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ABSTRACT Automatic image annotation is an important technique which has been widely applied in
many fields such as social network image analysis and retrieval, face recognition and so on. Multi-view
image annotation aims to utilize multi-view complementary information to achievemore effective annotation
results. However, the existing multi-view image annotation methods cannot well handle the complex and
diversified multi-view feature, and the label correlation is also ignored. In this paper, we propose an
image annotation method by integrating deep multi-view latent space learning and label correlation guided
image annotation into a unified framework, which is termed as Label Correlation guided Deep Multi-view
image annotation (LCDM) method. LCDM first learns a consistent multi-view representation via deep
matrix factorization, which well captures multi-view complementary information. Then, label correlation
is exploited to improve the discriminating power of the classifiers. We propose a unified objective function
so that multi-view data representation and classifiers can be jointly learned. Extensive experimental results
on various image datasets demonstrate the effectiveness of our method.

INDEX TERMS Deep matrix factorization, image annotation, label correlation, multi-view data, machine
learning.

I. INTRODUCTION
A large number of image data are uploaded and disseminated
on social network platforms every day. Manually labeling
image contents is unpractical due to the huge amount of
image data. Thus, automatic image annotation techniques are
developed to label images according to their contents. Image
annotation techniques have been applied in many fields such
as social network image analysis and retrieval, face recog-
nition, intelligent tourism and so on [1]. It is for this reason
that image annotation has drawn more and more researchers’
interest.

How to bridge the gap between low-level visual features
and high-level semantics is the key of image annotation,
and various image annotation methods have been devel-
oped in recent years. Some methods are based on generative
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model [2], [3], which calculate the joint distribution between
images and labels and maximize the likelihood function.
Some image annotation methods adopt nearest neighbor
method to first find several nearest neighbours from the
labeled images, and then derive the labels from the similar
images [4], [5]. Moreover, the most common way of image
annotation is to adopt multi-label learning method to predict
image labels [6], [7].Multi-label learning is to learn from a set
of samples where each sample belongs to one or more classes.
Image annotation can also be treated as a matrix completion
problem [8], [9]. As the image labels are usually missing and
noisy, matrix completion can complete the missing labels as
well as correct the noisy labels [9].

The description ability of image features is a critical fac-
tor for image annotation. Powerful image descriptors are
capable of improving the performance of image annotation.
For image data, different features such as SIFT, HOG and
LBP can be extracted, which constitute multi-view feature.
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Compared to single type of feature, multi-view feature pro-
vides comprehensive descriptions for images so that better
image annotations results can be obtained. Therefore, multi-
view image annotationmethods have been developed and bet-
ter annotation results are obtained [10]–[15]. NMF-KNN [10]
integrates nearest neighbor method and non-negative matrix
factorization (NMF) for image annotation. It jointly factor-
izes multiple matrices so that multi-view feature and image
labels can be associated in a consistent latent space. A multi-
view label embedding method [15] is proposed for image
annotation. By maximizing the correlations between multi-
view feature space, label space and latent space, it can effec-
tively predict image labels with many classes.

Although various multi-view image annotation methods
have been developed, there are still some unresolved issues.
First, multi-view data may be produced by complex data
distributions. The traditional shallow models such as NMF
cannot well capture the intrinsic data distribution. Compared
with shallow models, deep model is able to extract high
level data representation and capture the underlying data
distribution. Second, the problem of missing and noisy image
labels may lead to a biased estimation of the classifiers. Label
correlation is an important clue to complete themissing labels
and correct the error labels.

In this paper, we propose a Label Correlation guided
Deep Multi-view image annotation method (LCDM) to pre-
dict image labels based on multi-view features. Our method
first learns deep multi-view latent space via deep multi-
view matrix factorization model to represent multi-view
data, which effectively encodes the multi-view complemen-
tary information into a unified latent space. Then, based
on the learned deep multi-view latent space, label classi-
fiers are learned to predict image labels. To reduce the
influence of unreliable label matrix and improve the dis-
criminating power of classifiers, our method leverages label
correlation to enhance the original label matrix and incorpo-
rates label correlation into the classifiers. Extensive exper-
iments on several image annotation datasets demonstrate
that our method outperforms the other image annotation
methods. The contribution of this paper is summarised as
follows:

1) We adopt deep multi-view matrix factorization to learn
the unified multi-view representation. The importance
of each view can be captured adaptively so that multi-
view complementary information can be accurately
preserved in the learned data representation.

