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ABSTRACT Guaranteed-Service Approach (GSA) was used to set safety stock for multi-echelon inventory
systems. This approach assumes that each stock can use operating flexibility measures such as expediting
and overtime to fulfill excessive customer demand superior to a bound as a supplement to its safety stock.
In this paper, we consider a continuous review assembly inventory system with Poisson final demand and
fixed order costs at each stock controlled by a (R, Q) policy. We use the GSA to optimize the policy with the
consideration of operating flexibility costs and fixed order costs. A deterministic mathematical programming
model is established for the problem. And the model is solved by a line search for finding the optimal target
cycle service level (CSL) to customer and an iterative procedure for solving the model when the target
CSL is given. Moreover, we analyze the optimality conditions for the extended GSA model and obtain
some important properties in given conditions. Numerical experiments on randomly generated instances

demonstrate the efficiency of the procedure and confirm the solution presented in this paper.

INDEX TERMS Dynamic programming, guaranteed-service approach, inventory management, multi-

echelon inventory system.

I. INTRODUCTION

Effective management of inventories in a supply chain is
critical for the firms in the chain to assure a high service
level to their customers at the minimal costs. As such supply
chain can be modeled as a multi-echelon inventory system,
one important issue of its management is to find an optimal
inventory policy of the system.

Over last two decades, two competing approaches have
emerged in multi-echelon inventory theory: stochastic-
service approach (SSA) and guaranteed-service approach
(GSA), which were introduced by [1] and [2], respectively.
These two approaches differ in demand treatment and ser-
vice time characteristics. In the SSA, it is assumed that any
demand of a stock is immediately satisfied if its on-hand
inventory is sufficient to fulfill the demand. Otherwise, the
unsatisfied demand will be backlogged and satisfied later
after the replenishment of the stock. In this case, a stochastic
delay to fulfill the unsatisfied demand will occur. The service
time of the stock, which is defined as the lead time for
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fulfilling its demand, is thus stochastic. In contrast, the GSA
assumes that each stock can quote a deterministic service
time to fulfill each customer demand. That is, the stock can
always fulfill a customer demand in a given lead time. This is
achieved by using some sort of emergency measure (referred
to as operating flexibility hereafter) such as expediting and
overtime to ensure the excessive customer demand superior
to a pre-specified bound is also satisfied within the lead time.
Since for each stock, the amount of safety stock to hold
depends on the timespan for which the safety stock is used
to protect against demand variability, the service time of the
stock is thus a deterministic decision variable although its
demand is stochastic. The authors of [3] compared the two
approaches for a two-level distribution system, the results
show that the difference between the two approaches is quite
small in terms of costs and the GSA outperforms the SSA
for the systems with moderate costs of operating flexibility,
long processing time at the warehouse and high service level
at retailers.

Since the GSA formulates the safety stock optimization
problem of a multi-echelon inventory system as a deter-
ministic mathematical programming problem rather than a
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stochastic problem in the SSA, it greatly simplifies the prob-
lem and makes the latter much easier to be solved. However,
the original GSA does not explicitly model the costs of using
operating flexibility measures to fulfill excessive demand
superior to a pre-specified demand bound [4]. The ignorance
of the operating flexibility costs may make the GSA model
unable to reflect the reality, since expediting and overtime
usually lead to additional costs in practice. In addition, the
original GSA does not consider fixed order costs for placing
orders at each stock. In reality, such order costs often exist,
which may include the costs for placing and delivering orders.
For these two reasons, in this paper we try to extend the
original GSA so that it can consider both fixed order costs
and operating flexibility costs.

In this paper, we consider a continuous review assembly
system with Poisson final demand and fixed order costs at
each stock, where each stock of the system is controlled by
an echelon (R, Q) policy. This means that an order of Q units
is placed every time when the inventory position (=on hand
inventory +outstanding order -backorders) of a stock reaches
a reorder point R. We extend the GSA by considering the
effects of operating flexibility on the material flow and the
total cost of the system. Firstly, we derive a deterministic
mathematical programming model for the optimization of
an echelon (R, Q) policy for the system under the GSA.
Secondly, we propose a method for solving the model based
on a line search for finding the optimal target cycle service
level (CSL) to customer. Moreover, we analyze the optimality
conditions for the extended GSA model and obtain some
important properties. Numerical experiments on randomly
generated instances show the efficiency of the iterative pro-
cedure and confirm the solution presented in this paper.

The rest of this paper is organized as follows: Section 2
contains a literature review. Section 3 describes the assembly
inventory system considered and the original GSA assump-
tions, and provides a mathematical model for the optimization
of an echelon (R, Q) policy of the system with considering
the operating flexibility costs. Section 4 presents an iterative
procedure for solving the model and analyzes the optimal-
ity conditions for the extended GSA model. Computational
results are presented and analyzed in Section 5. Section 6
concludes the paper with some remarks on future research.

Il. RELATED LITERATURE

The GSA was originated by a fundamental work of [2]. In
that work, the authors studied a single stock with random
but bounded demand, controlled by a base-stock policy. It is
proved that the bound of the demand during the lead time of
the stock can be used to set its base-stock level. The author of
[5] extended the model to serial inventory systems and proved
that the optimal inventory policy of the systems is an ‘“‘all
or nothing” policy. The authors of [4] extended the previous
work to more general multi-echelon inventory systems. More
works on GSA can be found in [6]-[13]. Recently, the authors
of [14] proposed solution methods to solve the GSA model
under arbitrary cost functions. The authors of [15] considered
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the stochastic lead times into the GSA model, and presented
efficient algorithms to solve. The authors of [16] extended the
formulation presented in [17] to general acyclic systems and
showed that the computational complexity increases signifi-
cantly with differentiated service times. More comprehensive
survey of GSA can be found in [18] and [19]. Note that these
works did not explicitly consider the effects and the costs of
using operating flexibility measures in their GSA models.

