 0
Cxu (x (t) , u (t)) ≤ 0

(4)

In most cases, the initial time t0 is assumed to be given and
the final time tf can be fixed or free. The Bolza cost function
can be converted into a Mayer cost function by adding a state
and a differential equation [17].

Without loss of generality, we assume that the time interval
is the unit interval, in other words, t ∈

[
t0, tf

]
= [0, 1]. The

transformation from
[
t0, tf

]
to [0, 1] is well-known, thus the

details are omitted.
Next, the transcription from the continuous optimal control

problem over the interval [0, 1] to an NLP problem over grid
points is described.

B. TRANSCRIPTION USING RUNGE-KUTTA METHOD
The optimal control problem can be converted into an NLP
problem by using Runge-Kutta (RK) discretization. A K -
stage Runge-Kutta scheme is given by [7].

xi+1 = xi + hi
K∑
j=1

βjfij (5)

where

fij = f

[(
xi + hi

K∑
l=1

αjl fjl

)
,
(
ti + hiρj

)]
(6)

for 1 ≤ j ≤ K . K is the stage of RK method, and i is
the time step. In above expressions,

{
ρj, βj, αjl

}
are known

constants with 0 ≤ ρ1 ≤ ρ2... ≤ ρK ≤ 1. A simple
way to define the coefficients is to use the so-called Butcher
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array [18]. The scheme is explicit if αjl = 0 for l ≥ j
and implicit otherwise. The well-known examples of K -stage
Runge-Kutta schemes are the trapezoidal method (q = 2),
the Hermite-Simpson method (q = 3), and the classical
fourth-order RK method (q = 4) [7].
Using Equation (5), the defects of the discretization are

given by

ζi = xi+1 − xi − hi
K∑
j=1

βjfij (7)

for i = 0, ...,N − 1.
Let us now define the following sets: X = {x0, ..., xN },

U = {u0, ..., uN }, Ũ = {ũ0, ..., ũN−1}. Finally, the optimal
control problem reduces to the following NLP problem in
terms of the variables X , U , and Ũ . Minimize

J = M (x (1)) (8)

subject to the constraints

ζi = 0, i = 0, ...,N − 1 (9)

x (0) = x0 (10)

e (x (1)) = 0 (11)

Cu
(
U , Ũ

)
≤ 0 (12)

Cx (X) ≤ 0 (13)

Note that the convergence of the Runge-Kutta schemes
for optimal control problems has been demonstrated
by [19], [21]. In order to obtain consistent approximations
and higher order accuracy of solution, the classical 4-stage
explicit fourth-order Runge-Kutta schemes is used in this
paper. This scheme satisfies all the conditions needed for
fourth-order accuracy in optimal control given by [21].

The proposed mesh adaptation method for optimal control
is based on the second-generation wavelet, which is mostly
constructed on a set of uniform dyadic grids on the real
line or interval. For consisted with the transcription method,
an interval of [0, 1] is used in this paper. The adaptive grids
are part of dyadic grids. The grid points of adaptive grids are
determined according to the control or state variables, and
desired approximation accuracy.

III. SECOND-GENERATION WAVELET BASED MESH
ADAPTATION ALGORITHM
The mesh adaptation method is usually used to increase
the accuracy of the solution for the optimal control prob-
lems. The adaptive wavelet collocation (AWC) method [16]
based on second-generation wavelet is firstly introduced in
this section. AWC is a common framework for constructing
adaptive numerical methods for solving partial differential
equation. This method is using the second-generation wavelet
decomposition for mesh adaptation and finite difference. For
numerical method of optimal control using the RK scheme,
the mesh adaptation method based on AWC is proposed. The
AWC is modified to reduce the mesh points.

FIGURE 1. Example of dyadic grid.

A. DYADIC GRIDS AND MULTI-RESOLUTION ANALYSIS
The second-generation wavelets (SGW) are constructed on
a set of dyadic grids. Because the mesh refine process is
based on SGW, the discretization of the optimal control
problem will be performed on a set of (non-uniform) grids
taken from the dyadic grids. A uniform dyadic grid over
the interval I = [0, 1] is a collection of points of the
form [22].

Gj =
{
t jk ∈ [0, 1] : t jk = k/2j, 0 ≤ k ≤ 2j

}
, J0 ≤ j ≤ J

(14)

where j is the resolution level, k is the spatial location, J and
J0 are positive integers. Let F j denote the set of grid points
belonging to Gj+1\Gj; that is

Fj =

{
t̃ jk ∈ [0, 1] ; t̃ jk = (2k + 1) /2j+1, 0 ≤ k ≤ 2j − 1

}
,

Jmin ≤ j ≤ Jmax − 1
(15)

It is obvious that

t jk = x j+12k ∈ Gj, t̃ jk = t j+12k+1 ∈ F j, 0 ≤ k ≤ 2j (16)

and
{
Gj
}
, Jmin ≤ j ≤ Jmax forms a sequence of nested grid

set, exactly GJmin ⊂ GJmin+1 ⊂ · · · ⊂ GJmax . An illustration of
one dimensional case is given in Figure 1.