2) We propose to learn a low-rank subspace from label
matrix to explore label correlation. Then the low-rank
subspace is used to enhance the original label matrix,
so that the impact of missing and noisy labels can be
effectively reduced.

3) We use label correlation to guide the training of clas-
sifiers. If two labels are closely related, then the corre-
sponding classifiers should be similar. In this way, our
method further improves the discriminating power of
the classifiers.

II. RELATED WORK
Many methods have been developed for image annota-
tion during the past two decades. Based on single type of
visual feature, generative model based methods, discrimi-
native model based methods, matrix completion methods
and deep learning based methods are proposed to automat-
ically label images [1]. Generative model based methods
aim to maximize likelihood function of visual features and
labels [2], [3]. Discriminative model based methods train
classifiers for image labels, which convert image annotation
to a multi-label learning problem [16], [17]. Considering the
problem of missing and noisy labels, matrix completion tech-
nique is adopted for image annotation [8], [9], [18]. TMC [8]
adopts matrix factorization to search for an optimal label
matrix which jointly captures the visual correlation and label
correlation. Recently, deep learning techniques are applied to
image annotation task [19]–[21]. CNN-RNN [21] constructs
a new network structure which combines recurrent neural
network and convolutional neural network. Deep image rep-
resentation and high-order label relations are jointly utilized
to predict image labels more accurately.

Multi-view feature provides more diversified and com-
plete description of images. Multi-view image anno-
tation methods can exploit multi-view complementary
information to achieve promising image annotation perfor-
mance [22]–[27]. OGL [22] simultaneously learns an opti-
mal similarity graph of images and propagate labels from
labeled images to unlabeled ones. The learned graph can
well preserve multi-view information and label information,
which yields better label propagation results. MVML [23]
jointly performs multi-view feature selection and multi-label
learning for image annotation, where a block-row regularizer
is used to capture discriminative features. LSA-MML [26]
learns a predictive representation by enforcing the latent
space of different views to be aligned, which can encode
the complementary information of different views. A life-
long multi-task multi-view learning method [27] is developed
to capture knowledge from different view-specific libraries,
which provides a lifelong learning strategy and better classi-
fication performance can be obtained.

As image labels are related to each other, label correlation
is leveraged for image annotation [6], [28]–[31]. A graph-
based image annotation method is proposed [28] to exploit
both local correlations among different labels and global label
consistency, where label correlation is treated as a constraint
to guide image label prediction. MLMC [6] adopts label
correlation and visual correlation for graph learning, which
conducts image annotation by maximizing the label assign-
ment consistency over the learned graph. An adaptive graph
guided embedding method [30] is developed to utilize label
correlation to learn an adaptive graph, and then image annota-
tion is achieved by label propagation. Considering label-label
correlation and label-feature correlation, LLSF [31] assumes
the correlated labels share more features than uncorrelated
ones, then a multi-label classification framework is proposed
which also learns label specific features.
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III. THE PROPOSED METHOD
A. NOTATIONS
Multi-view image data with n samples and V views can be
represented by a set of matrices {X v}Vv=1. X

v
∈ Rdv×n is

the feature matrix of the v-th view, dv is the dimension of
features from the v-th view. The image label set is denoted as
{l1, l2, . . . , lc}, where c is the total number of labels. For the
labeled images, each image may be annotated with several
labels. We adopt label matrix Y ∈ Rn×c to represent the
relations between images and labels. Yij = 1 means image i
is annotated with label lj, otherwise Yij = 0. The objective of
image annotation is to predict labels for the unlabeled images.

B. PRELIMINARIES
Given a non-negative matrix X ∈ Rd×n representing n sam-
ples, NMF [32] decomposes X into two matrices,

min ‖X − ZH‖2F , s.t. Z ≥ 0, H ≥ 0 (1)

where Z ∈ Rd×k is the basis matrix and H ∈ Rk×n is
the coefficient matrix. Since NMF provides interpretable and
meaningful decomposition results, the coefficient matrix H
can be used as a new data representation. However, the image
data may be produced by complex data distributions, result-
ing in NMF cannot effectively capture the intrinsic data dis-
tributions. To solve this problem, deep semi-NMF model is
developed for single view data [33] and multi-view data [34],
which can reveal diversified data distributions and obtain
high-level data representation. It decomposes data matrix X
into m layers,

X ≈ Z1H
+

1 ,

X ≈ Z1Z2H
+

2 ,

...