Only few studies have been conducted regarding the
impact of using operating flexibility measures in GSA model.
The authors of [3] considered a two-level distribution sys-
tem with a particular type of operating flexibility measure,
i.e., express delivery, which can speed up the process of
delivery from the warehouse to the retailers and make use
of inflow materials, they assumed unit cost associated with
this operating flexibility measure and provided an extension
of GSA model to minimize inventory costs of the whole
distribution system. Their simulation results demonstrated
the relevance of the operating flexibility cost assumption.
The authors of [20] proposed a stochastic GSA model with
recourse for a supply chain that uses another type of operating
flexibility measure, i.e., outsourcing. The authors of [18] also
considered outsourcing and assumed such measure is only
applied in the demand level of a multi-echelon inventory
system. In that paper, they evaluated the service level that
results from carrying safety stocks and showed that if demand
is truncated at the demand stage, there exists a gap between
the effectively observed service level and the target service
level. The authors of [21] extended their previous work and
presented a GSA model which consider the capacity con-
straints of outsourcing, they compared their model with the
original GSA model and the SSA model proposed in [22]. The
experimental results demonstrated that their model is more
cost-effective.

From the above literature review, we can see two types of
operating flexibility measures have been studied in the GSA
framework, one includes express delivery, expediting and
overtime, which speeds up the production and distribution
process ([3]), another turns to external sources ([18], [20]
and [21]). The first type of operating flexibility measures
makes the original unbounded demand of the final level prop-
agated towards the upstream level of a supply chain, whereas
the second type uses outsourcing to handle the excessive final
demand superior to a specified demand bound, and only part
of the demand within the bound propagated in the system.

Although the GSA was primarily applied to safety stock
placement, it can also be used to optimize the (R, Q) policy
for a multi-echelon inventory system, because for each stock
controlled by an echelon (R, Q) policy in the system, its
reorder point R is strongly related to its safety stock. The
authors of [23] is the first paper to use the GSA to optimize
an echelon (R, Q) policy for assembly inventory systems with
fixed order costs but does not explicitly model the effects of
using operating flexibility measures when external demand
exceeds the specified demand bounds. This study shows that
the consideration of operating flexibility effects in assembly
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systems makes the GSA model more realistic. Compared with
other previous works on considering operating flexibility
measures in the GSA framework, this paper deals with a
more complicated system with fixed order costs controlled
by an echelon (R, Q) policy. Moreover, most relevant studies
only consider the effects of combining operating flexibility
measures with safety stocks to address demand variations, but
ignore the cost impact of such measures, this paper provides
a model that considers both the effects and the costs of
operating flexibility measures for assembly systems and a
deeper analysis of the model.

Ill. GUARANTEED-SERVICE APPROACH

This section first presents the assembly inventory system
considered and the original GSA assumptions to provide
the reader with a foundation regarding the GSA, and then
formulates a new mathematical programming model for the
optimization of an echelon (R, Q) policy of the system with
the consideration of the effects of operating flexibility mea-
sures on its material flow and its total cost.

A. COMMON ASSUMPTIONS AND CHARACTERISTICS
This paper considers a continuous review assembly inventory
system with multiple intermediate items (components and
sub-assemblies) and a single end item. The network structure
of the system is defined by its bill-of-materials (BOM) which
is a tree whose root node corresponds to the end item, as
illustrated in Figure 1. All components at the highest level
of the BOM are purchased from outside suppliers, these
components are assembled into a finished product (end item)
at the lowest level of the BOM. Hereafter, the stock of item i in
the system is also called stock i, i =1,2,...,N. It is assumed
that the outside suppliers never run of stock. Let N denote
the number of items (stocks) in the system, N >3, and A be
the set of all components at the highest level of the BOM,
where a component is called at the highest level if it has no
predecessor. These items (stocks) are numbered from 1 to
N, where item (stock) 1 represents the end item (end stock).
Moreover, it is assumed that customer demand occurs only at
the end item (stock) and follows a Poisson process with the
average demand rate A.

One major assumption of the GSA is that if customer
demand during a lead time exceeds a pre-specified upper
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bound, excessive part of the demand superior to the bound
will be fulfilled by using operating flexibility measures such
as expediting and overtime rather than fulfilled normally from
the stocks of the considered system. With this assumption, the
system is regarded as one facing a bounded demand although
the real customer demand is not bounded. Note that the bound
is not defined directly on the demand of each time unit but on
the lead time demand, i.e., the total demand occurred during
the lead time. Since the lead time is a decision variable in the
GSA, the bound is defined as a function of the lead time.

Let d; and d[t1, t2) denote the customer demand at time ¢
and the total customer demand from time #; to time #, (not
including time #), with #, > #;, respectively. Since the
customer demand of the assembly system is stationary, the
lead time demand d[¢-7, ) with 7 > 0 can also be briefly
denoted by d(t). For this lead time demand, its upper bound
to be specified can be denoted by D(t). We assume that the
excessive part of the lead time demand superior to D(t) will
be fulfilled by using operating flexibility measures in the
system.

As in the original GSA, the lead time demand bound D(7)
is determined by the system’s target CSL « to final customer,
that is, D(7) is the minimum number satisfying the following
condition:

pldlt —7,1) < D(1)} = « ey

where p{.} denotes the probability.

In the GSA literature, most studies use a normal distribu-

tion to describe the external demand process. Since the con-

sidered system assumes that customer demand only occurs at

the end item and the demand follows a Poisson process with
average demand rate A, then, D(t) can be calculated by
D(r) [)\’.L.]kef)»‘r

_ > o

KT @

k=0

The GSA assumes that each stock i quotes and guarantees
an outbound service time S; to its immediate downstream
stock, and an inbound service time SI; to its immediate
upstream stocks. That is, demand that arrives at time ¢ and
that is smaller than the demand bound must be filled at ¢ + S;
with 100% service level. The inbound service time SI; is
the time required by stock i to receive its ordered products
from its immediate upstream stocks after the placement of
the corresponding order. In addition, a given production time
T; is also defined at each stock i, which represents the time
from the arrival of all materials required for the production
of a product to the completion of the production and ready to
serve a demand. In the GSA, the parameters of the inventory
policy for a system are determined by the outbound service
time, inbound service time and production time of each stock.

Under the setting presented above, at time f, stock i
observes its demand and places an order to its upstream
stocks. If stock i does not hold inventory, the earliest time that
it can satisfy the demand is #+SI; + T;. The GSA guarantees
that stock i satisfy the demand at time ¢ 4- S;. This implies that
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TABLE 1. Notations used for the problem formulation.