Next, the definition of multi-resolution analysis is
given briefly [22]. Definition: A second-generation multi-
resolution analysis M of a function space L consists of a
sequence of closed subspaces M =

{
Vj ⊂ L|j ∈ J

}
so that

(1) Vj ⊂ Vj+1;
(2) ∪j∈J Vj is dense in L;
(3) for each j ∈ J , Vj has a Riesz basis given by scaling

functions
{
φ
j
k

∣∣k ∈ Kj
}
. in which, Kj is some index set. Let

the superscript j to denote the level of resolution and the
subscript k to denote the location at that level of resolution
for notational convenience. It is worth emphasizing that there
is no limitation on φjk to be dilated or translated from some
fixed mother function.W j is named as the complement of V j
in V j+1, i.e. V j+1 = V j ⊕W j, and wavelet ψ j

k (l ∈ L
j) is the

basis function for W j.
The multi-resolution decomposition from level J down to

a coarser level J0 is performed as

VJ = VJ0+WJ0+WJ0+1+...+WJ−1, J0≥0, J≥1 (17)
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So, we have the wavelet representation of a function as fol-
lows

f (x) ≈
∑
k∈GJ0

cJ0k φ
J0
k (t)+

∑
J0≤j≤J−1

∑
k∈F j

d jkψ
j
k (t), ∀t ∈ I

(18)

For the functions with isolated small scales on a large-
scale background, the most coefficients are very small. For
the second-generation wavelet, every wavelet is uniquely
associated with a grid point, and thus grid adaption is simply
based on the analysis of wavelet coefficients; i.e., at any given
iteration step of solving for optimal control problem, the used
grid points consist of points corresponding to wavelets whose
coefficients are greater than a given threshold ε, which is the
parameter controls the accuracy of the solution.

B. SECOND-GENERATION WAVELETS AND TRANSFORM
Second-generation wavelets are a generalization of bi-
orthogonal wavelet, but not have the translation and dilation
invariance of their bi-orthogonal companion. For complete-
ness of presenting the mesh adaptation method for solv-
ing optimal control problem, second-generation wavelets
are shortly introduced in this section. The completely and
strictly discussion of second-generation wavelets can be
found in [22] and [16].

In the multi-resolution analysis of second-generation
wavelets, a function f (t) ∈ L2 can be approximated on some
certain level of J as follows

f J (t)=
∑
k∈GJ0

cJ0k φ
J0
k (t)+

∑
J0≤j≤J−1

∑
k∈F j

d jkψ
j
k (t), ∀t ∈ I

(19)

where φ is the scaling function and ψ is wavelet function;
c and d are scaling coefficient and wavelet coefficient. If the
level of resolution J is high sufficiently such that all scales are
adequately resolved, then the error

∥∥f (t)− f J (t)∥∥
∞

can be
negligible in the sense that it is of the same order truncation
of the machine. Then f J (t) is given a good approximation
of original function f (t). For the mesh adaptation of optimal
control problem, the function f (t) can be state function or
control function.

The tool for constructing second-generation is the lift-
ing scheme. In contrast to classical wavelets, the advan-
tage of lifting scheme is that the wavelets can be designed
for interval and irregular sampling. The construction of
second-generation wavelet involves two building blocks,
interpolating and lifting. They are all based on local poly-
nomial interpolation on dyadic grids

{
Gj
}
. Given a sampling{

f jk = f
(
t jk
)
,∀t jk ∈

{
Gj
}}

of x, the basic procedure of con-
structing second-generationwavelet is predicting the function
value of f onFj by polynomial interpolation of degree 2N−1
and then update the function value on Gj by polynomial
interpolation of degree 2Ñ − 1.

FIGURE 2. Scale function of lifted interpolating wavelet.

FIGURE 3. Wavelet function of lifted interpolating wavelet.

For the lifted interpolating wavelet, the forward wavelet
transform can be depicted by [16], [22].

d jk =
1
2

(
c2k+1j+1 −

∑
l

wk,lj c2k+2lj+1

)
(20)

cjk = cj+12k+1 +
∑
l

w̃jk,ld
j
k+l (21)

while the inversewavelet interpolating transform can be given
by

cj+12k = cjk −
∑
l

w̃jk,ld
j
k+l (22)

cj+12k+1 = 2d jk +
∑
l

w̃jk,lc
j
k+l (23)

where wjk,l and w̃
j
k,l are the interpolating coefficients from

even points t j+12(k+l) to odd points t j+12k+1 and from odd points

t j+12k+2l+1 to even points t j+12k respectively. The above coeffi-
cients can be determined by the lifting interpolating scheme.
In the numerical implementation, there are three steps for
forward wavelet transform, i.e. splitting, interpolating (or
prediction), and lifting (or update) [22].