X ≈ Z1Z2 . . . ZmH+m , (2)

where Zi ∈ Rki−1×ki is the basis matrix of the i-th layer, and
Hm ∈ Rkt×n is coefficient matrix of the top layer. (·)+ is the
hinge operation which is defined as (a)+ = max(0, a).

Subspace clustering [35], [36] clusters data points that lie
in a union of low-dimensional subspaces. Low-rank subspace
clustering (LRSC) [37] aims to find a low-rank representation
of data. It solves self-representation problem by finding the
low-rank representation of data points as

min
S
‖S||∗, s.t. X = XS + E, (3)

where S is the low-rank subspace learned from data X , E is
the error matrix, ‖S‖∗ is the nuclear norm of S, which equals
to the sum of its singular values. The low-rank subspace S
can capture the correlation between data points and generate
promising clustering results.

C. DEEP MULTI-VIEW LATENT SPACE LEARNING
To obtain unified data representation from multi-view data
{X v}Vv=1, we adopt deep matrix factorization model to learn
the basis matrices and coefficient matrices layer by layer,

and the unified data representation is obtained by introducing
a consistent coefficient matrix H across all the views. The
objective function is proposed as

min
H ,αv

V∑
v=1

(αv)r‖X v − Z v1Z
v
2 . . . Z

v
mH‖

2
F ,

s.t.
V∑
v=1

αv = 1, αv > 0, H ≥ 0 (4)

where Z vi is the basis matrix of the i-th layer for view v,
m is the number of layers, αv is the weight parameter to
control the importance of the v-th view, H is the learned
deep multi-view latent space. By solving problem (4), inter-
view and intra-view correlations can be effectively captured
and robust multi-view data representation H can be learned.
Inter-view correlations are captured by enforcing each view
to share a common representation H , so that inter-view
complementary information can be preserved. Moreover, by
using αv, the view with smaller embedding loss is considered
to be more accurate. Hence, inter-view correlations can be
captured more accurately. Intra-view correlations are cap-
tured by deep matrix factorization on each view. By min-
imizing problem (4), the reconstruction error of each view
can be reduced, so that H can well encode the intra-view
correlations.

D. LABEL CORRELATION GUIDED IMAGE ANNOTATION
Image labels are always missing and noisy, which limits the
performance of image annotation. To improve the effective-
ness of image annotation, two factors should be considered.
First, image labels are correlated with each other. Label cor-
relation can be used to complete missing labels and correct
the noisy labels. Second, the properties of classifiers should
be consistent with label correlation. Each classifier predict
labels based on specific features. If two labels are correlated,
the features used for classification should be similar. The
classifiers of two correlated labels share more features than
the classifiers of two uncorrelated labels. In light of the
two factors, we propose the following objective function for
image annotation,

min
S,P
‖Y − YS‖2F + β‖S||∗ + η‖PH − S

TY T ‖2F

+ λTr(PTLP) s.t. S ≥ 0 (5)

where the first two terms are to learn a low-rank subspace
S ∈ Rc×c from label Y . Since S captures the correlations of
labels, we adopt the constraint S ≥ 0 to ensure the solution is
meaningful. The higher value of Sij, the stronger the correla-
tion between two labels. The third term is to predict image
labels by linear classifier, and P ∈ Rc×k is the classifier
parameters. Pi is the i-th column of P, which represents the
classifier for label li. Label correlation S is used to enhance
the original image labels, and STY T is used as the target to
train the classifiers. The last term is a graph regularization
constraint that imposed on the classifiers. We introduce the
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affinity matrix of labels W = S+ST
2 , and its graph Laplacian

is L = D − W , where D is the diagonal matrix defined as
Dii =

∑
jWij. By using the last term, if two labels li and lj

achieve higher correlation, then the corresponding classifier
parameters Pi and Pj become more similar. β, η and λ are the
parameters to control the importance of each term.

E. THE OVERALL OBJECTIVE FUNCTION
By jointly conduct deep multi-view latent space learning and
label correlation guided image annotation, we propose to
minimize the overall objective function as follows,

J =
V∑
v=1

(αv)r‖X v − Z v1Z
v
2 . . . Z

v
mH‖

2
F + ‖Y − YS‖

2
F

+β‖S||∗ + η‖PH − STY T ‖2F + λTr(P
TLP)

s.t.
V∑
v=1

αv = 1, αv ≥ 0, H ≥ 0, S ≥ 0 (6)

Through deep multi-view latent space learning, our method
is capable of learning high-level and robust multi-view rep-
resentation H . By performing label correlation guided image
annotation, our method can cope with the missing labels and
enhance the discriminating power of classifiers P. By opti-
mizing the overall objective function J , the two sub-problems
can be solved jointly. During the optimization process, multi-
view representation learning and classifiers learning can pro-
mote each other, so as to achieve better image annotation
performance.

