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ABSTRACT Guaranteed-Service Approach (GSA) was used to set safety stock for multi-echelon inventory
systems. This approach assumes that each stock can use operating flexibility measures such as expediting
and overtime to fulfill excessive customer demand superior to a bound as a supplement to its safety stock.
In this paper, we consider a continuous review assembly inventory system with Poisson final demand and
fixed order costs at each stock controlled by a (R, Q) policy. We use the GSA to optimize the policy with the
consideration of operating flexibility costs and fixed order costs. A deterministic mathematical programming
model is established for the problem. And the model is solved by a line search for finding the optimal target
cycle service level (CSL) to customer and an iterative procedure for solving the model when the target
CSL is given. Moreover, we analyze the optimality conditions for the extended GSA model and obtain
some important properties in given conditions. Numerical experiments on randomly generated instances
demonstrate the efficiency of the procedure and confirm the solution presented in this paper.

INDEX TERMS Dynamic programming, guaranteed-service approach, inventory management, multi-
echelon inventory system.

I. INTRODUCTION
Effective management of inventories in a supply chain is
critical for the firms in the chain to assure a high service
level to their customers at the minimal costs. As such supply
chain can be modeled as a multi-echelon inventory system,
one important issue of its management is to find an optimal
inventory policy of the system.

Over last two decades, two competing approaches have
emerged in multi-echelon inventory theory: stochastic-
service approach (SSA) and guaranteed-service approach
(GSA), which were introduced by [1] and [2], respectively.
These two approaches differ in demand treatment and ser-
vice time characteristics. In the SSA, it is assumed that any
demand of a stock is immediately satisfied if its on-hand
inventory is sufficient to fulfill the demand. Otherwise, the
unsatisfied demand will be backlogged and satisfied later
after the replenishment of the stock. In this case, a stochastic
delay to fulfill the unsatisfied demand will occur. The service
time of the stock, which is defined as the lead time for
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fulfilling its demand, is thus stochastic. In contrast, the GSA
assumes that each stock can quote a deterministic service
time to fulfill each customer demand. That is, the stock can
always fulfill a customer demand in a given lead time. This is
achieved by using some sort of emergency measure (referred
to as operating flexibility hereafter) such as expediting and
overtime to ensure the excessive customer demand superior
to a pre-specified bound is also satisfied within the lead time.
Since for each stock, the amount of safety stock to hold
depends on the timespan for which the safety stock is used
to protect against demand variability, the service time of the
stock is thus a deterministic decision variable although its
demand is stochastic. The authors of [3] compared the two
approaches for a two-level distribution system, the results
show that the difference between the two approaches is quite
small in terms of costs and the GSA outperforms the SSA
for the systems with moderate costs of operating flexibility,
long processing time at the warehouse and high service level
at retailers.

Since the GSA formulates the safety stock optimization
problem of a multi-echelon inventory system as a deter-
ministic mathematical programming problem rather than a
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stochastic problem in the SSA, it greatly simplifies the prob-
lem and makes the latter much easier to be solved. However,
the original GSA does not explicitly model the costs of using
operating flexibility measures to fulfill excessive demand
superior to a pre-specified demand bound [4]. The ignorance
of the operating flexibility costs may make the GSA model
unable to reflect the reality, since expediting and overtime
usually lead to additional costs in practice. In addition, the
original GSA does not consider fixed order costs for placing
orders at each stock. In reality, such order costs often exist,
whichmay include the costs for placing and delivering orders.
For these two reasons, in this paper we try to extend the
original GSA so that it can consider both fixed order costs
and operating flexibility costs.

In this paper, we consider a continuous review assembly
system with Poisson final demand and fixed order costs at
each stock, where each stock of the system is controlled by
an echelon (R, Q) policy. This means that an order of Q units
is placed every time when the inventory position (=on hand
inventory+outstanding order -backorders) of a stock reaches
a reorder point R. We extend the GSA by considering the
effects of operating flexibility on the material flow and the
total cost of the system. Firstly, we derive a deterministic
mathematical programming model for the optimization of
an echelon (R, Q) policy for the system under the GSA.
Secondly, we propose a method for solving the model based
on a line search for finding the optimal target cycle service
level (CSL) to customer. Moreover, we analyze the optimality
conditions for the extended GSA model and obtain some
important properties. Numerical experiments on randomly
generated instances show the efficiency of the iterative pro-
cedure and confirm the solution presented in this paper.

