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ABSTRACT This paper considers the problem of asynchronous observer-based finite-horizon control of
Markov jump systems (MJSs) with actuator saturations. The hidden Markov model is employed to describe
asynchronous phenomenon between observer-based controller and the plant, where the observer designed
has its own jumping mode that is different from that of the controlled plant. The purpose of this paper
is to develop an asynchronous observer-based controller to ensure that an H∞ performance index, over a
given finite-horizon, can be satisfied for MJSs with actuator saturation. A sufficient condition is derived to
guarantee that theH∞ performance index can be achieved by using the stochastic Lyapunov function theory
and S-Procedure lemma. Then, a recursive linear matrix inequality (RLMI) approach is applied to design
the gains of the controller and observer. Finally, an example is given to verify the proposed algorithm.

INDEX TERMS Markov jump systems (MJSs), finite-horizon control, actuator saturation, asynchronous
control, observer.

I. INTRODUCTION
In the past decades, Markov jump systems (MJSs), as a
special type of the hybrid system, can be widely used to
describe the dynamics of some practical systems subject to
random variations coming from the unpredictable external
disturbances, failures or repairs of components. Many results
associated with different performance indexes including sta-
bilization problem, passivity, dissipativity, state estimation/
filtering and H∞ performance, etc., for MJSs have been
investigated by employing different approaches. For exam-
ple, [1] studied the stabilization problem of MJSs subject
to time-varying delays and the partially known transition
probabilities. The state estimation problem of MJSs has been
discussed by employing the sliding-mode control approaches
in [2] and the same method has also been developed to
consider the dissipativity problem in [3]. Other performances
related approaches for MJSs can be found in [4]–[6], just to
name a few.

The associate editor coordinating the review of this manuscript and
approving it for publication was Fangfei Li.

It is known that in practical control systems, actuators can
only provide limited width of transmission signals owing to
the physical, safety or technological restrictions, which may
lead to amplitude saturations of actuators. Thus, saturation
problem for actuators has received increasing attention due
to its importance, and some results related to filtering and
control have been reported in [7]–[9] and MJSs in [10]–[12].
Unfortunately, in above references, it is implicitly assumed
that the states of the controlled system are always available,
and the filter and the plant work synchronously. However,
the states of the controlled systems are always not available
for directed measurement due to external factors. It is often
possible to estimate the states by introducing observers that
have been widely used when the states of the controlled
system are unavailable. For example, [13] employed the
dynamic output feedback control to discuss the stabilization
problem of singular MJSs. The fault-tolerant sliding-mode-
observer problem forMJSs with quantized measurements has
been studied in [14] and [15] considered the actuator and
sensor faults for MJSs. Robust dynamic output feedback of
delayed MJSs has been discussed in [16]. Note that most
existing results considered different performances of MJSs
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over the infinite horizon. Very few results have been pre-
sented to consider the observer-based control of MJSs with
actuator saturation over a finite horizon, which is one of
motivations.

On the other hand, the above mentioned references
considered the synchronous phenomenon which means the
controller and the plant work synchronously. However, syn-
chronous phenomenon is very difficult and even impossible
to hold due to the effects of time delays and packet loss.
When the mode information of the controlled system can
not be completely accessed to the controller, it leads to the
asynchronous phenomenon. Thus, it is worthwhile to pay
more attention on the asynchronous control of MJSs. Very
recently, the authors of [17]proposed an asynchronous state
feedback controller to investigate the passivity problem of
MJSs. Then, some associated results for MJSs based on [17]
have been published in [18], [19]. However, asynchronous
control problem between the controlled plant and the observer
has not been adequately investigated, not to mention the
case where the actuator saturation and finite horizon are also
involved.

Based on above discussions, to the best of the authors’
knowledge, very few results have been presented to consider
the asynchronous observer-based finite-horizon control of
MJSs with actuator saturation. It is, therefore, the purpose
of this paper to shorten the gap by using the S-Procedure
Lemma and Recursive LMIs(RLMIs) approach. The contri-
butions of this paper can be summarized as follows: (1) The
observer is introduced to estimate the states of the systems.
An asynchronous control between the controlled system and
the observer is considered, where the observer has its own
jumping mode different from the jumping mode of the plant.
(2) The finite-horizon control is applied to investigate the
asynchronous observer of MJSs in the presence of actuator
saturation, which has not been well studied in literature.
(3) The sufficient condition for MJSs is derived to guarantee
that the H∞ performance can be achieved over a given finite
horizon, and an algorithm is given to obtain the gains of the
controller and the observer by using RLMIs approach.