The order of interpolating polynomial used in this paper
is N = Ñ = 2, the corresponding interpolating weights
and update weights are illustrated in Table 1 and Table 2.
An example of scale function and wavelet function of the
lifted interpolating wavelet is shown in Figure 2 and Figure 3.
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TABLE 1. Interpolating weights for N = 2.

TABLE 2. Lifting weights for Ñ = 2.

C. MESH ADAPTATIVE METHOD
For the optimal control problem with irregularities or discon-
tinuities in the control function, it is desired to get an accurate
solution with fewer collocation points. The basic idea is to use
denser collocation around the discontinuities, and use sparse
in other area. In this research, the second-generation wavelets
and the mesh adaptative method based on it are employed to
achieve this purpose.

Consider the control function u (t) defined on a closed
interval [0, 1]. The second-generation wavelets are con-
structed on a set of grids,

Gj =
{
t jk ∈ � : k ∈ Kj

}
, j ∈ Z (24)

where grid points t jk can be uniformly or non-uniformly
spaced, satisfying t jk = t j+12k . The grid guarantees the nesting-
ness, i.e., Gj−1 ⊂ Gj. According to the construction method
of the second-generation wavelets, u (t) can be represented
approximately by scale function φjk (t)

(
k ∈ Kj

)
and wavelet

ψ
j
l (t)

(
l ∈ Lj

)
such that on each level of resolution [21],

uJ (τ ) =
∑
k∈K0

c0kφ
0
k (τ )+

J−1∑
j=0

∑
l∈Lj

d jlψ
j
l (τ ) (25)

The absolute of the wavelet coefficients represent the local
smooth property of a function. If the function is smooth
in local, then the corresponding wavelets coefficient will
small. For the function with local irregularities or discon-
tinuities, most of the coefficients will be small excepting
that around the irregularities. Therefore, well approximation
can be achieved even though discarding wavelets with small
coefficient.

The approximation based on the second-generation
wavelets can be denoted as a sum of two terms contains
wavelets whose coefficients are above and below the given
threshold ε [21].

uJ (t) = uJ≥ (t)+ u
J
< (t) (26)

in which

uJ≥ (τ ) =
∑
k∈K0

c0kφ
0
k (τ )+

J−1∑
j=0

∑
l∈Lj,

∣∣∣d jl ∣∣∣≥ε
d jlψ

j
l (τ ) (27)

uJ< (τ ) =
J−1∑
j=0

∑
l∈Lj,

∣∣∣d jl ∣∣∣<ε
d jlψ

j
l (τ ) (28)

According to the above approximation, all grid points t jk
associated with wavelets

∣∣∣d ji ∣∣∣ > ε are collected, i.e.

Gjε =
{
t jk ∈ �

∣∣∣k ∈ Kj ,

∣∣∣d ji ∣∣∣ > ε
}

(29)

It is noted that for a function with localized structures or non-
smoothness, the number of Gjε would be much small than
that of Gj. Each scaling function φjk (t) is uniquely associated
with t jk , while each waveletψ

j
k (t) is uniquely associated with

t j2l+1. Therefore, after the wavelet decomposition, each grid
point on GJ is associated with either the wavelet or the scaling
function at the coarsest level of resolution. According these
relations, the fewest grid points can be determined. Besides,
the points associated with wavelets belonging to an adjacent
zone should be included in the computational grid in order to
improve the accuracy of the solution [16]. It is said that the
wavelet ψ j′

l (t) belongs to the adjacent zone of wavelet ψ j
l (t),

if they satisfy the following relations,∣∣j− j′∣∣ < L,
∣∣∣2j−j′ − k∣∣∣ < M (30)

where L determines the level of resolution extent to, and M
defines the width of the adjacent zone in the same level of
resolution.

Given the value on finest grid GJ of control function uJk ,
the procedure for obtaining the new grid points based on
adaptive method is as follows.

(1) Perform the forward wavelet transform on uJk , obtain
the scaling coefficients c0k (k ∈ K ) and the wavelet coeffi-
cients d jl (l ∈ L, 0 ≤ j ≤ J − 1) on each resolution level.
(2) Analyses wavelet coefficients for control function, and

create a mask M for the grid points t jk associated with

wavelets which have magnitude
∣∣∣d jl ∣∣∣ larger than ε.

(3) Extend the mask M to the grid points in the adjacent
zone.

(4) Increment j by 1, then according to the above the mask
M construct the computational grid points Gjε which will be
used for the next step of optimization.

In the above step, the method adaptively removes the grid
points from the region where the solution is smooth at the
coarser level, and adds new grid points for the region where
the previous control function has non-smoothness.