IV. OPTIMIZATION
Problem (6) can be effectively solved by an iterative block
coordinate descent algorithm. In each iteration, only one vari-
able is solved and keep the others unchanged. First, we adopt
the pre-training method as in [33] to obtain proper Z vi and H
in the deep matrix factorization model. Then, all the variables
S, P, Z vi , H , and αv are solved according to the update rules.
The detailed pre-training strategy and update rules are intro-
duced in the following part. The whole learning procedure for
solving problem (6) is summarized in Algorithm 2.

A. PRE-TRAINING
The latent factors Z vi and H in the deep matrix factorization
model are pre-trained layer by layer. For instance, for the
v-th view, the first layer is trained through decomposition
X v ≈ Z v1H

v
1 , where Z v1 ∈ Rdv×k1 and H v

1 ∈ Rk1×n.
After that, the coefficient matrix H v

1 is further decomposed
by H v

1 ≈ Z v2H
v
2 , where Z

v
2 ∈ Rk1×k2 and H v

2 ∈ Rk2×n.
We keep decomposing H v

i until all the layers are pre-trained,
ie, H v

2 ≈ Z v3H
v
3 , · · · ,H

v
m−1 ≈ Z vmH

v
m. H is initialized by

averaging the coefficient matrices of each view {H v
m}

V
v=1.

The merits of pre-training step are that it can effectively
accelerate the convergence of the algorithm and obtain better
solutions.

B. SOLVE Z
Let the derivative ∂(J )/∂(Z vi ) = 0, then the update rule for
Z vi can be obtained by

Z vi ← 9†X vH̃ v
i
†, (7)

where 9 = Z v1 · · · Z
v
i−1, H̃

v
i = Z vi+1 · · · Z

v
mH is the recon-

struction of the latent factor of the i-th layer. (·)† denotes
the Moore-Penrose pseudo-inverse operator and A† =

(ATA)−1AT .

C. SOLVE H
We follow the method in [38] to derive the update rule for H .
Keep the related parts from J and we have

J (H ) =
V∑
v=1

(αv)r (‖X v − Z v1Z
v
2 . . . Z

v
mH‖

2
F )

+ η‖PH − STY T ‖2F (8)

The partial derivative with respect to H is given as follows,

∂J (H )
∂(H )

= −2
V∑
v=1

(αv)r9T
Z (X

v
−9ZH )

+ 2ηPT (PH − STY T ) (9)

where 9Z = Z v1Z
v
2 . . . Z

v
m. From the above formulations,

we can derive the following update rule for H ,

Hij← Hij �

√
(51)ij
(52)ij

, (10)

where

51 = [
V∑
v=1

(αv)r9T
Z X

v]pos + [ηPT STY T ]pos

+ [
V∑
v=1

(αv)r9T
Z9ZH ]neg + [ηPTPH ]neg,

52 = [
V∑
v=1

(αv)r9T
Z X

v]neg + [ηPT STY T ]neg

+ [
V∑
v=1

(αv)r9T
Z9ZH ]pos + [ηPTPH ]pos.

The operators [·]pos and [·]neg are defined as follows,

[A]posjk =
|Ajk | + Ajk

2
, [A]negjk =

|Ajk | − Ajk
2

.

D. SOLVE S
Keeping the parts that are related to S from (6), the following
problem are obtained

min
S
‖Y − YS‖2F + β‖S||∗ + λTr(P

TLP)

+ η‖PH − STY T ‖2F
s.t. S ≥ 0 (11)
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To make (11) easier to solve, we replace Tr(PTLP) by

Tr(PTLP) =
1
2

∑
ij

Wij‖Pi − Pj‖22 =
1
2
Tr(QW )

=
1
2
Tr(Q

S + ST

2
) =

1
4
Tr(QS+QST )=

1
2
Tr(QS)

(12)

where Pi is the i-th row of P. Qij = ‖Pi − Pj‖22 and we have
Q = QT . Then (11) is rewritten as

min
S
‖Y − YS‖2F + β‖S||∗ +

λ

2
Tr(QS)

+ η‖PH − STY T ‖2F
s.t. S ≥ 0 (13)

Problem (13) can be solved by alternating directionmethod
of multipliers (ADMM) [37]. We rewrite (13) as an uncon-
strained version:

min
S
‖Y − YS‖2F + β‖S||∗ +

λ

2
Tr(QS)

+ η‖PH − STY T ‖2F + lR+ (S) (14)

where the indicator function lR+ (a) is defined as

lR+ (a) =

{
0 if a ≥ 0,
+∞ otherwise.