II. DEFINITIONS AND PRELIMINARIES
A. SYSTEM DESCRIPTION
Consider the following MJSs with input saturations as

x(k + 1) = Aθk x(k)+ Bθkσ (u(k))+ Dθkw(k),
z(k) = Eθk x(k)+ Fθkw(k),
y(k) = Cθk x(k),

(1)

where x(k) ∈ Rnx and u(k) ∈ Rnu denote the state and input
of MJSs. z(k) ∈ Rnz and y(k) ∈ Rny denote the regulated
output and the measurement output. σ (·) denotes the satu-
ration function described later. w(k) ∈ Rnw is the external
disturbance belonging to l2 [0N ].Aθk ,Bθk ,Cθk ,Dθk ,Eθk ,Fθk
are constant matrices with appropriate dimensions.

The stochastic variable θk is a Markov chain which are
contained in a finite set S = {1, 2, . . . , s} with the transition

probability matrix 0 = [λmn] expressed by

Pr{θk+1 = n|θk = m} = λmn, ∀m, n ∈ S, (2)

where 0 < λmn ≤ 1,
∑s

n=1 λmn = 1, ∀n ∈ S.
The saturation function σ (·) is defined as

σ ($ ) =
(
σ T1 ($1) σ T2 ($2) · · · σ Tr ($r )

)T
, (3)

with σ Ti ($i) = sign($i) min{$i,max, |$i|}, where $i,max is
the i-th element of the vector$max, the saturation level.
Definition 1 [20]: A nonlinearity � : Rn

→ Rn is said to
satisfy a sector condition if the following equation holds

(�($ )−W1$ )T (�($ )−W2$ ) ≤ 0, ∀$ ∈ Rr (4)

for some real matricesW1,W2 ∈ Rr , whereW = W2−W1 is
a positive definite symmetric matrix. Then, we can say � ∈
[W1, W2].

Similar to [20], [21], if we suppose that there exist two
diagonal matrices M1 and M2 satisfying 0 ≤ M1 ≤ M2 ≤ I ,
then the saturation function can be rewritten as the following
equation

σ (u(k)) = M1u(k)+�u(u(k)), (5)

where�u(u(k)) is a nonlinear vector-valued function satisfy-
ing the following sector condition,

�u(u(k))[�u(u(k))−Mu(k)] ≤ 0, (6)

where M = M2 −M1.

B. ASYNCHRONOUS OBSERVER-BASED CONTROLLER
MODEL
In practical systems, the mode information of the system (1)
is ususlly unavailable for the controller or observer due to
complex environment. Hence, the observer is used to estimate
the states of the controlled systems. In this paper, we consider
the asynchronous observer-based controller that has its own
jumping mode as follows

x̄o(k + 1) = Aϑk x̄o(k)+ Bϑkσ (u(k))
+ Lϑk (y(k)− ȳo(k)),

ȳo(k) = Cϑk x̄(k),
u(k) = Kϑk x̄o(k),

(7)

where x̄(k) ∈ Rnx̄o denotes the state vector of
observer. ȳo(k) ∈ Rnȳo denote the output. Aϑk ,Bϑk ,Cϑk
are constant matrices with appropriate dimensions. Matrices
Kϑk and Lϑk are the gains of the controller and observer
respectively. The stochastic variable ϑk , which is similar
to (2), is contained in a finite set G = {1, 2, . . . ,G} with
transition probability matrix ϒ = [4mr ] given by

Pr{ϑk = r|θk = m} = 4mr , ∀m ∈ S, ∀r ∈ G, (8)

where 4mr denotes the probability satisfying 0 < 4mr ≤

1and
∑G

r=14mr = 1,∀r ∈ G.
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For MJSs (1) and observer (7), define δ(k) = x(k)− x̄o(k)
as the gap between the states of MJSs (1) and the observer in
(7). Then, the dynamic of the resulting system is as follows

x̄o(k + 1) = Ax̄o(k)+ LrCmδ(k)+ Br�u(u(k)),
δ(k + 1) = Cx̄o(k)+ Dδ(k)+ E�u(u(k)),
z(k) = Emx(k)+ Fmw(k),

(9)

where

A = Ar + BrM1Kr + LrCm − LrCr
C = Am − Ar + BmM1Kr − BrM1Kr − LrCm + LrCr
D = Am − LrCm,E = Bm − Br .