Assembly inventory system

N the number of stocks in the assembly inventory system

i stock index, i=1,2,...,N

t time index

s(7) the set of immediate successor of stock 7

SUC(i) the set consisting of stock i and all its successors

C; the cardinality of SUC(7)

P@) the set of the immediate predecessors of stock i

PRE(i) the set consisting of stock i and all its predecessors

A the set of all components at the highest level of the system

Demand

A average demand rate of the customer demand

dit) demand realization of stock 7 at time ¢

d[t-L; 1) the lead time demand over L; units of time of stock 7, i=1,2,...,.N
D7) upper bound imposed on the lead time demand over T units of time
Time parameters and variables

T; production time of stock i

S; outbound service time of stock i

SI; inbound service time of stock i

L; net lead time of stock i

M; maximum replenishment time of stock 7

1 upper bound imposed on the outbound service time of the end stock
Performance measures

h unit echelon on-hand inventory holding cost at stock i

h; unit on-hand inventory holding cost at stock i

¢ fixed order cost for placing each order by stock 7 to its customer

P cost for using operating flexibility measures to fulfill each unit of excessive customer demand
a cycle service level (CSL) of the system

I3 fill rate of the system, which is the percentage of customer demand (in quantity) fulfilled normally by

using the on-hand inventory of the system without resorting to any operating flexibility measure

Inventory policy parameters

r; installation reorder point of stock i

R; echelon reorder point of stock i

0, order size of stock i

Inventory state variables (evaluated before demand occurs)

1(?) on-hand inventory of stock 7 at time ¢

IAG) echelon on-hand inventory of stock 7 at time #
1L (%) echelon inventory level of stock 7 at time ¢
IP(?) echelon inventory position of stock i at time ¢

if t +S; > r+SI; + T;, stock i can always satisfy the demand.
Otherwise if  + S; < t+SI; + T;, stocki has to hold a certain
amount of inventory to satisfy the demand occurred between
t+S; and t+4-S1I; + T;, the length SI; + T;-S; of the time interval
[t 4+ S;, t+SI; 4+ T;] is thus called the net lead time of stock i.

B. MODEL FORMULATION
For the assembly inventory system considered, we establish
a new mathematical programming model for the optimiza-
tion of an echelon (R, Q) policy under the GSA by extend-
ing the original GSA proposed in [23] to take account of
the cost of using operating flexibility measures and their
effects on the material flows of the system. The notations
given in Table 1 will be used in the formulation of the
model.

The objective of the problem is to minimize the average
total cost of the system per time unit in the long run, i.e.,
the sum of the inventory holding costs, fixed order costs
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and the operating flexibility costs at the end stock (stock 1).
Specifically, the three types of costs can be formulated as
follows:

Fixed order costs Since $ is assumed to be the percent-
age of customer demand (in quantity) fulfilled normally by
the on-hand inventory of the end stock, then, for each time
unit the average customer demand fulfilled normally is A8.
Therefore, the average fixed order cost per unit of time for
stock i can be formulated as M

Operating flexibility costs As we know, 1-8 can be
regarded as the percentage of customer demand fulfilled by
resorting to operating flexibility measures. Therefore, the
average operating flexibility cost per time unit can be formu-
lated as pA(1-8).

Inventory holding costs The inventory holding costs of
stock i are considered at all stocks, and for each stock i, its
average holding cost can be formulated as h{ x E[If] for
i=12,..,N.
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Summarizing the above three costs, the average total cost
of the system per unit of time can be formulated as

0 cikB
Z(? +h X E[I{]) + pr(1 — B) 3)

To obtain a mathematical expression for E[/{], some anal-
ysis is needed. Under the GSA, each stock i has no backorder
because of using operating flexibility, then, the following
equation can be derived

IF(t) =IP{(t — L;) —d[t — L, 1) 4)

Define d [t — L;, t) as the lead time demand fulfilled nor-
mally by the on-hand inventory of the stock. Since 1008% of
the total demand is fulfilled normally, then

E [Ez[t — L, ;)] — BiL; (5)

Furthermore, it is assumed that all excessive demands
are satisfied without incurring inventory holding costs. This
assumption is reasonable since the occurrence of excessive
demand implies zero on-hand level in the stock considered.
With this assumption, we can ignore excessive demand in the
calculation of expected holding cost E[I]. Thatis, d[t—L;, 1)
can be replaced by d [t—L;, t) when calculate E [Il.e ] according
to (5). SincelP;(t) is uniformly distributed over the interval
[Ri+1, Ri+Q;] in steady state, then:

QZ(R T 6)

E[IP!] =
2
j=1

According to [23], we can prove that there exists an optimal
solution with R; given by

Ri= Zjesuc( | DSL+Ti=S) + Z,esuc@) 0,—0i—C;
@)

Then, we can derive E[I] as follows:

E[If] = E[IP¢(t — L)) — d[t
1

=R+ +TQ — ABL;

- ZjeSUC()D(SI +Ti—S)+ Zjesuco) Q;

+—Q’—C—w(s1+T S:) 8)

—Li,n)]

With (3) and (8) and referring to the original GSA proposed
in [4], the problem P of finding the optimal S;, SI; and Q;
to minimize the total cost of safety stock in the assembly
systems can be formulated as follows:

P Minimize

C’)"B e . Q.
Z { + K¢ ZIGSUW) D(SI; + T—Sj) — A

><(SI +T,—S)
1+ 0
+T _C]"f‘ jePRE(i) ]Qv(l)}+p)‘(l _,3)
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s.t.

Q,‘ = ms(,‘),‘Qs(,‘) for = 1, 2, veey N (9)
SL+T,—S;>0fori=1,2,...,.N (10)
SI; > max{S; ,j € P@}fori=1,2,--- ,N (11
0<S8 =< (12)
Qi, ms;) > 0 and integer for i =1,2,...,N (13)
SI;, S; = 0 and integer for i =1,2,...,N (14)

Constraint (9) is the integer-ratio constraint between the
order sizes of any two successive stocks. Constraint (10)
assures that the net lead time of each stock is nonnegative.
Constraint (11) implies that the inbound service time of each
stock must equal to or greater than the outbound service
time of any of its immediate upstream stocks. Constraint (12)
imposes an upper bound s; on the outbound service time
of the end stock (stock 1), where s; may be given by final
customers. Constraint (13) and (14) imply that all the decision
variables must be integer.