The compression and reconstruction of the smooth func-
tion with sharp transitions are tested with the following two
functions.
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TABLE 3. Approximation error for test function 1.

TABLE 4. Approximation error for test function 2.

(1) smooth function with local structure

f (x) = − tanh ((x − x0) /µ) (31)

(2) discontinuities function common in bang-bang control

f (x) =
{
0 0 ≤ x ≤ 0.5
1 0.5 < x ≤ 1

(32)

The distribution of the significant wavelet coefficients∣∣∣d jk ∣∣∣ ≥ ε with J0 = 3, J = 12, N = Ñ = 2, L = M = 1

and ε = 10−3 is plotted in Figure 4. For the first test,
the max level of resolution is 9, the number of significant
wavelet coefficients is 65; for the second test, the max level
of resolution is 12, the number of significant wavelet coef-
ficients is 83. Table 3 and Table 4 gives the approximation
error (maximum norm of error function), retained number of
wavelet coefficients and max level of resolution for the two
test functions.

D. ITERATIVE PROCEDURE
Using the mesh adaptation method described above, the grid
points automatically adapt to any non-smoothness in the
control function. The procedure for solving optimal control
problem is as follows:
Step1: Initialization
Set the coarsest and finest level of resolution J0, and Jmax,

the threshold ε, and wavelet adjacent parameter L and M .
Give an initial guess for state x and control u associated

with collocation points on GJ0 .
Set the stop condition, j > Jmax or the grid points are the

same for two close iterations.
Step2: Solve the NLP problem given by Runge-Kutta

transcription method with the initial guess using some
well-known methods, i.e. SNOPT [23], obtain the solution
(state and control function).
Step3: Using the mesh adaptative method described in

Section 3.3, obtain the new computational grid points Gjε.
If the optimal control problem has multiple control variables,

FIGURE 4. Test function and grid points distribution.

the grid points Gjε for each control variable are combined to
a set of grid points.
Step4: Construct the new initial guess solution for Gjε.
Step5: If the stop condition is satisfied, output the state and

control; otherwise go to Step2.
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FIGURE 5. Schematic of mesh adaptation method using second
generation wavelet (AWC-OC).

In Step1, the solution should converge fast, because the
NLP problem was solved on the coarsest grid with fewest
grid points. However, this rough solution on the coarsest
grid may not be accurate enough. In order to improve the
accuracy close to the control non-smoothness, more points
should be placed on the region where the control function
of the previous solution has steep gradient, and put fewer
grid points in the smooth regions. In Step4, the solution for
state and control function of the previous iteration is set as
the initial guess of the followed iteration. Additionally, the
threshold ε is generally set as ε = α (umax − umin). The main
parameters are set as follows:

(1) For the discontinuous optimal control function, α is
usually chosen as 0.005∼0.01; for the smooth optimal control
function, α is usually chosen as 0.001∼0.005.
(2) For the most problems, Jmax should be no great than 10,

corresponded finest mesh points is 1025.
The schematic of the proposed method, called AWC for

optimal control (AWC-OC) is shown in Figure 5.

IV. NUMERICAL EXAMPLES
Several examples are solved using the second-generation
wavelet-based mesh adaptation method. All of the examples
demonstrated in this section are taken from the open litera-
ture and were solved using the Runge-Kutta discretization.
SNOPT [23] is employed as the NLP solver, and automatic
differential toolkit Intlab [24] is used to compute the Jacobian
matrix. All computations were performed on a computer with
Intel (R) Core (TM) i3-2120 CPU 3.30 GHz 3.29 GHz, and
3.48 GB RAM.

A. BREAKWELL PROBLEM
Consider the following minimum-energy problem with a
second-order state variable inequality constraint [25]. The
problem is to find the control u (t) that minimizes the cost
function

J = 0.5
∫ 1

0
u2dt (33)

subject to the dynamic constraints

ẋ (t) = v (t) , v̇ (t) = u (t) (34)

the boundary conditions

x (0) = 0, x (1) = 0, v (0) = −v (1) = 1 (35)

and the state path constraint

x (t) ≤ l (36)

where l is a positive real number, x and v are state variables.
The optimal control u∗ (t) and optimal index J∗ can be

given as follows:
(1) l ≥ 1/4

u∗ (t) = −2, 0 ≤ t ≤ 1

J∗ = 2 (37)

(2) 1/6 ≤ l < 1/4

u∗ (t) =

{
−8 (1−3l)+ 24 (1− 4l) t, 0 ≤ t ≤ 1/2
−8 (1−3l)+ 24 (1−4l) (1−t) , 1/2 < t ≤ 1

J∗ = 2+ 6 (1− 6l)2 (38)

(3) 0 < l < 1/6

u∗ (t) =


−

2
3l

(
1−

t
3l

)
0 ≤ t ≤ 3l

0 3l < t ≤ 1− 3l

−
2
3l

(
1−

1− t
3l

)
1− 3l < t ≤ 1

J∗ = 4/9l (39)

The optimization is started with 17 points and linear initial
guess. The threshold of wavelet coefficients is set to ε =
1 × 10−3(umax − umin). The same problem is also solved
using the global pseudospectral collocationmethodwith open
numerical optimal control codes GPOPS [26]. Both methods
were tested on the same computer, and using the same initial
guess.