The objective of this paper is to design an observer and
an controller of the form (7) to guarantee that for a given
disturbance attenuation level β > 0, a positive definite
matrix 3m,m = 1, . . . , s and an initial state x(0), the H∞
performance satisfies the following equation over a given
finite-horizon,

J = E
{
‖z(k)‖2[0 N ] − β

2
‖w(k)‖2[0 N ]β

2xT (0)3mx(0)
}
< 0.

(10)

Before giving the main result, the following Lemma (S −
Procedure) is required to be used for proof of achievingH∞
performance later.
Lemma 1 [20] (S − Procedure): Let Y0(ρ), . . . ,Yp(ρ)

be quadratic function of ρ ∈ Rn, YI (ρ) = ρTTiρ, i =
0, . . . , p with T Ti = Ti. Then, the implication on Y1(ρ) <
0, . . . ,Yp(ρ) ≤ 0 ⇒ Y0(ρ) ≤ 0 holds if there exist
ς1, . . . , ςp > 0 such that

T0 −
p∑
i=1

ςiTi ≤ 0. (11)

III. MAIN RESULTS
In this section, we address the asynchronous observer-based
H∞ control problem of MJSs over a given finite-horizon.
The sufficient condition of achieving a prescribed H∞ per-
formance is derived by employing Lyapunov based method,
S-Procedure Lemma and the RLMIs approach.
Theorem 1: Consider the MJSs in (1) and the

observer-based controller (7) in the presence of actuator
saturations (3). For a given disturbance attenuation level β >
0, a set of positive scalars {ς1(k)}0≤k≤N , a positive definite
matrix 3m,m ∈ S and gain matrices for the controller
and observer {Ar (k), r ∈ G}0≤k≤N , {Br (k), r ∈ G}0≤k≤N ,
{Cr (k), r ∈ G}0≤k≤N and {Lr (k), r ∈ G}0≤k≤N , the H∞
performance defined in (10) is satisfied for all nonzero w(k)
if, for the initial condition satisfies the following equation,[

Zm(0) 0
0 Hm(0)

]
< β2

[
I
I

]
3m

[
I I

]
, (12)

there exist positive definite matrices {Wmr (k),m ∈ S, r ∈
G}0≤k≤N , {Fmr (k),m ∈ S, r ∈ G}0≤k≤N , {Zm(k),

m ∈ S}0≤k≤N+1 and {Hm(k),m ∈ S}0≤k≤N+1 such that

G∑
r=1

4mr

[
Wmr (k) 0

0 Fmr (k)

]
<

[
Zm(k) 0
∗ Hm(k)

]
,

(13)

and
5∗11 ϕT1 ϕT2 ϕT3
∗ −Ẑ−1m (k + 1) 0 0
∗ ∗ −Ĥ−1m (k + 1) 0
∗ ∗ ∗ −I

 < 0,

(14)

hold for all 0 ≤ k ≤ N , where

5∗11 =


−Wmr (k) 0 1

2ς1(k)KrM 0
∗ − Fmr (k) 0 0
∗ ∗ − ς1(k)I 0
∗ ∗ ∗ − β2I

,
ϕ1 =

[
A LrCm Br 0

]
,

ϕ2 =
[
C D E Dm

]
,

ϕ3 =
[
Em 0 0 Fm

]
,

η(k) =
[
x̄To (k) δT (k) �T

u (u(k)) wT (k)
]T
,

Ẑm(k + 1)

=

s∑
n=1

λmnZn(k),

Ĥm(k + 1)

=

s∑
n=1

λmnHn(k).