Note that the target CSL « is also a decision variable of
model P although it does not explicitly appear in the model,
because its objective function depends on D(S1;+7;-S;) which
in turn depends on «. The fill rate 8 depends on the inventory
policy, the net lead time, and the Poisson demand rate of the
end item, it also depends on «. By observing the objective
function of model P, if optimal @ and B are known, pA(1-8)
becomes constant and the model P can be decomposed into
two independent sub-models, one with decision variables Q;
and the other with decision variables SI; and S;, and the two
sub-models are called the order size decision sub-problem
and the reorder point decision sub-problem or the Q-problem
and R-problem for short, respectively. The Q-problem has an
objective function composed of all Q-dependent cost terms
and constraints (9) and (13), whereas the R-problem has an
objective function composed of all R-dependent cost terms
and linear constraints (10), (11), (12) and (14).

IV. SOLUTION METHODOLOGY

In this section, we will present a procedure to solve model
P for the optimization of (R, Q) policy. The procedure is
based on a line search of the optimal target CSL « and the
calculation of the corresponding fill rate . Moreover, after
analyzing the model, we get some important properties about
the structure of an optimal solution of the model.

A. LINE SEARCH

To solve model P, the remaining tasks are to find optimal
target CSL « and the corresponding fill rate 8. The optimal
« can be found by a line search over its domain, i.e., over the
interval [0, 1], since 0 < o < 1. We implement the line search
by solving model P for each possible value of o (referred as
model P(«)), and if 8 is known, model P(«) can be efficiently
solved by decomposition, i.e., by solving two sub-problems,
Q-problem and R-problem. However, the fill rate S always
depends on the (R, Q) policy, the (net) lead time L, and the
Poisson demand rate A of the end stock (stock 1), and the first
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TABLE 2. Parameters setting for the instances.

Parameter Description Values
hf echelon inventory holding cost of stock i{1,2,3,4,5,6,7} U[1,5]
¢ fixed order cost of stock i{1,2,3,4,5,6,7} hxU[10,20]
p operating flexibility cost of the system rxhy, r=10,20,50
T; production time of stock i{1,2,3,4,5,6,7} U[1,5]
S upper bound of the outbound service time of the end stock (item 1) U[1,3]
A demand rate of the system U[1,10]

three parameters R, Q, and L can only be obtained by solving
model P(«), which in turn depends on 8. To overcome the
difficulty caused by the interdependence of 8 and the three
parameters in solving model P(«), we propose an iterative
procedure to solve model P(«) based on guessing the value
of B in each iteration. Since B is usually larger than « and
close to f when o approaches 1, it is initialized to « in the
procedure. As soon as the value of 8 does not change in two
successive iterations, we have got the real 8 and the optimal
(R, Q) policy for the system can be obtained by solving model
P(w) at the last iteration of the procedure. The main steps of
the procedure are given as follows:

Procedure BETA for solving P

Step 0: Set B: = «;

Step 1: Solve the Q-problem and the R-problem to get the
values (R;, Q;) for each stock i,

Step 2: Calculate the real fill rate B*of the system for the
given (R, Q) policy;

Step 3: If B* = B, stop. Otherwise, set : = B* and go to
Step 1.

To implement the above procedure, a method for calculat-
ing the fill rate 8 in Step 2 is needed when the (R, Q) policy
is given.

Let o* denote the real CSL of the system, «* is defined
as the percentage of customer orders (in number of orders)
fulfilled normally by the on-hand inventory of the end stock
of the system without resorting to operating flexibility mea-
sures. The real CSL «* may be larger than the target CSL
o because of the nature of the (R, Q) policy used. In the
system, after each inventory replenishment of the end stock,
its inventory position will be brought to a level in the interval
[D(L1), D(L1)-1+Q1]. This level may be larger than D(L1) if
Q1 > 1.

For the considered assembly system with Poisson demand,
each customer demand (order) contains only one unit if it
occurs, so the number of backorders (orders not fulfilled on-
time) equals to the quantity of demand not fulfilled on-time.
Therefore, the fill rate of the system is equal to its real CSL
a*, i.e., B= a*. Under the conventional GSA framework, it
is assumed that all upstream stocks (all stocks other than the
end stock) never run out of stock facing a bounded lead time
demand at the end stock. With this assumption, «* can be
calculated by only considering the end stock (stock 1).
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After each inventory replenishment, the echelon inventory
position of stock 1 will be within the interval [R1+1, R1+Q1],
where Ry = D(L1)-1, i.e.,L1=SI1+T7-S. Since this echelon
inventory position is uniformly distributed in this interval, o*
can be calculated as

R1+0)
of=— Y pdSh+Ti—S)<IP) (I5)
O IP=R;+1
where SI1 + T1-S; and d(SI; + T1-S;) are the net lead time
and the net lead time demand of the end stock, respectively.

Therefore, for the considered system with Poisson demand

of rate A, we can derive

ﬂ_ . 1 R+Q1 IP [)\'(Sll_i_Tl_Sl)]ke—)»(SI]+T1—S1)
RREER 59> 2
IP=R+1 k=0

(16)

B. PROPERTIES OF THE MODEL

This paper presents an extended GSA model for the consid-
ered assembly system, in which the fixed order costs and
the effects of operating flexibility on the material flows of
the system are incorporated. In this section, we analyze the
optimal solution of the GSA model in-depth. Firstly, we
study the characteristics of inbound and outbound service
times in an optimal solution of the model, and the following
propositions can be derived.

Proposition 1: For model P, there always exists an optimal
solution such that the outbound service time of the end stock
(stock 1) equals s1, and the inbound service times of all
components at the highest level are 0, That is

Sy = s1,
SI; =0,i€A.

Proof: Since the cost terms and the constraints related
to outbound and inbound service times in model P are all
included in the objective function and constraints of the
R-problem, the optimal values of the service times of model P
can be derived by solving the sub-problem, thus, to prove this
proposition, we only need to consider the R-problem which
has the following objective function:

N
X; [D(SI;+T;—S) % ZjePRE(l_) h¢ —h§ 2 B(STi+Ti—S))]
=

7)
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TABLE 3. The optimal solution of solving model P for the 10 instances (s; <T;).