The mesh adaptation history of AWC-OC method for the
case with l = 0.1 is shown in Figure 6. In the figure,
the vertical solid line indicate the points of discontinuities in
the analytical solution (at t = 0.3 and t = 0.7). It is can be
seen that the grid points get denser around the two points with
discontinuities in the control derivative after each iteration.
The state and control function are shown in Figure 7 and
8 respectively. In these figures, the solid lines denote the
analytical solution, and themarked lines denote the numerical
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FIGURE 6. Mesh adaptation(l = 0.1) for Breakwell problem.

TABLE 5. Comparison of precision and optimality.

solution. The line marked as ‘‘∗’’ and ‘‘+’’ represent the state
‘‘x’’ and ‘‘v’’ respectively.
Table 5 gives the results from AWC-OC and GPOPS for

the Breakwell problem. In the table, N is the number of the
final mesh, J − J∗ is the optimality error, and ‖u− u∗‖∞ =
maxi |ui − u∗ (ti)| is the norm of the error between the dis-
cretized control {ui}Ni=1 and the exact solution u

∗. The results
showed that the optimality error of the GPOPS solution was
about 10−6 ∼ 10−7 with a maximum control error about
10−2. AWC-OC method exhibited an optimality error at the
order 10−7 ∼ 10−9, and a maximum control error at the order
of 10−3 ∼ 10−4. The compared results showed that AWC-
OCmethod proposed in this paper achieved a higher accurate
solution than global pseudospectral collocation method by
GPOPS.

B. MOON-LANDER PROBLEM
Consider the following optimal control problem, which is
known in the literature as the moon-lander problem [9], [27].

FIGURE 7. Time history of state for Breakwell problem.

FIGURE 8. Time history of control for Breakwell problem.

The problem is to find the time duration tf and control
u (t) ∈

[
0, tf

]
to minimize the cost function

J =
∫ tf

0
u (t) dt (40)

subject to the dynamic constraints

ḣ = v
v̇ = −g+ u

(41)

the boundary conditions

h (0) = h0 = 10, v (0) = v0 = −2

h
(
tf
)
= hf = 0, h

(
tf
)
= vf = 0 (42)

and the control path constraint

0 ≤ u ≤ umax = 3 (43)

where tf is free, h and v are state variables, g is a constant,
and is equal 1.5. The optimal solution to the moon-lander
problem is ‘‘bang-bang’’ type with its minimum value for
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FIGURE 9. The history of control on final grid.

t < s∗ and its maximum value for t > s∗, and given
as(

v∗ (t) , u∗ (t)
)

=

{
(v0 − gt, 0) , t ≤ s∗

((v0−umaxs∗)+(umax−g) t, umax) , t > s∗

h∗ (t) (44)

=


−
1
2
gt2 + v0t + h0, t ≤ s∗

1
2
(umax−g) t2+

(
v0−umaxs∗

)
t+

1
2
umax

(
s∗
)2

+h0, t > s∗

(45)

where s∗ is given as

s∗ =
1

umax

[
v0 + (umax − g) t∗f

]
(46)

with

t∗f =
v0
g
+

1
g

√
umax

umax − g

(
v20 + 2h0g

)
(47)

For the boundary conditions given in Equation (42) with
g = 1.5, umax = 3, the analytically optimal solutions are(
s∗, t∗f

)
=(1.415404, 4.164141) and J∗ = 8.2462.

Figure 9 shows the time history of control of moon-lander
problem for ε = 1×103, and Figure 10 shows the distribution
of adaptive points on each iteration of the proposed method.
The problem is initialized with 17 uniform points. As the
iteration continues, more dense points are located near the
control discontinuity. After 7 iterations, the final number of
grid points is 67. The numerical optimal solutions are (s∗,
t∗f ) = (1.41540, 4.16414), and J∗ = 8.2462. The AWC-OC
gives very precious solution. Then, the same problem is
solved by GPOPS with 67 global collocation points. The
optimized objective function is 8.24697, and the absolute
error is 7.723×10−4. It can be seen that AWC-OCmethod can

FIGURE 10. Normalized points on various grids.

get more accurate solution than global pseudospectral collo-
cation method by GPOPS by the same number of collocation
points.

C. REORIENTATION OF AN ASTMMETRIC RIGID BODY
Two examples above are typical optimal control problems
for testing mesh adaptation method. In this subsection,
a more complex example taken from engineering is solved by
AWC-OC.