Proof: According to (9), one has

x̄o(k + 1) = ϕ1η(k),

δ(k + 1) = ϕ2η(k),

z(k) = ϕ3η(k). (15)

The following Lyapunov function candidate is considered

V (x̄o(k), δ(k), k) =
[
x̄To (k)
δT (k)

]T [Zm 0
0 Hm

] [
x̄o(k)
δ(k)

]
,

(16)

where Zm = Zm(k) and Hm = Hm(k).
The expectation of there difference equation of (16) is as

follows

E{1V (k)} = E{V (x̄o(k + 1), δ(k + 1), k + 1)

−V (x̄o(k), δ(k), k)}

= E
{
x̄To (k + 1)Ẑm(k + 1)x̄o(k + 1)

− x̄To (k)Zm(k)x̄o(k)− δT (k)Hm(k)δ(k)

+ δT (k + 1)Ĥm(k + 1)δ(k + 1)
}
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= ηT (k)
( G∑
r=1

4mr (ϕT1 Ẑm(k + 1)ϕ1

+ϕT2 Ĥm(k + 1)ϕ2)
)
η(k)

− x̄To (k)Zm(k)x̄o(k)− δT (k)Hm(k)δ(k), (17)

Then, adding the zero term zT (k)z(k) − β2wT (k)w(k) −
zT (k)z(k)+ β2wT (k)w(k) to E{1V (k)} yields

E{1V (k)}≤E
{
ηT (k)5kη(k)−zT (k)z(k)+β2wT (k)w(k)

}
,

(18)

where

5k

=

G∑
r=1

4mr

(
ϕT1 Ẑm(k + 1)ϕ1 + ϕT2 Ĥm(k + 1)ϕ2

+ϕT3 Iϕ3 +511

)

=

G∑
r=1

ϑmr


511 ϕT1 ϕT2 ϕT3
∗ −Ẑm(k + 1) ∗ ∗

∗ ∗ −Ĥm(k + 1) ∗

∗ ∗ ∗ −I

,
511

=


−Wmr (k) 0 0 0
∗ −Fmr (k) 0 0
∗ ∗ 0 0
∗ ∗ ∗ −β2I

.
Summing up (18) on both sides from 0 toN−1with respect

to k , one has

J = E
{
‖z(k)‖2[0 N ] − β

2
‖w(k)‖2[0 N ] − β

2xT (0)3mx(0)
}

≤ E
{ N−1∑
k=0

ηT (k)5kη(k)− E
{
x̄To (N )Ẑm(N )x̄o(N )

+ δT (N )Ĥm(N )δ(N )
}
+ E

{[
x̄To (0)
δT (0)

]T
×

([
Zm(0) 0
0 Hm(0)

]
− β2

[
I
I

]
3m

[
I I

] )
×

[
x̄o(0)
δ(0)

]}}
. (19)

It is worth noting that Ẑm(N ) > 0, Ĥm(N ) > 0 and the
with initial condition in (13), if

ηT (k)5kη(k) < 0 (20)

holds, then (6) holds. That is to say, the objective of (10) is
solved.

From (6),

�u(u(k))[�u(u(k))−Mu(k)] = ηT (k)2kη
T (k) ≤ 0, (21)

where

2k =


0 0 −

1
2KrM 0

∗ 0 0 0
∗ ∗ I 0
∗ ∗ ∗ 0

.
By using Lemma 1 (S − Procedure) in (11), If there exists

a positive scalar ς1(k) ensuring that

5k − ς1(k)2k ≤ 0⇒ 5k < 0, (22)

which is equivalent to (14). Thus, theH
∞
performance index

is satisfied.

IV. DESIGN OF OBSERVER-BASED CONTROLLER
In this section, we focus on the gain design of the controller
and the observer corresponding to Kr and Lr based on The-
orem 1. However, there exist inverse matrices Ẑm(k + 1)
and Ĥm(k + 1), which make the (14) non-convex and not
feasible. Thus, we have to convert (14) to a convex linear
matrix inequalities by introducing some slack matrices.
Theorem 2: For a given β > 0, if there is a posi-

tive definite matrix 3m,m ∈ S, {W̃mr (k),m ∈ S, r ∈
G}0≤k≤N > 0, {F̃mr (k),m ∈ S, r ∈ G}0≤k≤N > 0,
{ EZm(k),m ∈ S}0≤k≤N > 0 and { EHm(k),m ∈ S}0≤k≤N >

0, { EKr , r ∈ G}0≤k≤N , {ELr , r ∈ G}0≤k≤N+1 and
{
P(k) =[

P1(k) P3(k)
P2(k) P3(k)