Then, auxiliary variables are introduced and (14) is equivalent
to the following problem

min
S
‖Y − B1‖2F + β‖B2||∗ +

λ

2
Tr(B3)

+ η‖PH − B4‖2F + lR+ (B5)

s.t. YS = B1, S = B2, QS = B3, STY T = B4, S = B5
(15)

The augmented Lagrangian function of problem (15) is

L(S,B1,B2,B3,B4,B5)

= ‖Y − B1‖2F + β‖B2||∗ +
λ

2
Tr(B3)

+ η‖PH − B4‖2F + lR+ (B5)+ µ‖B1 − YS − R1‖
2
F

+µ‖B2 − S − R2‖2F + µ‖B3 − QS − R3‖
2
F

+µ‖B4 − STY T − R4‖2F + µ‖B5 − S − R5‖
2
F (16)

We apply alternative minimization method to solve all the
variables S,B1,B2,B3,B4 and B5. In each step, only one
variable is updated while keep the others fixed.

To solve S from (16), we set the partial derivative
∂(L(S,B1,B2,B3,B4))/ ∂(S) = 0 and obtain

S ← (2Y TY + QTQ+ 2I )−1(Y T ξ1 + ξ2
+QT ξ3 + Y T ξT4 + ξ5) (17)

where ξi = Bi − Ri, and I is the identity matrix.
B1 is solved by setting ∂(L(S,B1,B2,B3,B4))/ ∂(B1) = 0,

B1←
1

µ+ 1
(Y + µ(YS + R1)) (18)

Algorithm 1 The Algorithm to Solve S
Input: Y , Q, H , P, αv, β, λ, η.

1 Initialization: ∀i,Bi = Ri = 0
2 while not converged do
3 S ← (2Y TY + QTQ+ 2I )−1(Y T ξ1 + ξ2
4 +QT ξ3 + Y T ξT4 + ξ5)
5 B1← 1

µ+1 (Y + µ(YS + R1))
6 B2← 2β/2µ(S + R2)
7 B3← 1

4µ (4µ(QS + R3)− λI )
8 B4← 1

η+µ
(ηPH + µ(STY T + R4))

9 B5← max(S + R5, 0)
10 update the Lagrange multipliers:
11 R1← R1 − (B1 − YS);
12 R2← R2 − (B2 − S);
13 R3← R3 − (B3 − QS);
14 R4← R4 − (B4 − STY T )
15 R5← R5 − (B5 − S);
16 end

Output: S.

To obtain B2, we solve the following problem

min
B2
β‖B2||∗ + µ‖B2 − S − R2‖2F (19)

Problem (19) can be solved by singular value threshold-
ing operator [39]. Let 2τ (X ) = U3τV T, where X =

U3τV T is the singular value decomposition, and 3τ (x) =
sgn(x)max(|x| − τ, 0) is the shrinkage operator. B2 can be
solved by

B2← 2β/2µ(S + R2). (20)

Following the same method as solving B1, the update rule
of B3 and B4 can be obtained as

B3 ←
1
4µ

(4µ(QS + R3)− λI ), (21)

B4 ←
1

η + µ
(ηPH + µ(STY T + R4)). (22)

Considering the non-negative constraint that imposed on B5,
we solve it using the following update rule

B5← max(S + R5, 0). (23)

Finally, the Lagrangian multipliers R1, R2, R3, R4 and R5
are updated through ADMM algorithm. All the variables are
solved by the above update rules, and the whole procedure for
solving S is summarized in Algorithm 1.

E. SOLVE P
Fixing the related parts of P from J , we can obtain the
following problem

J (P) = λTr(PTLP)+ η‖PH − STY T ‖2F , (24)

The derivative of J (P) with respect to P is

∇PJ (P) = 2λLP+ 2η(PH − STY T )HT , (25)
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Algorithm 2 The Optimization Algorithm of LDCM

Input: {X v}Vv=1, m, r , λ, β, and η.