No. S T] ﬂ* Sf1_7 S*1_7 Lf1_7 Q*1_7 Rl time
1 2 3 09834 {0,0,0,0,0,0,0} {2,0,0,0,0,0,0} {1,1,3,2,2,3,2} {3,3,3,12,9,9,9} 7 0.229
2 3 4 09854  {0,0,0,0000} {3,0,0,0,0,0,0} (1L1,1,4,53,3) (3,3,6,6,6,6} 12 0.186
303 409474 {2,000000 {3.2720000 (3,0,3,3,3,5.4) (1,2,2,42.2.4) 26 0.18
4 4 5 09639 {0,0,0,0,0,0,0} {4,00,0,0,0,0} {1,2,3,1,3,2,5} {2,4,4,8,8,8,4} 9 0.171
5 4 5 09764 {0,0,00,0000 {4,0,0,0,0,0,0} (1,5,2,4,4,5,4) (2,2,4,12,6,4,4) 17 0.188
6 4 5 09701 {0,0,0000,0} {4,0,0,0,0,0,0 (1,4,1,5,3,2,5) (2,2,4,4,6,4,4) 7 0.192
7 35 09828 {0,0,0,0,0,0,0} {4,0,0,0,0,0,0} {2,1,5,5,5,2,5} {2,4,4,8,12,8,8} 22 0.174
8 35 09879 {1,0,0,0,0,0,0}  {3,1,1,0,0,0,0} {3,1,0,3,5,3,2} {4,4,4,12,12,12,12} 34 0.228
9 4 5 09750 {0,0,0000,0 {4,0,0,0,0,0,0 (1,43,1,2,5,5) (2,4,6,8,12,6,12} 18 0.203
10 3 4 09855 {0,0,0,0,0,0,0} {3,0,0,0,0,0,0} {1,5,5,1,2,3,4} {4,4,4,4,8,12,12} 14 0.388

According to (8) and the objective function of model P,
(17) is equal to the inventory holding costs of the considered
system plus (or minus) a term only depending on Q. If all
Q are given, the inventory holding costs increase as each
SI; 4+ T;-S; increases. This implies that (17) also increases
when SI; + T;-S; increases. As a result, the value of (17)
will decrease with the increase of the outbound service time
S; if SI; and T; are given. This implies that the optimal
outbound service time of the end stock S; must take its
maximum possible value. For the R-problem, the constraints
involving the outbound service time of the end stock are
SI1 + T1-S1 >0 and S1 < s1.Then, in an optimal solution,
the optimal outbound service time of the end stock can be
determined by

S1 = Min{SI| + Ty, s1}

(1) if s < Ty, it is certain that s <SI; + T, then, the
optimal outbound service time S; = Min{SI} + T, s1}= s1;

(2) otherwise, ifs; > Ti, the following two cases may
happen: If SI1 + T7 > s1, then, S1 =Min{SI| + T1,51}= s1.
Otherwise, if SI1 + T1 < sy, there is an optimal solution with
S1 and SI; so that S =Min{SI, + T, s1}=SI} + T1 < s;.
Suppose that the optimal objective value of theR-problem
is x. At this solution, the inventory holding cost of the end
stock is zero. We can construct a new solution withS ; = s,
SI i = s1 — Ty, and the inbound and outbound service times
for all other stocks being the same as in the optimal solu-
tion. Note that the new solution increases S/ from S1-7] to
s1-T1, this only expands the feasible range of inbound and
outbound service times at its immediate predecessor stocks,
but does not change the optimal inbound and outbound ser-
vice times of other stocks, this can be proved by considering
the constraint of (11). That is, the new solution, with the
change of the value of S7 and S7;, has no effect on the inbound
and outbound service times of the other stocks and is thus
feasible. Moreover, this new solution has the same objective
value x for the R-problem and zero inventory holding cost
of the end stock. Then, the new solution with S; = syis
also an optimal solution. Thus, there always exists an optimal
solution such that §1 = s7.

Next, we consider the optimal solution regarding the
inbound service times of all components stocks at the highest
level, i.e., all stocks i with i € A. Firstly, there is an optimal
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solution with S; and SI; for each stock i so that the objective
value of the R-problem is x.

For this optimal solution, if SI; < S; for some i € A, we
can construct a new solution with SI; =0, S; =S; —SI;, and
the inbound and outbound service times for all other stocks
being the same as in the optimal solution. This new solution is
feasible, because for all constraints related to stock i, we have
SI; > 0,8, +T; —S; = S; + T; — S; > 0and 0 < §; < .

This new solution has the same objective value x for the
R-problem, then, there exists an optimal solution with SI; =0
for all components at the highest level.

Otherwise, if SI; > S; for some i € A, we can also construct
another solution, such that SI; = SI; — §; and S; = 0. This
solution is also feasible, because for all constraints related
to stock i, we have Sli/ + T; — S; > 0 and S; > 0. The
solution has the same objective value x for the R-problem,
then, this solution is also optimal. Moreover, if we decrease
SIi/ to SIiH = 0 and set S;/ to 0, we can get a new solution
which satisfies all constraints related to stock i, with the
objective value no larger than x for the R-problem, because
the objective value of this problem will not increase with the
increase of S7;, so this new solution is an optimal solution with
SIi” = 0. Thus, there exists an optimal solution with SI; =0
for all components at the highest level, and this proposition is
thus proved. g

Proposition 2: For model P with s < Tj, there always
exists an optimal solution such that the end stock has a
positive net lead time, a nonnegative reorder point, and the fill
rate 8 less than 1. This implies that if s; < 77, the operating
flexibility measures are always used to fulfill the excessive
customer demand superior to a pre-specified demand bound.
That is,

SI1+T;—8; >0,
R > —1,
0<p<l.

Proof: Consider an optimal solution and the end stock,
we first prove that if SI; 4+ T1-S7 =0, sy > T must be
satisfied. In this case, we can construct an optimal solution
such that SI;y + 71 = Sj, then we have S| < s; and
S1 =SI+T;. This implies that ST1 +77 < s1. Since SI} >0, in
order to satisfy SI1+T1 < s1,s1 > T1 musthold. Therefore, if
s1 < T1, there always exists an optimal solution such that the
end stock has a positive net lead time SI; + 71-S1 >0; Next,
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TABLE 4. The optimal solution of solving model P for the 10 instances (s;>T;).