Consider the following optimal control problem of reori-
entation of an asymmetric rigid body [7], [28]. The prob-
lem is to find the control u(t) that minimizes the cost
function

J = tf (48)

subject to the dynamic constraints

σ̇1 =
1
4

((
1+ σ 2

1 − σ
2
2 − σ

2
3
)
ω1 + 2(σ1σ2 − σ3)ω2

+2(σ1σ3 + σ2)ω3

)
σ̇2 =

1
4

(
2
(
σ1σ2 + σ3

)
ω1 + (1− σ 2

1 + σ
2
2 − σ

2
3 )ω2

+2(σ2σ3 − σ1)ω3

)
σ̇3 =

1
4

(
2
(
σ1σ3 − σ2

)
ω1 + 2(σ2σ3 + σ1)ω2

+(1− σ 2
1 − σ

2
2 + σ

2
3 )ω3

)
ω̇x =

[
u1 + (Jy − Jz)ωyωz

]
/Jx

ω̇y =
[
u2 + (Jz − Jx)ωxωz

]
/Jy

ω̇z =
[
u3 + (Jx − Jy)ωxωy

]
/Jz (49)

the boundary conditions

σ T (0) = [0, 0, 0]

σ T
(
tf
)
=

[
tan

φ

4
, 0, 0

]
ω (0) = ω

(
tf
)
= 0 (50)
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FIGURE 11. Time history of modified Rodrigoues parameter and angular
velocity.

FIGURE 12. Time history of the control torque.

and the inequality path constraint

|ui| ≤ 50N ·m (51)

where σ T = [σ1, σ2, σ3]T = tan φ4 [e1, e2, e3]
T is the modi-

fied Rodrigues parameters (MRPs), where e1, e2, and e3 are
the components of the Euler axis vector, φ is the Euler axis
rotational angle, ωT = [ω1, ω2, ω3] is angular velocity vec-
tor. The moments of inertia are given by: Jx = 5621 kg ·m2,
Jy = 4547kg ·m2, Jz = 2364kg ·m2, the Euler axis rotational
angle is φ = 150

◦

.
The problem is initialized with 17 uniform points, after

seven iterations, the final number of grid points is 187.
The thresholds for wavelet coefficients is εi = 5 ×
102 ‖uimax − uimin‖ (i = 1, 2, 3). Figure 11 shows the
time history of modified Rodrigoues parameter and angular
velocity, Figure 12 shows the time history of control, Fig-
ure 13 shows the distribution of adaptive points after each
iteration of the method. The optimization objective function
is 28.630408. The results are in good agreement with the ref-
erence [7]. It can be seen from the results that the mesh points
get denser around the control discontinuity by using the mesh
adaptation method based on second-generation wavelet.

It is noted that, the dimension of control is three, and the
controls are independent each other for this problem. In the
process of mesh adaptation, the mesh grids of each control

FIGURE 13. Normalized points on various grids.

are computed individually, and then combining the mesh
grids. Therefore, there exists denser mesh in smooth region
of control.

V. CONCLUSION
In this paper, a second-generation wavelet-based mesh adap-
tation method (AWC-OC) has been developed for numeri-
cally solving the optimal control problems. The Runge-Kutta
discretization method is employed to convert the optimal
control problem to nonlinear programming (NLP) problem,
which can be solved by using standard nonlinear program-
ming codes. To improve the solution accuracy of the optimal
control problem, a sequentially iteration solving process is
adopted. The non-uniform grid from the background uniform
dyadic grids is determined by the proposed method.

The method has been applied to several examples having
varying complexity. It can be seen that the method produces
solutions with better accuracy than the global pseudospectral
method. The method is demonstrated on a wide variety of
applications, i.e. non-smooth solution and practical engineer-
ing optimal control problems.

REFERENCES
[1] J. Xi, C. Wang, H. Liu, and L. Wang, ‘‘Completely distributed guaranteed-

performance consensualization for high-order multiagent systems with
switching topologies,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 49,
no. 7, pp. 1338–1348, Jul. 2019.

[2] J. Xi, M. He, H. Liu, and J. Zheng, ‘‘Admissible output consensualization
control for singular multi-agent systems with time delays,’’ J. Franklin
Inst., vol. 353, no. 16, pp. 4074–4090, Nov. 2016.

[3] J. T. Betts, ‘‘Survey of numerical methods for trajectory optimization,’’
J. Guid. Control Dyn., vol. 21, no. 2, pp. 193–207, Mar./Apr. 1998.

[4] H. B. Keller, Numerical Solution of Two Point Boundary Value Problems,
Waltham: Blaisdell, U.K., 1968.

[5] O. von Stryk, ‘‘Numerical solution of optimal control problems by direct
collocation,’’ inOptimal Control (ISNM International Series of Numerical
Mathematics), vol. 111, R. Bulirsch, A. Miele J. Stoer, and K. Well, Eds.
Basel, Switzerland: Birkhäuser Basel, 1993.