]}
0≤k≤N

such that the initial condition

[
Zm(0)− β23m −β2I
−β2I Hm(0)− β23m

]
< 0, (23)

and
G∑
r=1

4mr

[
W̃mr (k) 0

0 F̃mr (k)

]
<

[
Z̃m 0
∗ H̃m

]
, (24)

�∗11 ϕ∗T1 ϕ∗T2 ϕ∗T3
∗ Q ∗ ∗

∗ ∗ R ∗

∗ ∗ ∗ −I

 < 0 (25)

hold, then the designed controller and observer can guarantee
that theH∞ performance index defined in (10) holds. More-
over, the gains of the controller and the observer are designed
as follows

Kr = K̄rP−1, Lr = L̄rP−1, (26)

where

�∗11 =


−W̃mr (k) 0 1

2ς1(k)K̄rM 0
∗ − F̃mr (k) 0 0
∗ ∗ − ς1(k)I 0
∗ ∗ ∗ − β2I

,
W̃mr (k) = PTWmr (k)P, F̃mr (k) = PTFmr (k)P,

Z̃m(k) = PT Ẑm(k)P, H̃m(k) = PT Ĥm(k)P,

ϕ∗T1 = PϕT1 =
[
PTAT L̄Tr C

T
m PTBTr 0

]T
,
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ϕ∗T2 = PϕT2 =
[
PTCT PTDT PTET PTDTm

]T
,

ϕ∗T3 = ϕ
T
3 =

[
PTETm 0 0 PTFTm

]T
,

Q =
s∑

n=1

λmn EZn(k)− PT − P,

R =
s∑

n=1

λmn EHn(k)− PT − P.

Proof: Firstly, by premultiplying diag{P−T ,P−T } and
postmultiplying diag{P−1,P−1} to both sides of (24), (13)
holds.

Then, based on the property XTY−1X − XT − X ≥ −Y
in [22], one has

Q =
s∑

n=1

λmn EZn(k)− PT − P

= PT Ẑm(k + 1)P− PT − P ≥ −Ẑ−1m (k + 1), (27)

where EZm(k) = PTZm(k)P. Similarly,

R =
s∑

n=1

λmn EHn(k)− PT − P

= PT Ĥm(k + 1)P− PT − P ≥ −Ĥ−1m (k + 1), (28)

with EHm(k) = PTHm(k)P.
Let

6 = diag
{
P−1 P−1 I I I I I

}
. (29)

Then, pre- and post-multiplying (25) with 6T and 6,
respectively, it is obviously observed from (25) that (14)
holds.

The following Algorithm shows the steps to design the gain
matrices of the controller and observer:
Step 1: Given the H∞ performance index β, the positive

definite matrices3m and the initial values x(0) and
xo(0). Then, select the initial values for matrices
Zm(0) andHm(0) which satisfies (23) and set k =
0.

Step 2: For the sampling instant k , by solving the RLMIs
to obtain matrices Ẑm(k + 1) and Ĥm(k + 1) with
known matrices Zm(k) and Hm(k).

Step 3: By solving (25) to compute the gains of the con-
troller and observer in (26) and set k = k + 1.

Step 4: If k < N , then go to Step 2, otherwise exit.

V. SIMULATION EXAMPLE
Suppose that there exist two jumping modes for MJSs, and
the parameter matrices of MJSs (1) is given as follows:
Mode 1:

A1 =
[
0.1 0.3
0 0.2

]
, B1 =

[
0.2
0

]
, D1 =

[
0.2
0

]
,

E1 =
[
−0.4
0.3

]
, C1 = 1, F1 = 0.5.

FIGURE 1. Jumping modes for the plant and observer.

FIGURE 2. Actuator output.