The rest of this paper is organized as follows: Section 2
contains a literature review. Section 3 describes the assembly
inventory system considered and the original GSA assump-
tions, and provides amathematical model for the optimization
of an echelon (R, Q) policy of the system with considering
the operating flexibility costs. Section 4 presents an iterative
procedure for solving the model and analyzes the optimal-
ity conditions for the extended GSA model. Computational
results are presented and analyzed in Section 5. Section 6
concludes the paper with some remarks on future research.

II. RELATED LITERATURE
The GSA was originated by a fundamental work of [2]. In
that work, the authors studied a single stock with random
but bounded demand, controlled by a base-stock policy. It is
proved that the bound of the demand during the lead time of
the stock can be used to set its base-stock level. The author of
[5] extended the model to serial inventory systems and proved
that the optimal inventory policy of the systems is an ‘‘all
or nothing’’ policy. The authors of [4] extended the previous
work to more general multi-echelon inventory systems. More
works on GSA can be found in [6]–[13]. Recently, the authors
of [14] proposed solution methods to solve the GSA model
under arbitrary cost functions. The authors of [15] considered

the stochastic lead times into the GSA model, and presented
efficient algorithms to solve. The authors of [16] extended the
formulation presented in [17] to general acyclic systems and
showed that the computational complexity increases signifi-
cantly with differentiated service times. More comprehensive
survey of GSA can be found in [18] and [19]. Note that these
works did not explicitly consider the effects and the costs of
using operating flexibility measures in their GSA models.

Only few studies have been conducted regarding the
impact of using operating flexibility measures in GSAmodel.
The authors of [3] considered a two-level distribution sys-
tem with a particular type of operating flexibility measure,
i.e., express delivery, which can speed up the process of
delivery from the warehouse to the retailers and make use
of inflow materials, they assumed unit cost associated with
this operating flexibility measure and provided an extension
of GSA model to minimize inventory costs of the whole
distribution system. Their simulation results demonstrated
the relevance of the operating flexibility cost assumption.
The authors of [20] proposed a stochastic GSA model with
recourse for a supply chain that uses another type of operating
flexibility measure, i.e., outsourcing. The authors of [18] also
considered outsourcing and assumed such measure is only
applied in the demand level of a multi-echelon inventory
system. In that paper, they evaluated the service level that
results from carrying safety stocks and showed that if demand
is truncated at the demand stage, there exists a gap between
the effectively observed service level and the target service
level. The authors of [21] extended their previous work and
presented a GSA model which consider the capacity con-
straints of outsourcing, they compared their model with the
original GSAmodel and the SSAmodel proposed in [22]. The
experimental results demonstrated that their model is more
cost-effective.

From the above literature review, we can see two types of
operating flexibility measures have been studied in the GSA
framework, one includes express delivery, expediting and
overtime, which speeds up the production and distribution
process ([3]), another turns to external sources ([18], [20]
and [21]). The first type of operating flexibility measures
makes the original unbounded demand of the final level prop-
agated towards the upstream level of a supply chain, whereas
the second type uses outsourcing to handle the excessive final
demand superior to a specified demand bound, and only part
of the demand within the bound propagated in the system.

Although the GSA was primarily applied to safety stock
placement, it can also be used to optimize the (R, Q) policy
for a multi-echelon inventory system, because for each stock
controlled by an echelon (R, Q) policy in the system, its
reorder point R is strongly related to its safety stock. The
authors of [23] is the first paper to use the GSA to optimize
an echelon (R,Q) policy for assembly inventory systems with
fixed order costs but does not explicitly model the effects of
using operating flexibility measures when external demand
exceeds the specified demand bounds. This study shows that
the consideration of operating flexibility effects in assembly
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FIGURE 1. An assembly inventory system with 7 items (stocks).

systemsmakes theGSAmodelmore realistic. Comparedwith
other previous works on considering operating flexibility
measures in the GSA framework, this paper deals with a
more complicated system with fixed order costs controlled
by an echelon (R, Q) policy. Moreover, most relevant studies
only consider the effects of combining operating flexibility
measures with safety stocks to address demand variations, but
ignore the cost impact of such measures, this paper provides
a model that considers both the effects and the costs of
operating flexibility measures for assembly systems and a
deeper analysis of the model.