[6] M. A. Patterson andA. V. Rao, ‘‘GPOPS-II: AMATLAB software for solv-
ing multiple-phase optimal control problems using hp-adaptive Gaussian
quadrature collocation methods and sparse nonlinear programming,’’ ACM
Trans. Math. Softw., vol. 41, no. 1, p. 1, Oct. 2014.

[7] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2009.

VOLUME 7, 2019 135085



Z. Feng et al.: Mesh Adaptation Method for Optimal Control With Non-Smooth Control Using SGW

[8] I. M. Ross and F. Fahroo, ‘‘Pseudospectral knotting methods for solv-
ing optimal control problems,’’ J. Guid., Control, Dyn., vol. 27, no. 3,
pp. 397–405, 2004.

[9] C. L. Darby, W. Hager, and A. V. Rao, ‘‘An hp-adaptive pseudospectral
method for solving optimal control problems,’’Optim. Control Appl. Meth-
ods, vol. 32, no. 4, pp. 476–502, 2011.

[10] F. Liu,W.W. Hager, and A. V. Rao, ‘‘Adaptive mesh refinement method for
optimal control using nonsmoothness detection and mesh size reduction,’’
J. Franklin Inst., vol. 352, no.10, pp. 4081–4106, Oct. 2015.

[11] S. Jain and P. Tsiotras, ‘‘Trajectory optimization using multiresolution
techniques,’’ J. Guid., Control, Dyn., vol. 31, no. 5, pp. 1424–1436, 2008.

[12] Y. Zhao and P. Tsiotras, ‘‘Density functions for mesh refinement in numer-
ical optimal control,’’ J. Guid., Control, Dyn., vol. 34, no. 1, pp. 271–277,
Feb. 2011.

[13] L. Xiao, L. Lv, P. Liu, X. Liu, andG. Huang, ‘‘A novel adaptive Gauss pseu-
dospectral method for nonlinear optimal control of constrained hypersonic
re-entry vehicle problem,’’ Int. J. Adapt. Control Signal Process., vol. 32,
no. 9, pp. 1243–1258, Sep. 2018.

[14] K. Lee,W.H.Moase, andC.Manzie, ‘‘Mesh adaptation in direct collocated
nonlinear model predictive control,’’ Int. J. Robust Nonlinear Control,
vol. 28, no. 15, pp. 4624–4634, Oct. 2018.

[15] L. Xiao, P. Liu, X. Liu, Z. Zhang, Y. Wang, C. Yang, W. Gui, X. Chen, and
B. Zhu, ‘‘Sensitivity-based adaptive mesh refinement collocation method
for dynamic optimization of chemical and biochemical processes,’’ Bio-
process Biosyst. Eng., vol. 40, no. 9, pp. 1375–1389, Sep. 2017.

[16] O. V. Vasilyev and C. Bowman, ‘‘Second-generation wavelet collocation
method for the solution of partial differential equations,’’ J. Comput. Phys.,
vol. 165, no. 2, pp. 660–693, Dec. 2000.

[17] J. Z. Ben-Asher, Optimal Control Theory with Aerospace Applications.
Reston, VA, USA: American Institute of Aeronautics and Astronautics,
Inc., 2009.

[18] J. C. Butcher, ‘‘Implicit Runge-kutta processes,’’ Math. Comput., vol. 18,
no. 85, pp. 50–64, 1964.

[19] A. L. Dontchev, W. W. Hager, and V. M. Veliov, ‘‘Second-order Runge–
Kutta approximations in control constrained optimal control,’’ SIAM J.
Numer. Anal., vol. 38, no. 1, pp. 202–226, 2000.

[20] W. W. Hager, ‘‘Runge-Kutta discretizations of optimal control problems,’’
in System Theory: Modeling, Analysis and Control, T. E. Djaferis and
I. C. Schick, Eds. Norwell, MA, USA: Kluwer, 2000.

[21] W. W. Hager, ‘‘Runge-Kutta methods in optimal control and the trans-
formed adjoint system,’’ Numerische Math., vol. 87, no. 2, pp. 247–282,
Dec. 2000.

[22] W. Sweldens, ‘‘The lifting scheme: A construction of second generation
wavelets,’’ SIAM J. Math. Anal., vol. 29, no. 2, pp. 511–546, 1998.

[23] P. E. Gill, W. Murray, and M. A. Saunders, ‘‘SNOPT: An SQP algorithm
for large-scale constrained optimization,’’ SIAM Review, vol. 47, no. 1,
pp. 99–131, 2002.

[24] S. M. Rump, ‘‘INTLAB—INTerval LABoratory,’’ in Developments
in Reliable Computing, T. Csendes, Ed. Dordrecht, The Netherlands:
Kluwer,1999, pp. 77–104.