No. S T] K Sf1,7 S*1,7 Lflﬂ Q*]J R1 time

1 2 1 1 {1,0,0,0,0,0,0} {2,1,1,0,0,0,0}  {0,2,2,2,1,2,2} {3,3,3,12,6,6,6} -1 0.165

2 2 2 1 {0,0,0,0,0,0,0} {2,0,0,0,0,0,0} {0,3,3,1,1,3,2} {2,4,2,8,8,8,6} -1 0.166

3 32 1 {L,0,0,0,0,0,0} {3,1,1,0,0,0,0} {0,0,3,5,5,2,1} {3.,3,3,6,6,6,9} -1 0.181

4 3 1 1 {2,0,0,0,0,0,0} {3,2,2,0,0,0,0} {0,1,0,5,5,2,4} {2,4,2,8,12,6,6} -1 0.187

5 4 4 1 {0,0,0,0,0,0,0} {4,0,0,0,0,0,0} {0,3,3,3,5,5,2} {3,6,6,12,12,6,6} -1 0.164

6 4 1 1 {3,1,1,0,0,0,0} {43.4,1,1,1,1}  {0,0,0,3,0,0,1} {2,6,4,12,12,12,12}y -1  0.173

7 4 3 1 {1,0,0,0,0,0,0} {4,1,1,0,0,0,0}  {0,0,4,5,4,4,2} {1,2,2,1,5,3,4,6} -1 0.203

8 32 1 {1,0,0,0,0,0,0} {3,1,1,0,0,0,0}  {0,2,4,3,1,3,3} {1,2,2,4,42,4} -1 0.185

9 31 1 {2,0,0,0,0,0,0} {3,2,2,0,0,0,0} {0,0,1,4,2,4,4,} {2,4,2,4,4,6,6} -1 0.193

10 3 3 1 {0,0,0,0,0,0,0} {3,0,0,0,0,0,0} {0,3,4,2,1,1,3} {3,6,3,6,6,9,6} -1 0.194

TABLE 5. Impact of the operating flexibility costs p.
No. - B Fixed order Inventory holding operating flexibility total costs fime
costs costs costs

10 0.975 241.477 821.696 9.996 1073.17 0.239
1 20 0.975 241.477 821.696 19.994 1083.17 0.201
50 0.975 241.477 821.696 39.988 1103.16 0.186
10 0.982 154.819 513.147 1.276 669.242 0.271
2 20 0.982 154.819 513.147 2.552 670.519 0.237
50 0.982 154.819 513.147 6.381 674.347 0.242
10 0.973 178.906 608.764 1.355 789.025 0.198
3 20 0.973 178.906 608.764 2.709 790.38 0.239
50 0.973 178.906 608.764 6.774 794.444 0.232
10 0.947 134.055 326.234 7.893 468.181 0.179
4 20 0.947 134.055 326.234 15.785 476.074 0.224
50 0.947 134.055 326.234 39.463 499.752 0.241
10 0.988 208.281 1029.49 3.444 1241.22 0.263
5 20 0.988 208.281 1029.49 6.889 1244.66 0.24
50 0.988 208.281 1029.49 17.222 1235 0.267
10 0.991 166.806 731.778 4.194 902.778 0.288
6 20 0.991 166.806 731.778 8.389 906.973 0.269
50 0.991 166.806 731.778 20.972 919.556 0.237
10 0.954 67.018 234.174 2.301 303.493 0.217
7 20 0.954 67.018 234.174 4.601 305.793 0.221
50 0.954 67.018 234.174 11.502 312.694 0.206
10 0.982 142.029 383.232 1.276 526.538 0.25
8 20 0.982 142.029 383.232 2.552 527.814 0.257
50 0.982 142.029 383.232 6.381 531.643 0.239
10 0.976 158.451 430.065 1.435 589.951 0.201
9 20 0.976 158.451 430.065 2.869 591.386 0.211
50 0.976 158.451 430.065 7.174 595.691 0.216
10 0.971 96.245 289.417 0.59 388.608 0.241
10 20 0.971 96.245 289.417 1.178 386.252 0.187
50 0.971 96.245 289.417 2.945 386.841 0.223

we consider the reorder point R of the end stock at an optimal
solution, i.e., Ry = D(SI1 4+ T1-S1)-1. According to (2), D(t)
always increases when At increases. Since v =Sl + T1-
S1 >0, then, we have R; > D(0)-1=0-1=-1.

In the above analysis, 8 can be determined by the following
equation:
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Note that 1-8 in the equation is the percentage of customer
demand (in quantity) fulfilled by using operating flexibility
measures.

Moreover, the first term in the equation can be simply
rewritten as follows:

18 & (u)k L 1R ke
0 x
l R+1 k=i+1 i=R+1k=1

and the second term can be written as:

R+0 oo k
(Kf)

sX >

l R+1 k=i+1

,)L.[ R+Q 00 R+Q

(A)kl ok 1
[ZZ’ ZZT—

i=R+1 k= i=R+1 k=1

we can derive that when tequals to 0, the values of the first
term and the second term are 2 and 0, respectively. In this
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TABLE 6. Impact of the upper bound s;.

No. 5 B+ Fixed order Inventory holding operating flexibility total costs fime
Costs costs costs

1 0.986 77.571 323.439 5.34 406.556 0.448

1 3 0.98 77.125 274.931 7.841 359.896 0.43
5 0.979 76.996 226.708 8.594 312.198 0.456

1 0.984 81.712 512.094 12.417 606.223 0.268

2 3 0.98 81.369 418.688 15.722 515.779 0.241
5 0.975 80.926 325.298 19.994 426.218 0.296

1 0.969 64.343 276.154 4.684 345.181 0.286

3 3 0.973 64.617 239.574 4.064 308.255 0.305
5 0.947 62.922 184.683 7.893 255.498 0.291

1 0.978 112.01 447.894 10.875 570.778 0.279

4 3 0.983 112.59 414.703 8.341 535.635 0.266
5 0.971 111.081 363.935 14.931 489.946 0.26

1 0.987 182.781 879.968 16.845 1079.59 0.268

5 3 0.986 182.781 788.564 16.845 988.19 0.275
5 0.984 182.358 697.276 19.697 879.331 0.263

1 0.984 114.172 607.235 4.728 726.134 0.354

6 3 0.979 113.592 487.17 6.227 606.989 0.434
5 0.964 139.645 340.19 10.831 490.665 0.445