III. GUARANTEED-SERVICE APPROACH
This section first presents the assembly inventory system
considered and the original GSA assumptions to provide
the reader with a foundation regarding the GSA, and then
formulates a new mathematical programming model for the
optimization of an echelon (R, Q) policy of the system with
the consideration of the effects of operating flexibility mea-
sures on its material flow and its total cost.

A. COMMON ASSUMPTIONS AND CHARACTERISTICS
This paper considers a continuous review assembly inventory
system with multiple intermediate items (components and
sub-assemblies) and a single end item. The network structure
of the system is defined by its bill-of-materials (BOM) which
is a tree whose root node corresponds to the end item, as
illustrated in Figure 1. All components at the highest level
of the BOM are purchased from outside suppliers, these
components are assembled into a finished product (end item)
at the lowest level of the BOM.Hereafter, the stock of item i in
the system is also called stock i, i =1,2,. . . ,N . It is assumed
that the outside suppliers never run of stock. Let N denote
the number of items (stocks) in the system, N >3, and A be
the set of all components at the highest level of the BOM,
where a component is called at the highest level if it has no
predecessor. These items (stocks) are numbered from 1 to
N , where item (stock) 1 represents the end item (end stock).
Moreover, it is assumed that customer demand occurs only at
the end item (stock) and follows a Poisson process with the
average demand rate λ.
One major assumption of the GSA is that if customer

demand during a lead time exceeds a pre-specified upper

bound, excessive part of the demand superior to the bound
will be fulfilled by using operating flexibility measures such
as expediting and overtime rather than fulfilled normally from
the stocks of the considered system.With this assumption, the
system is regarded as one facing a bounded demand although
the real customer demand is not bounded. Note that the bound
is not defined directly on the demand of each time unit but on
the lead time demand, i.e., the total demand occurred during
the lead time. Since the lead time is a decision variable in the
GSA, the bound is defined as a function of the lead time.

Let dt and d[t1, t2) denote the customer demand at time t
and the total customer demand from time t1 to time t2 (not
including time t2), with t2 ≥ t1, respectively. Since the
customer demand of the assembly system is stationary, the
lead time demand d[t-τ , t) with τ ≥ 0 can also be briefly
denoted by d(τ ). For this lead time demand, its upper bound
to be specified can be denoted by D(τ ). We assume that the
excessive part of the lead time demand superior to D(τ ) will
be fulfilled by using operating flexibility measures in the
system.

As in the original GSA, the lead time demand bound D(τ )
is determined by the system’s target CSL α to final customer,
that is, D(τ ) is the minimum number satisfying the following
condition:

p{d[t − τ, t) ≤ D(τ )} ≥ α (1)

where p{.} denotes the probability.
In the GSA literature, most studies use a normal distribu-

tion to describe the external demand process. Since the con-
sidered system assumes that customer demand only occurs at
the end item and the demand follows a Poisson process with
average demand rate λ, then, D(τ ) can be calculated by

D(τ )∑
k=0

[λτ ]ke−λτ

k!
≥ α (2)

The GSA assumes that each stock i quotes and guarantees
an outbound service time Si to its immediate downstream
stock, and an inbound service time SIi to its immediate
upstream stocks. That is, demand that arrives at time t and
that is smaller than the demand bound must be filled at t + Si
with 100% service level. The inbound service time SIi is
the time required by stock i to receive its ordered products
from its immediate upstream stocks after the placement of
the corresponding order. In addition, a given production time
Ti is also defined at each stock i, which represents the time
from the arrival of all materials required for the production
of a product to the completion of the production and ready to
serve a demand. In the GSA, the parameters of the inventory
policy for a system are determined by the outbound service
time, inbound service time and production time of each stock.