[25] A. E. Bryson andY.-C. Ho,Applied Optimal Control. NewYork, NY, USA:
Taylor & Francis, 1975.

[26] A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin,
I. Sanders, and G. T. Huntington, ‘‘Algorithm 902: Gpops, a MATLAB
software for solving multiple-phase optimal control problems using the
gauss pseudospectral method,’’ ACM Trans. Math. Softw., vol. 37, no. 2,
p. 22, 2010.

[27] J. Meditch, ‘‘On the problem of optimal thrust programming for a lunar
soft landing,’’ IEEE Trans. Autom. Control, vol. 9, no. 4, pp. 477–484,
Oct. 1964.

[28] A. Fleming, P. Sekhavat, and I. M. Ross, ‘‘Minimum-time reorientation of
a rigid body,’’ J. Guid., Control, Dyn., vol. 33, no. 1, pp. 160–170, 2010.

ZHIWEI FENG was born in Linfen, Shanxi,
China, in 1984. He received the B.S. degree in
aerospace engineering, and the M.S. and Ph.D.
degrees in mechanics from the National Univer-
sity of Defense Technology, Changsha, in 2006,
2008, and 2014, respectively, where he has been a
Lecturer, since 2014. His research interests include
aerodynamic design and multiobjective optimiza-
tion of flight vehicles.

QINGBIN ZHANG was born in Datong, Shanxi,
China, in 1975. He received the B.S., M.S.,
(mechanics), and Ph.D. degrees in aeronautical
and astronautical science and technology from
the National University of Defense Technology,
Changsha, in 1996, 1999, and 2003, respectively,
where he was a Lecturer, from 2003 to 2005,
and also an Associate Professor, from 2005 to
2019. Since 2019, he has been a Professor with
the National University of Defense Technology.

His research interests include multiobjective optimization, space nets, and
parachute deployment.

JIANQUAN GE was born in Anshan, Liaoning,
China, in 1981. He received the B.S. degree in
engineering mechanics from the Dalian Univer-
sity of Technology, Dalian, in 2002, and the M.S.
degree in general mechanics and the Ph.D. degree
in aeronautical and astronautical science and tech-
nology from the National University of Defense
Technology, Changsha, in 2004 and 2010, respec-
tively. From 2010 to 2019, he was a Lecturer with
the National University of Defense Technology,

where he has been an Associate Professor, since 2019. His research interest
includes overall design and optimization of flight vehicles.

WUYU PENG was born in Mianyang, Sichuan,
China, in 1990. He received the B.S. degree
in weapons systems and engineering from the
Nanjing University of Science and Technology,
Nanjing, in 2012, and theM.S. degree in aeronauti-
cal and astronautical science and technology from
the National University of Defense Technology,
Changsha, in 2015. From 2008 to 2012, he was
a student with the Nanjing University of Science
and Technology. Since 2012, he has been a student

with the National University of Defense Technology. His research interest
includes overall design and optimization of flight vehicles.

TAO YANG was born in Changde, Hunan, China,
in 1962. He received the B.S. and M.S. degrees in
solid rocket engine technology from the National
University of Defense Technology, Changsha,
in 1989, and the Ph.D. degree in ballistics from
the NanjingUniversity of Science and Technology,
Nanjing, in 1992. From 1992 to 1994, he was a
Lecturer with the National University of Defense
Technology, and was also an Associate Professor,
from 1994 to 2001. Since 2001, he has been a

Professor with the National University of Defense Technology. His research
interests include overall design and optimization of flight vehicles, and
aerospace propulsion theory and engineering.

JINLIANG JIEwas born inYichun, Jiangxi, China,
in 1983. He received the B.S. degree in materials
science and engineering and the M.S. degree in
energetic material from the National University
of Defense Technology, Changsha, in 2006 and
2008, respectively, where he has been an Engineer,
since 2008. His research interests include energetic
material and overall design of flight vehicles.

135086 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	OPTIMAL CONTROL PROBLEM
	TRANSCRIPTION USING RUNGE-KUTTA METHOD

	SECOND-GENERATION WAVELET BASED MESH ADAPTATION ALGORITHM
	DYADIC GRIDS AND MULTI-RESOLUTION ANALYSIS
	SECOND-GENERATION WAVELETS AND TRANSFORM
	MESH ADAPTATIVE METHOD
	ITERATIVE PROCEDURE

	NUMERICAL EXAMPLES
	BREAKWELL PROBLEM
	MOON-LANDER PROBLEM
	REORIENTATION OF AN ASTMMETRIC RIGID BODY

	CONCLUSION
	REFERENCES
	Biographies
	ZHIWEI FENG
	QINGBIN ZHANG
	JIANQUAN GE
	WUYU PENG
	TAO YANG
	JINLIANG JIE