1 Initialize Z vi by pre-training, αv = 1
V .

2 while not converged do
3 for v = 1, ...,V and i = 1, ...m do
4 Update αv by update rule (26) and (27);
5 Update Z vi by Z vi ← 9†X vH̃ v

i
†;

6 end

7 Update H by H ← H �
√
51
52

;

8 Update S by Algorithm 1;
9 Update P by P← P− δ∇PJ (P);
10 end

Output: αv,Z vi ,H , S,P.

We adopt gradient descent method to solve P, and the step
size δ is determined by Armijo line search [40].

F. SOLVE α

By using Lagrange multiplier method, we can solve the
weight parameter αv. For the case r > 1, the following update
rule can be derived,

αv =
(ρv)

1
1−r∑V

v=1 (ρv)
1

1−r

, (26)

where ρv = ‖X v − Z v1Z
v
2 . . . Z

v
mH‖

2
F .

For the case r = 1, we can obtain the following update
rule:

αv =

1 v = argmin
i

ρi

0 otherwise
(27)

G. OUT-OF-SAMPLE EXTENSION
To predict labels for unlabeled images, we adopt the fol-
lowing steps. Given unlabeled multi-view feature {X v}Vv=1,
we first obtain data representation for unlabeled data by using
Eq.(10) where we set η = 0, and we can obtain Ĥ . Then,
the predicted label matrix Ŷ is given by Ŷ = PĤ .

H. COMPUTATIONAL COMPLEXITY
For pre-training step, the computational complexity is of
order O(mVt1(ndk + nk2 + kn2)), where m is the number of
layers, k is the maximum dimensionality of the layers, n is
the number of images, d is the dimensionality of feature, and
t1 is the number of iterations. For fine-tuning step, the main
computational cost is dominated by updating S, Z vi , H and P.
The complexity for fine-tuning is of order O

(
mVt2(ndk +

nk2+kn2+kc2+ t3(c3+nc2+ckn))
)
, where c is the number

of labels, t2 and t3 are the number of iterations of Algorithm 2
and Algorithm 1, respectively.

V. EXPERIMENTS
We conduct image annotation experiments on four datasets
to verify the effectiveness of the proposed method LCDM.
The datasets, compared methods and experimental settings
are introduced first. Then, we present the performance com-
parison of all the methods on each dataset. Finally, we present
parameter sensitivity analysis to further evaluate the perfor-
mance of the proposed method.

A. DATASETS
1) Corel5k [41]. It consists of 5, 000 images from

50 classes. 260 keywords are contained in the vocab-
ulary. 4500 samples are used as the training set and the
rest 500 images are used for testing.

2) ESP Game [42]. It consists of 20, 770 images collected
from ESP online labeling game. The dataset contains
268 keywords. 18, 689 images are used for training and
the rest images are used for testing.

3) NUS-WIDE [43]. It contains 55, 615 images collected
from Flickr. Images that are annotated less than 3 labels
and labels whose occurrence numbers are smaller than
100 are removed to improve the quality of the dataset.
The remaining 13, 000 images constitute the dataset,
where 10, 000 samples are randomly chosen for train-
ing and the remaining are used for testing.

4) IAPRTC-12 [44]. Its images cover many scenes includ-
ing sports, landscapes, animals, buildings and other
aspects in our life. The dataset contains 19, 267 images
with 291 keywords. 17, 665 images are used for train-
ing and 1, 962 images are used for testing.

B. COMPARED METHODS AND EXPERIMENTAL SETTINGS
To fully demonstrate the effectiveness of our method,
we compare our method LCDM with several representative
image annotation methods. The first five methods are sin-
gle view image annotation methods (1-5), while the last six
methods are multi-view image annotation methods (6-11).
We introduce each method in detail as follows.

1) FastTag [45]: An image tagging method which can
quickly predict image tags via combining two linear
mappings in a convex loss function.

2) LSG [46]: An image annotation method which models
label correlation using a graph, and the topological
constraints are utilized for multi-label learning.

3) LSR [9]: A label completion method which is based on
label matrix and image matrix reconstruction.

4) TMC [8]: A label completion method which recovers
tag matrix according to visual and semantical correla-
tion of images.

5) GLOCAL [47]: A multi-label learning method which
exploits global and local label correlations based on a
latent label subspace and label manifolds.

6) NMF-KNN [10]: It utilize nearest neighbourmodel and
matrix factorization technique to label images.
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7) OGL [22]: An optimal graph is learned from different
views and image labels, and then tags are propagated
from labeled images to unlabeled ones.

8) lrMVL [48]: A consistent representation of multi-view
data is learned to predict image labels by a low-rank
matrix completion method.