Under the setting presented above, at time t , stock i
observes its demand and places an order to its upstream
stocks. If stock i does not hold inventory, the earliest time that
it can satisfy the demand is t+SIi + Ti. The GSA guarantees
that stock i satisfy the demand at time t+Si. This implies that
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TABLE 1. Notations used for the problem formulation.

if t + Si ≥ t+SIi+ Ti, stock i can always satisfy the demand.
Otherwise if t + Si < t+SIi + Ti, stocki has to hold a certain
amount of inventory to satisfy the demand occurred between
t+Si and t+SIi+Ti, the length SIi+Ti-Si of the time interval
[t + Si, t+SIi + Ti] is thus called the net lead time of stock i.

B. MODEL FORMULATION
For the assembly inventory system considered, we establish
a new mathematical programming model for the optimiza-
tion of an echelon (R, Q) policy under the GSA by extend-
ing the original GSA proposed in [23] to take account of
the cost of using operating flexibility measures and their
effects on the material flows of the system. The notations
given in Table 1 will be used in the formulation of the
model.

The objective of the problem is to minimize the average
total cost of the system per time unit in the long run, i.e.,
the sum of the inventory holding costs, fixed order costs

and the operating flexibility costs at the end stock (stock 1).
Specifically, the three types of costs can be formulated as
follows:

Fixed order costs Since β is assumed to be the percent-
age of customer demand (in quantity) fulfilled normally by
the on-hand inventory of the end stock, then, for each time
unit the average customer demand fulfilled normally is λβ.
Therefore, the average fixed order cost per unit of time for
stock i can be formulated as ciλβ

Qi
.

Operating flexibility costs As we know, 1-β can be
regarded as the percentage of customer demand fulfilled by
resorting to operating flexibility measures. Therefore, the
average operating flexibility cost per time unit can be formu-
lated as pλ(1-β).

Inventory holding costs The inventory holding costs of
stock i are considered at all stocks, and for each stock i, its
average holding cost can be formulated as hei × E[I ei ] for
i =1,2,..., N .
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Summarizing the above three costs, the average total cost
of the system per unit of time can be formulated as

N∑
i=1

(
ciλβ
Qi
+ hei × E[I

e
i ])+ pλ(1− β) (3)

To obtain a mathematical expression for E[I ei ], some anal-
ysis is needed. Under the GSA, each stock i has no backorder
because of using operating flexibility, then, the following
equation can be derived

I ei (t) = IPei (t − Li)− d[t − Li, t) (4)

Define d̂[t − Li, t) as the lead time demand fulfilled nor-
mally by the on-hand inventory of the stock. Since 100β% of
the total demand is fulfilled normally, then

E
[
d̂[t − Li, t)

]
= βλLi (5)

Furthermore, it is assumed that all excessive demands
are satisfied without incurring inventory holding costs. This
assumption is reasonable since the occurrence of excessive
demand implies zero on-hand level in the stock considered.
With this assumption, we can ignore excessive demand in the
calculation of expected holding costE[I ei ]. That is, d[t−Li, t)
can be replaced by d̂[t−Li, t) when calculate E[I ei ] according
to (5). SinceIPei (t) is uniformly distributed over the interval
[Ri+1, Ri+Qi] in steady state, then:

E[IPei ] =
1
Qi

Qi∑
j=1

(Ri + j) = Ri +
1+ Qi

2
(6)

According to [23], we can prove that there exists an optimal
solution with Ri given by

Ri=
∑

j∈SUC(i)
D(SIj+Tj−Sj)+

∑
j∈SUC(i)

Qj−Qi−Ci

(7)

Then, we can derive E[I ei ] as follows:

E[I ei ] = E[IPei (t − Li)− d̂[t − Li, t)]

= Ri +
1+ Qi

2
− λβLi

=

∑
j∈SUC(i)

D(SIj + Tj − Sj)+
∑

j∈SUC(i)
Qj

+
1− Qi

2
− Ci − λβ(SIi + Ti − Si) (8)

With (3) and (8) and referring to the original GSA proposed
in [4], the problem P of finding the optimal Si, SIi and Qi
to minimize the total cost of safety stock in the assembly
systems can be formulated as follows:

P : Minimize
N∑
i=1

{
ciλβ
Qi
+ hei ∗ [

∑
j∈SUC(i)

D(SIj + Tj−Sj)− λβ

×(SIi + Ti − Si)

+
1+ Qi

2
− Ci]+

∑
j∈PRE(i)

hejQs(i)} + pλ(1− β)

s.t.