The saturation function is expressed as follows
σ (u1(k)) = u1(k), if−Vu1n,max ≤ u1(k) ≤ Vu1n,max

σ (u1(k)) = Vu1n,max, u1(k) > Vu1n,max

σ (u1(k)) = −Vu1n,max, u1(k) < −Vu1n,max

Mode 2:

A2 =
[
0.4 0.6
1 0

]
, B2 =

[
0
0.4

]
, D1 =

[
0.3
0

]
,

E2 =
[
0.5
0.2

]
, C2 = 1, F2 = 0.7,

with saturation bounds as
σ (u2(k)) = u1(k), if−Vu2n,max ≤ u2(k) ≤ Vu2n,max

σ (u2(k)) = Vu1n,max, u2(k) > Vu2n,max

σ (u2(k)) = −Vu1n,max, u2(k) < −Vu2n,max

The two jumping modes of the controlled system (1) and
the observer (7) are governed by the following transition
matrices

0 =

[
0.4 0.6
0.8 0.2

]
, ϒ =

[
0.3 0.7
0.65 0.35

]
.

In this example, set the H∞ performance index β = 1.2.
The saturation values are as σ (u1(k)) = σ (u2(k)) = 0.02, and
the M1 = 0.3, M2 = 0.5. Initial conditions are set as x(0) =
[0.3 0.2]T and x̄o(0) = [−0.1 0.5]T , and let 31 = 32 = 1.
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FIGURE 3. The state x1(k) and the corresponding estimated state x̄o1(k)
for Mode 1.

FIGURE 4. The state x2(k) and the corresponding estimated state x̄o2(k)
for Mode 2.

The external disturbancew(k) with the following dynamics

w(k) = e−0.12k sin(2k).

Then, based on the above parameters and the proposed
algorithms, the gain matrices of the controller and the
observer can be calculated as follows:

K1 =
[
−0.337 −1.262

]
, K2 =

[
−0.412 −0.233

]
,

and

L1 =
[
0.573 0.482

]
, L2 =

[
1.273 0.629

]
.

The possible jumping modes θk and ϑk occurring
asynchronous phenomenon are described in Fig.1, it is
clearly observed that the system to be controlled and the
observer-based controller have different operations. Based
on the above jumping sequence, Fig.2 demonstrates the
evolution of the saturated actuator output, and the actu-
ator output does not exceed the lower/upper boundaries.
Figs.3-4 depict that the designed observer can effectively
estimate the states of the controlled system regardless there
are two jumping modes, where Fig.3 depicts the evolution
of state x1(k) and the corresponding estimated state x̄o1(k)
for Mode 1, and Fig.4 illustrates the similar evolution for
Mode 2. Fig.5 demonstrates the curves of states xi(k) and the
corresponding estimated state x̄oi(k) (i = 1, 2) corresponding
to saturation values with σ (u1(k)) = σ (u2(k)) = 0.04.

FIGURE 5. States xi (k) and the corresponding estimated state
x̄oi (k), i = 1,2 with saturation value σ (u1(k)) = σ (u2(k)) = 0.02.

Note that Figs.3-4 consider the saturation value σ (u1(k)) =
σ (u2(k)) = 0.02, compared with the σ (u1(k)) = σ (u2(k)) =
0.02, Fig.5 describes the evolution of the states xi(k) and the
corresponding estimated state x̄oi(k), i = 1, 2 with saturation
value σ (u1(k)) = σ (u2(k)) = 0.04. It can be seen from
Figs.3-4 and Fig.5 that different saturation values have an
effect on the evolution of the states xi(k) and the correspond-
ing estimated state x̄oi(k), i = 1, 2. That is to say, the larger
the saturation value, the slower the convergence of estimated
error.

VI. CONCLUSION
In this paper, the finite-horizon H∞ problem of Markov
jump systems in the presence of actuator saturation is
discussed based on the asynchronous phenomenon between
the controlled plant and the observer-based controller. The
observer-based controller has it own jumping mode, which
is different from that of the controlled plant. The sufficient
condition in the form of LMIs is derived to ensure that a
finite-horizon H∞ performance index can be achieved and
the gain matrices of the controller and the observer are com-
puted by solving the RLMIs. An example is provided to verify
the proposed algorithm.

This paper adopt the asynchronous control approach to dis-
cuss the finite-horizonH∞ problem of Markov jump systems
subject to actuator saturations, where the controlled system
and the observer run asynchronously. Two different saturation
levels are considered to analyze the evolution of the states of
the controlled system and the corresponding estimated state.
By comparing the different saturation levels, it can be seen
that the larger the saturation value, the slower the convergence
of estimated error. Then, the sufficient conditions of obtain-
ing the finite-horizon H∞ performance index are provided.
Finally, we give a simulation example to verify the theoretical
analysis.
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