1 0.983 122.217 676.649 9.826 808.692 0.269

7 3 0.98 122.524 599.658 8.592 730.775 0.365
5 0.975 121.551 501.048 12.962 635.095 0.258

1 0.989 209.293 1320.89 15.651 1545.83 0.413

8 3 0.988 209.151 1068.73 16.662 1294.54 0.471
5 0.983 207.99 795.553 24.89 1028.43 0.53

9 1 0.984 81.712 512.094 12.417 606.223 0.287
3 0.982 81.574 377.761 13.747 473.082 0.238

5 0.975 80.926 325.298 19.994 426.218 0.23

1 0.99 188.852 971.767 17.409 1178.03 0.276

10 3 0.989 188.765 771.328 18.212 978.305 0.285
5 0.985 187.978 554.622 25.434 768.033 0.304

case, B is 1. Moreover, since 8 decreases when T increases,
then B is less than 1 when t =SI7 + T1-S7 >0, that is, O<
B <1 when the net lead time of the end stock is positive. This
proposition is thus proved. 0

Proposition 3: For model P with s; > T}, there always
exists an optimal solution such that the end stock (stock 1)
has zero-positive net lead time, reorder point Ry of -1, and
fill rate 1. That is,

SI1+T;—81 =0,
Ry = -1,
B=1

Proof: We first consider the optimal value of the net
lead time at the end stock, i.e., SI1 4+ T1-S1. According to
the previous analysis, we can derive that the optimal value
of outbound service time at the end stock is determined by
(11). Moreover, two cases, SI1 + T1 < sy and SI} + T1 > s
may happen. Case 1: SI1 + T1 < s1. In this case, the optimal
S1 is equal to SI7 + Ty, that is, SI1 + T1-S1 = 0; Case 2:
SI1 + T7 > s1. In this case, the optimal S is equal to s1, and
we have proved that there exists an optimal solution such that
S1 = sy and ST} = s1-Ty, then SIT} + T1-S1 = (s1-T1) + Ti-
s1 = 0 can be derived. Therefore, we have proved that for
model P with s; > T7, there always exists an optimal solution
such that the end stock has zero-positive net lead time, i.e.,
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SI; + T1-S1 =0. Since SI} + T1-S; =0, we have D(0)=0 and
R1 = D(SI1 4+ T1-S1)-1=0-1=-1. In addition, the fill rate 8 is
equal to 1 when SI; + T1-S7 =0 has already been proved in
the proof of proposition 2. This proposition is thus proved.l]

It should be noted that in Proposition 3, the fill rate 8 = 1
is obtained under the assumption that all the upstream stock
always quotes a service time to its successors that it can
always satisfy the customer demand under the GSA frame-
work. However, according to [18], the effectively observed
CSL of a supply chain facing an unbounded stochastic exter-
nal demand, i.e., the CSL of the supply chain obtained when
it holds safety stocks defined according to the GSA and face
the unbounded demand, is usually less than the target CSL
o used for specifying the lead time demand bounds. The
difference (gap) between the two CSLs is due to the fact
that the CSL observed at a demand stage in a supply chain
is affected by the lead time demand bounds applied at its
upstream stages. This may happen when the net lead times
of upstream-downstream stages are different from the net
lead time of the demand stage. Applying to our case, the
observation of [13] implies that if all operating flexibility
measures are ignored, the effectively observed CSL of the
studied assembly system is usually less than the CSL used to
define its lead time demand bounds at each stock. Similarly,
the effectively observed fill rate (the real fill rate) of the
system is usually less than the theoretical fill rate 8 obtained
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TABLE 7. Impact of the CSL a.

Fixed order

Inventory holding

operating flexibility

No. o £* total costs time
COSts COStS Ccosts

0.5 0.938 135.872 508.6 18.643 663.115 0.282

1 0.7 0.969 140.452 581.919 9.159 731.53 0.403
0.8 0.988 114.711 676.199 3.332 794.243 0.323

0.9 0.996 115.504 764.539 1.283 881.326 0.323

0.5 0.938 116.92 569.403 31.0708 717.393 0.332

5 0.7 0.969 120.861 663.804 15.2651 799.93 0.307
0.8 0.987 122.997 737.144 6.698 866.838 0.243

0.9 0.995 124.013 824.927 2.623 951.563 0.311

0.5 0.923 153.764 945.044 38.707 1137.52 0.386

3 0.7 0.964 160.642 1056.24 18.075 1234.96 0.329
0.8 0.976 162.749 1153.18 11.752 1327.69 0.525

0.9 0.991 165.168 1284.65 4.495 1454.31 0.339

0.5 0.959 202.936 1437.26 60.74 1700.93 0.371

4 0.7 0.983 202.968 1591.13 25.049 1824.14 0.349
0.8 0.99 209.387 1687.45 14.986 1911.82 0.327

0.9 0.995 210.607 1829.57 6.33 2046.51 0.292

0.5 0.952 181.558 530.799 84.33 796.686 0.331

5 0.7 0.979 186.862 613.202 35.672 835.736 0.344
0.8 0.987 188.347 663.115 22.05 873.512 0.357

0.9 0.996 160.415 777.406 6.353 944.175 0.336

0.5 0.934 73.462 191.91 26.464 291.836 0.319

6 0.7 0.966 76.011 229.416 13.504 318.931 0.438
0.8 0.983 77.361 256.425 6.637 340.424 0.329

0.9 0.995 78.294 294.031 1.896 374.22 0.373

0.5 0.946 95.401 444.309 43.10 582.81 0.367

7 0.7 0.977 81.107 516.617 18.25 615.973 0.286
0.8 0.984 81.632 552.643 13.188 643.462 0.315

0.9 0.994 82.541 626.226 4.425 713.192 0.292

0.5 0.899 57.723 218.087 15.118 292.928 0.269

8 0.7 0.942 62.574 252.365 8.68 323.617 0.288
0.8 0.967 64.254 294.387 4.885 363.526 0.281

0.9 0.984 65.363 342.745 2.379 410.488 0.332

0.5 0.923 121.825 367.842 38.542 528.209 0.276

9 0.7 0.955 113.791 435.063 22.555 571.409 0.406
0.8 0.975 111.638 480.798 12.496 604.933 0.292

0.9 0.992 113.541 568.292 4.186 686.019 0.336

0.5 0.953 176.601 798.15 58.538 1033.29 0.308

10 0.7 0.979 181.557 904.641 25.10 1111.3 0.299
0.8 0.989 183.171 991.185 14.213 1188.57 0.271

0.9 0.995 184.344 1086.04 6.298 1276.69 0.29

under the conventional GSA framework, i.e., less than one in
the case of Proposition 3.