Qi = ms(i)iQs(i) for i = 1, 2, ...,N (9)

SIi + Ti − Si ≥ 0 for i = 1, 2, ...,N (10)

SIi ≥ max{Sj , j ∈ P(i)}for i = 1, 2, · · · ,N (11)

0 ≤ S1 ≤ s1 (12)

Qi, ms(i) ≥ 0 and integer for i = 1, 2, . . . ,N (13)

SIi, Si ≥ 0 and integer for i = 1, 2, . . . ,N (14)

Constraint (9) is the integer-ratio constraint between the
order sizes of any two successive stocks. Constraint (10)
assures that the net lead time of each stock is nonnegative.
Constraint (11) implies that the inbound service time of each
stock must equal to or greater than the outbound service
time of any of its immediate upstream stocks. Constraint (12)
imposes an upper bound s1 on the outbound service time
of the end stock (stock 1), where s1 may be given by final
customers. Constraint (13) and (14) imply that all the decision
variables must be integer.

Note that the target CSL α is also a decision variable of
model P although it does not explicitly appear in the model,
because its objective function depends onD(SIj+Tj-Sj) which
in turn depends on α. The fill rate β depends on the inventory
policy, the net lead time, and the Poisson demand rate of the
end item, it also depends on α. By observing the objective
function of model P, if optimal α and β are known, pλ(1-β)
becomes constant and the model P can be decomposed into
two independent sub-models, one with decision variables Qi
and the other with decision variables SIi and Si, and the two
sub-models are called the order size decision sub-problem
and the reorder point decision sub-problem or the Q-problem
and R-problem for short, respectively. The Q-problem has an
objective function composed of all Q-dependent cost terms
and constraints (9) and (13), whereas the R-problem has an
objective function composed of all R-dependent cost terms
and linear constraints (10), (11), (12) and (14).

IV. SOLUTION METHODOLOGY
In this section, we will present a procedure to solve model
P for the optimization of (R, Q) policy. The procedure is
based on a line search of the optimal target CSL α and the
calculation of the corresponding fill rate β. Moreover, after
analyzing the model, we get some important properties about
the structure of an optimal solution of the model.

A. LINE SEARCH
To solve model P, the remaining tasks are to find optimal
target CSL α and the corresponding fill rate β. The optimal
α can be found by a line search over its domain, i.e., over the
interval [0, 1], since 0≤ α ≤ 1. We implement the line search
by solving model P for each possible value of α (referred as
model P(α)), and if β is known, model P(α) can be efficiently
solved by decomposition, i.e., by solving two sub-problems,
Q-problem and R-problem. However, the fill rate β always
depends on the (R, Q) policy, the (net) lead time L, and the
Poisson demand rate λ of the end stock (stock 1), and the first
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TABLE 2. Parameters setting for the instances.

three parameters R, Q, and L can only be obtained by solving
model P(α), which in turn depends on β. To overcome the
difficulty caused by the interdependence of β and the three
parameters in solving model P(α), we propose an iterative
procedure to solve model P(α) based on guessing the value
of β in each iteration. Since β is usually larger than α and
close to β when α approaches 1, it is initialized to α in the
procedure. As soon as the value of β does not change in two
successive iterations, we have got the real β and the optimal
(R,Q) policy for the system can be obtained by solving model
P(α) at the last iteration of the procedure. The main steps of
the procedure are given as follows:

Procedure BETA for solving P
Step 0: Set β: = α;
Step 1: Solve the Q-problem and the R-problem to get the
values (Ri, Qi) for each stock i;
Step 2: Calculate the real fill rate β∗of the system for the
given (R, Q) policy;
Step 3: If β∗ = β, stop. Otherwise, set β: = β∗ and go to
Step 1.

To implement the above procedure, a method for calculat-
ing the fill rate β in Step 2 is needed when the (R, Q) policy
is given.