9) MVLR [49]: A multi-view linear regression model
which can be used for image annotation, and a closed-
form solution of the parameters can be obtained.

10) OPSL [50]: A multi-view image annotation method
based on optimal predictive subspace learning, where
both image representation and label predictors can be
jointly learned.

11) iMVWL [51]: A multi-view multi-label learning
methodwhich learns a unified subspace and a predictor.
Both multi-view correlation and label correlation can
be captured in this model.

To construct multi-view feature for images, we extract
different kinds of visual features. For Corel5k, ESP Game
and IAPRTC-12 datasets, we adopt seven visual featu-
res [50], [52]: DenseHueV3H1, DenseHue, HarrisHueV3H1,
HarrisHue, DenseSift, HarrisSift and Gist. For NUS dataset,
six types of features are used: color correlation, color
moments, color histogram, SIFT, edge direction histogram
and wavelet texture. For single view image annotation meth-
ods, multi-view feature cannot be directly utilized. Thus,
we perform PCA on the feature of each view and then con-
catenate the obtained results as the new feature for single view
methods.

The parameters of the compared methods are deter-
mined as suggested in the corresponding literatures. The
parameters of LCDM are determined by cross-validation.
1/10 of training data are used as the validation set. η is
tuned from {0.0005, 0.001, . . . , 10, 50}, λ is tuned from
{10−6, 10−5, . . . , 1, 10}, β is tuned from {0.01, 0.1, 1}, r is
tuned from {1, 1.5, 2, 5, 10, 50, 100}, the structure of our
model is tuned from {(100), (150-100), (200-150-100),
(250-200-150-100)}, where (200-150-100) is a 3-layer model
and the dimensions of the first, second and top layer are 200,
150 and 100, respectively. The detailed parameter sensitivity
analysis of LCDM is presented in Section V-D. Since differ-
ent initializations of LCDMwould obtain different solutions,
we repeat training and testing of LCDM ten times and the
averaged performance are reported.

To evaluate image annotation performance of eachmethod,
we annotate five most relevant labels to each image in the
experiments. As in [8], [22], [53], four commonly used eval-
uation measures, average precision (P), average recall (R),
F1-score (F1) and Mean Average Precision (MAP) are used
for performance evaluation. We first calculate the evaluation
measures for each image, and then report the averaged results
over all the images.

C. EXPERIMENTAL RESULTS
We conduct image annotation experiments on four datasets,
and the image annotation results are presented in Table 1.

FIGURE 1. The image annotation performance with different dimensions
of layers on NUS dataset.

FIGURE 2. The image annotation performance with different number of
layers.

It should be noted that we adopt the same dataset and
feature as [50], thus Table 1 shares some common results
with [50]. From Table 1, we can observe that LCDM out-
performs the other image annotation methods on all the
datasets, which demonstrates the effectiveness of the pro-
posed method. Compared to the best results that achieved
by the other methods, LCDM improves the performance by
2.1% in F1 and 3.3% in MAP for Corel5k dataset, 2.8% in
F1 and 3.5% in MAP for ESP Game dataset, 4.6% in F1 and
4.3% in MAP for NUS dataset, 3.7% in F1 and 4.1% in
MAP for IAPRTC-12 dataset. From the experimental results
presented in Table 1, we would like to highlight some other
aspects of the experimental results.

• In general, single view image annotation methods Fast-
Tag, LSG, LSR, TMC andGLOCAL perform not as well
as multi-view image annotation methods such as NMF-
KNN, OGL, OPSL, iMVWL and LCDM. The reason is
that multi-view image annotationmethods are capable of
utilizing the complementary information of multi-view
data, so that more complete image descriptions can be
obtained. Although single view methods also use multi-
view features by concatenating the results learned by
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TABLE 1. P, R, F1 and MAP results on all the datasets.

FIGURE 3. Sensitivity analysis of η on each dataset. (a) Corel5k dataset. (b) ESP Game dataset. (c) NUS dataset. (d) IAPRTC-12 dataset.

FIGURE 4. Sensitivity analysis of λ on each dataset. (a) Corel5k dataset. (b) ESP Game dataset. (c) NUS dataset. (d) IAPRTC-12 dataset.

PCA, themulti-view complementary information cannot
be well leveraged so that their annotation performance
are limited.

• Leveraging label correlation can effectively address the
problem of the missing and noisy image labels. OPSL
encodes the label correlation into the learned subspace.
iMVWL and LCDM utilize low-rank property of label
correlation matrix to predict image labels. These meth-
ods can achieve more competitive image annotation per-
formance than the other methods.