V. EXPERIMENTAL RESULTS

In order to gain further insights into the performance of the
iterative procedure for solving P for a given target CSL a, we
conduct comprehensive experiments on randomly generated
instances in C++ with Visual Studio 6.0 compile, and all
experiments were carried out on a PC with 2.30 GHZ and
8.00 Go RAM.

A. PARAMETER SETTINGS

We consider an assembly system with 7 stocks (see Figure 1).
Each stock has only two immediate predecessors and one
immediate successor, except for the stocks with no predeces-
sor at the highest level of the BOM and for the end stock with
no successor at the lowest level. All the parameters setting is
given in Table 2.
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B. PROCEDURE FOR SOLVING MODEL P

Since it is uncertain whether the cost function of model P is
convex with respect to the target CSL «, in solving model P
we vary « from 0.5 to 0.98 and discretize it with an interval of
length 0.001 (with precision 0.001) by considering its values
0.54+0.001k, £ =0, 1, ..., 480. For each possible value of
o, we solve model P by using the procedure BETA. The
(approximate) optimal solution of model P is obtained by
comparing the total costs for all the values of «. In this test, the
procedure is evaluated by computational experiments on 10
instances randomly generated as mentioned in subsection A,
and for each instance, we calculate six values as the optimal
value of B (B%), and optimal inbound service time (SI*),
optimal outbound service time (S*), optimal lead time (LT™),
optimal order sizes (Q*) for each stock i, i =1,2,...,7 and
the reorder point at the end stock (R). The results are given
in Table 3 and Table 4, with the restricted case s;<7; and
s1 > T, respectively.
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From the results, we can demonstrate that: (1) the proce-
dure BETA has a good convergence property and is computa-
tionally efficient for solving the model P with a given CSL
o; (2) for all 10 instances, we can derived that S| = s,
Sly =SIs =SIg =SI; =0, this solution can verify Proposi-
tion 1; (3) for the restricted case: s1<T, from Table 3, the
following optimal solutions are also derived: LT >0, Ry >0
and B >0, this solution satisfies Proposition 2; (3) Similarly,
Proposition 3 can also be identified by the optimal solution
that LT} =0, Ry =0 and 8 =1 in Table 4.

C. SENSITIVITY ANALYSIS

From the experiment results, we identify three important
drivers for the optimality of the cost structure: unit operating
flexibility cost (p), an upper bound of the outbound service
time at the end stock (s1) and the CSL («). To assess the
effect of the three parameters on the cost structure, three sets
of instances are evaluated, and for each instance, except the
optimal value of 8 (8*), we also compare fixed order costs,
inventory holding costs, operating flexibility costs and total
costs in each set of instances.

1) UNIT OPERATING FLEXIBILITY COST p
Firstly, we explore the impact of the unit operating flexibility
cost on randomly generated instances with « =0.8 and 51 =1.
10 sets of instances were tested, each set corresponds to a
different unit operating flexibility cost p by rxhj, where
r €{10, 20, 50}. The results of this test are given in Table 5.
From Table 5, the results indicate that with an increase
in the unit operating flexibility cost, operating flexibility
costs and total costs increase slightly, other optimal values
remain unchanged, since they only depend on the g*. It is
demonstrated that the unit operating flexibility cost (p) has a
minor impact on the fill rate Sand the cost structure of the
considered system.

2) UPPER BOUND ON OUTBOUND SERVICE TIME AT THE
END ITEM s,
Similarly, we also evaluate 10 sets of randomly generated
instances with @« =0.8 and p =20xh, each set corresponds
to a different s; with 1, 3 and 5, other parameters are given
randomly as in Table 2. The results are depicted in Table 6.
From Table 6, we observe that the optimal fill rate *, fixed
order costs, inventory holding costs always decrease in s,
whereas operating flexibility costs increases in s7.

3) CYCLE SERVICE LEVEL (CSL) «

Although the CSL « does not explicitly appear in the GSA
presented, it is also a decision variable of model P, this is
because its objective function depends on D(SI+T-S) which
is in turn depends on «. In addition, another variable, the
fill rate B, depends on the inventory policy parameters, the
net lead time, and the Poisson demand rate of the end stock.
It in turn depends on «. The performance was evaluated by
computational experiments on 10 sets of randomly generated
instances as presented in Table 2. For each set of instances,
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four different CSL level varies in 0.5, 0.7, 0.8 and 0.9. The
results are given in Table 7.

From Table 7, we can see that the optimal fill rate 8*
increases in «, in turn, the fixed order costs, inventory holding
costs also increases in «, whereas the operating flexibility
costs decreases in «.

VI. CONCLUSION

In this paper, we have studied a continuous review assembly
inventory system with Poisson demand, fixed order costs,
and controlled by an echelon (R, Q) policy. We used the
extended GSA to optimize the parameters of the policy under
the assumption that excessive demand beyond a pre-specified
bound will be fulfilled by using operating flexibility mea-
sures. Different from original GSA proposed by the authors
of [4], we also consider fixed order costs for placing orders
at each stock and the operating flexibility costs for fulfill-
ing excessive demand. We first formulated a deterministic
mathematical model for the inventory policy optimization
problem. Then the model is solved by an iterative procedure
when the target CSL is given. We also analyze the model and
get some important properties about the optimal solution of
the model. Experiments results and the sensitivity analysis
demonstrate the efficiency of the algorithm and the properties
of optimal solutions presented in this paper are also verified
to be correct.

This study has demonstrated advantages of the GSA for
the optimization of assembly systems with fixed order costs
and operating flexibility costs. The results in this paper can
be extended to more general multi-echelon inventory sys-
tems with other demand process such as normally distributed
demand. Moreover, the conclusion in this paper can also be
used in the optimization of closed-loop supply chain with the
consideration of reverse logistics. These will be our future
research topics.
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