Let α∗ denote the real CSL of the system, α∗ is defined
as the percentage of customer orders (in number of orders)
fulfilled normally by the on-hand inventory of the end stock
of the system without resorting to operating flexibility mea-
sures. The real CSL α∗ may be larger than the target CSL
α because of the nature of the (R, Q) policy used. In the
system, after each inventory replenishment of the end stock,
its inventory position will be brought to a level in the interval
[D(L1), D(L1)-1+Q1]. This level may be larger than D(L1) if
Q1 > 1.

For the considered assembly system with Poisson demand,
each customer demand (order) contains only one unit if it
occurs, so the number of backorders (orders not fulfilled on-
time) equals to the quantity of demand not fulfilled on-time.
Therefore, the fill rate of the system is equal to its real CSL
α∗, i.e., β= α∗. Under the conventional GSA framework, it
is assumed that all upstream stocks (all stocks other than the
end stock) never run out of stock facing a bounded lead time
demand at the end stock. With this assumption, α∗ can be
calculated by only considering the end stock (stock 1).

After each inventory replenishment, the echelon inventory
position of stock 1will be within the interval [R1+1,R1+Q1],
where R1 = D(L1)-1, i.e.,L1=SI1+T1-S1. Since this echelon
inventory position is uniformly distributed in this interval, α∗

can be calculated as

α∗ =
1
Q1

R1+Q1∑
IP=R1+1

p(d(SI1 + T1 − S1) ≤ IP) (15)

where SI1 + T1-S1 and d(SI1 + T1-S1) are the net lead time
and the net lead time demand of the end stock, respectively.

Therefore, for the considered system with Poisson demand
of rate λ, we can derive

β=α∗=
1
Q1

R1+Q1∑
IP=R1+1

IP∑
k=0

[λ(SI1+T1−S1)]ke−λ(SI1+T1−S1)

k!

(16)

B. PROPERTIES OF THE MODEL
This paper presents an extended GSA model for the consid-
ered assembly system, in which the fixed order costs and
the effects of operating flexibility on the material flows of
the system are incorporated. In this section, we analyze the
optimal solution of the GSA model in-depth. Firstly, we
study the characteristics of inbound and outbound service
times in an optimal solution of the model, and the following
propositions can be derived.
Proposition 1: For model P, there always exists an optimal

solution such that the outbound service time of the end stock
(stock 1) equals s1, and the inbound service times of all
components at the highest level are 0, That is

S1 = s1,

SIi = 0, i ∈ A.

Proof: Since the cost terms and the constraints related
to outbound and inbound service times in model P are all
included in the objective function and constraints of the
R-problem, the optimal values of the service times of model P
can be derived by solving the sub-problem, thus, to prove this
proposition, we only need to consider the R-problem which
has the following objective function:

N∑
i=1

[D(SIi+Ti−Si)×
∑

j∈PRE(i)
hej−h

e
i λβ(SIi+Ti−Si)]

(17)

139102 VOLUME 7, 2019



P. Li, D. Wu: Optimization of (R, Q) Policies for Assembly Inventory Systems With Operating Flexibility

TABLE 3. The optimal solution of solving model P for the 10 instances (s1 <T1).

According to (8) and the objective function of model P,
(17) is equal to the inventory holding costs of the considered
system plus (or minus) a term only depending on Q. If all
Q are given, the inventory holding costs increase as each
SIi + Ti-Si increases. This implies that (17) also increases
when SIi + Ti-Si increases. As a result, the value of (17)
will decrease with the increase of the outbound service time
Si if SIi and Ti are given. This implies that the optimal
outbound service time of the end stock S1 must take its
maximum possible value. For the R-problem, the constraints
involving the outbound service time of the end stock are
SI1 + T1-S1 ≥0 and S1 ≤ s1.Then, in an optimal solution,
the optimal outbound service time of the end stock can be
determined by

S1 = Min{SI1 + T1, s1}

(1) if s1 < T1, it is certain that s1 <SI1 + T1, then, the
optimal outbound service time S1 = Min{SI1 + T1, s1}= s1;
(2) otherwise, ifs1 ≥ T1, the following two cases may

happen: If SI1 + T1 ≥ s1, then, S1 =Min{SI1 + T1,s1}= s1.
Otherwise, if SI1+T1 < s1, there is an optimal solution with
S1 and SI1 so that S1 =Min{SI1 + T1, s1}=SI1 + T1 < s1.
Suppose that the optimal objective value of theR-problem
is x. At this solution, the inventory holding cost of the end
stock is zero. We can construct a new solution withS