• TMC, NMF-KNN and LCDM are image annotation
methods based on matrix factorization. NMF-KNN

outperforms TMC because NMF-KNN can effectively
utilize multi-view feature to predict image labels, while
TMC cannot properly use multi-view feature. LCDM
achieves better performance than TMC and NMF-KNN
because deep multi-view matrix factorization can learn
high level and robust data representation that shallow
model cannot obtain.

• The proposed method LCDM generally achieves bet-
ter performance compared to the other methods. The
main reasons are summarized as follows. First, LCDM
learns a deep multi-view latent space from the diver-
sified image samples with complex data distributions.
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FIGURE 5. Convergence curves on each dataset. (a) Corel5k dataset. (b) ESP Game dataset. (c) NUS dataset. (d) IAPRTC-12 dataset.

Deep matrix factorisation is capable of extracting intrin-
sic data distribution so that multi-view complementary
information can be well preserved in the latent space.
Second, label correlation is used for enhancing the
original label matrix as well as guiding the learning
of the classifiers. Thus, the accuracy of label matrix
can be improved and more discriminative classifiers are
obtained. All these factors make LCDMmethod achieve
more promising image annotation performance.

D. PARAMETER ANALYSIS
To demonstrate the performance of LCDM under different
parameter settings, we conduct parameter sensitivity exper-
iments and the image annotation performance on MAP are
shown in Fig.1, Fig.2, Fig.3 and Fig.4.

To study how the performance of LCDM vary with differ-
ent dimensions of layers, we construct 1-layer model, 2-layer
model, 3-layer model, and make the dimension of each layer
increase by 50. We set the dimension of the top layer (kt )
to 50, 100, 150 and obtain 9 models, ie, kt = 50: (50),
(100-50), (150-100-50); kt = 100: (100), (150-100), (200-
150-100); kt = 150: (150), (200-150), (250-200-150). The
performances of each model on NUS dataset are shown
in Fig.1. It can be observed that kt = 100 and kt = 150
achieve better performance than kt = 50. This is because
kt = 50 cannot fully preserve the information of multi-view
data. kt = 150 achieves comparable results as kt = 100,
however, this model contains some redundant dimensions.
Hence, kt = 100 is used in our experiments.

To evaluate how the performance of LCDM change with
the number of layers m, we test four models: 1-layer model
(m=1), 2-layer model (m=2), 3-layer model (m=3) and
4-layer model (m=4). The image annotation results are
shown in Fig.2. We can observe that m = 2, 3, 4 achieve
better performance thanm = 1 on all the datasets. It indicates
that compared with shallow model (m = 1), deep models
(m = 2, 3, 4) are capable of capturing the intrinsic distri-
bution of multi-view data and exploiting multi-view comple-
mentary information, so that more effective multi-view data
representation can be obtained.

Next, we study two important parameters η and λ. η con-
trols the weight of linear classification, and the sensitivity
analysis on η are shown in Fig.3. We can observe that better
performance can be obtained for η > 0.1 on Corel5k dataset

and η > 0.01 on ESP Game, NUS and IAPRTC-12 datasets.
λ controls the weight of label correlation constraint, and the
sensitivity analysis on λ are shown in Fig.4. When λ is small,
the performance of LCDM is limited. This is because the
label correlation cannot well guide the learning of classifiers.
If λ is too large, the performance of LCDM is also limited
on Corel5k, ESP Game datasets. The reason is that the label
correlation is so strong that it influences the classifiers to
obtain proper parameters. Hence, the appropriate range of
λ is [0.001, 1] for Corel5k dataset, and [0.001, 0.1] for ESP
Game, NUS, IAPRTC-12 datasets.

Finally, we analyze the convergence speed of the proposed
method. The convergence curves of LCDM on all the datasets
are shown in Fig.5. We can see that the proposed method is
efficient and it usually converges in 60 iterations. The results
from Fig.5 verity the effectiveness and correctness of the
proposed optimization algorithm.

VI. CONCLUSION
In this paper, a label correlation guided deep multi-view
image annotation method LCDM is proposed. LCDM incor-
porates deep multi-view latent space learning and label cor-
relation guided image annotation into a unified objective
function, which can jointly learn multi-view data represen-
tation and classifiers. The experimental results on four image
datasets demonstrate that the proposed method outperforms
the other image annotation methods and promising image
annotation performance are obtained.
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