′

1 = s1,
SI
′

1 = s1 − T1, and the inbound and outbound service times
for all other stocks being the same as in the optimal solu-
tion. Note that the new solution increases SI1 from S1-T1 to
s1-T1, this only expands the feasible range of inbound and
outbound service times at its immediate predecessor stocks,
but does not change the optimal inbound and outbound ser-
vice times of other stocks, this can be proved by considering
the constraint of (11). That is, the new solution, with the
change of the value of S1 and SI1, has no effect on the inbound
and outbound service times of the other stocks and is thus
feasible. Moreover, this new solution has the same objective
value x for the R-problem and zero inventory holding cost
of the end stock. Then, the new solution with S1 = s1is
also an optimal solution. Thus, there always exists an optimal
solution such that S1 = s1.
Next, we consider the optimal solution regarding the

inbound service times of all components stocks at the highest
level, i.e., all stocks i with i ∈ A. Firstly, there is an optimal

solution with Si and SIi for each stock i so that the objective
value of the R-problem is x.
For this optimal solution, if SIi ≤ Si for some i ∈ A, we

can construct a new solution with SI
′

i = 0, S
′

i = Si − SIi, and
the inbound and outbound service times for all other stocks
being the same as in the optimal solution. This new solution is
feasible, because for all constraints related to stock i, we have
SI
′

i ≥ 0, SI
′

i + Ti − S
′

i = SIi + Ti − Si ≥ 0 and 0 ≤ S
′

i ≤ Si.
This new solution has the same objective value x for the

R-problem, then, there exists an optimal solution with SIi =0
for all components at the highest level.

Otherwise, if SIi > Si for some i ∈ A, we can also construct
another solution, such that SI

′

i = SIi − Si and S
′

i = 0. This
solution is also feasible, because for all constraints related
to stock i, we have SI

′

i + Ti − S
′

i ≥ 0 and S
′

i ≥ 0. The
solution has the same objective value x for the R-problem,
then, this solution is also optimal. Moreover, if we decrease
SI
′

i to SI
′′

i = 0 and set S
′′

i to 0, we can get a new solution
which satisfies all constraints related to stock i, with the
objective value no larger than x for the R-problem, because
the objective value of this problem will not increase with the
increase of SIi, so this new solution is an optimal solutionwith
SI
′′

i = 0. Thus, there exists an optimal solution with SIi =0
for all components at the highest level, and this proposition is
thus proved. �
Proposition 2: For model P with s1 < T1, there always

exists an optimal solution such that the end stock has a
positive net lead time, a nonnegative reorder point, and the fill
rate β less than 1. This implies that if s1 < T1, the operating
flexibility measures are always used to fulfill the excessive
customer demand superior to a pre-specified demand bound.
That is,

SI1 + T1 − S1 > 0,

R1 > −1,

0 < β < 1.
Proof: Consider an optimal solution and the end stock,

we first prove that if SI1 + T1-S1 =0, s1 ≥ T1 must be
satisfied. In this case, we can construct an optimal solution
such that SI1 + T1 = S1, then we have S1 ≤ s1 and
S1 =SI1+T1. This implies that SI1+T1 ≤ s1. Since SI1 ≥0, in
order to satisfy SI1+T1 ≤ s1, s1 ≥ T1 must hold. Therefore, if
s1 < T1, there always exists an optimal solution such that the
end stock has a positive net lead time SI1 + T1-S1 >0; Next,
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TABLE 4. The optimal solution of solving model P for the 10 instances (s1≥T1).

TABLE 5. Impact of the operating flexibility costs p.

we consider the reorder pointR1 of the end stock at an optimal
solution, i.e., R1 = D(SI1+ T1-S1)-1. According to (2), D(τ )
always increases when λτ increases. Since τ =SI1 + T1-
S1 >0, then, we have R1 > D(0)-1=0-1=-1.
In the above analysis, β can be determined by the following

equation:

1− β =
1
Q

R+Q∑
i=R+1

∞∑
k=i+1

(λτ )ke−λτ

k!
·
k − i
k

=
1
Q

R+Q∑
i=R+1

∞∑
k=i+1

(λτ )ke−λτ

k!︸ ︷︷ ︸
term 1

−
1
Q

R+Q∑
i=R+1

∞∑
k=i+1

(λτ )ke−λτ

k!
·
i
k︸ ︷︷ ︸

term 2

;

Note that 1-β in the equation is the percentage of customer
demand (in quantity) fulfilled by using operating flexibility
measures.

Moreover, the first term in the equation can be simply
rewritten as follows:

1
Q

R+Q∑
i=R+1

∞∑
k=i+1

(λτ )ke−λτ

k!
=1+e−λτ−

1
Q

R+Q∑
i=R+1

i∑
k=1

(λτ )ke−λτ

k!
,

and the second term can be written as:

1
Q

R+Q∑
i=R+1

∞∑
k=i+1

(λτ )ke−λτ

k!

·
i
k
=
e−λτ

Q
[
R+Q∑
i=R+1

i
∞∑
k=1

(λτ )k

k!
·
1
k
−

R+Q∑
i=R+1

i
i∑

k=1

(λτ )k

k!
·
1
k
]

we can derive that when τequals to 0, the values of the first
term and the second term are 2 and 0, respectively. In this
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TABLE 6. Impact of the upper bound s1.

case, β is 1. Moreover, since β decreases when τ increases,
then β is less than 1 when τ =SI1 + T1-S1 >0, that is, 0<
β <1 when the net lead time of the end stock is positive. This
proposition is thus proved. �
Proposition 3: For model P with s1 ≥ T1, there always

exists an optimal solution such that the end stock (stock 1)
has zero-positive net lead time, reorder point R1 of -1, and
fill rate 1. That is,

SI1 + T1 − S1 = 0,

R1 = −1,

β = 1.

Proof: We first consider the optimal value of the net
lead time at the end stock, i.e., SI1 + T1-S1. According to
the previous analysis, we can derive that the optimal value
of outbound service time at the end stock is determined by
(11). Moreover, two cases, SI1 + T1 < s1 and SI1 + T1 ≥ s1
may happen. Case 1: SI1 + T1 < s1. In this case, the optimal
S1 is equal to SI1 + T1, that is, SI1 + T1-S1 = 0; Case 2:
SI1 + T1 ≥ s1. In this case, the optimal S1 is equal to s1, and
we have proved that there exists an optimal solution such that
S1 = s1 and SI1 = s1-T1, then SI1 + T1-S1 = (s1-T1) + T1-
s1 = 0 can be derived. Therefore, we have proved that for
model Pwith s1 ≥ T1, there always exists an optimal solution
such that the end stock has zero-positive net lead time, i.e.,

SI1+ T1-S1 =0. Since SI1+ T1-S1 =0, we have D(0)=0 and
R1 = D(SI1+T1-S1)-1=0-1=-1. In addition, the fill rate β is
equal to 1 when SI1 + T1-S1 =0 has already been proved in
the proof of proposition 2. This proposition is thus proved.�
It should be noted that in Proposition 3, the fill rate β = 1

is obtained under the assumption that all the upstream stock
always quotes a service time to its successors that it can
always satisfy the customer demand under the GSA frame-
work. However, according to [18], the effectively observed
CSL of a supply chain facing an unbounded stochastic exter-
nal demand, i.e., the CSL of the supply chain obtained when
it holds safety stocks defined according to the GSA and face
the unbounded demand, is usually less than the target CSL
α used for specifying the lead time demand bounds. The
difference (gap) between the two CSLs is due to the fact
that the CSL observed at a demand stage in a supply chain
is affected by the lead time demand bounds applied at its
upstream stages. This may happen when the net lead times
of upstream-downstream stages are different from the net
lead time of the demand stage. Applying to our case, the
observation of [13] implies that if all operating flexibility
measures are ignored, the effectively observed CSL of the
studied assembly system is usually less than the CSL used to
define its lead time demand bounds at each stock. Similarly,
the effectively observed fill rate (the real fill rate) of the
system is usually less than the theoretical fill rate β obtained
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TABLE 7. Impact of the CSL a.

under the conventional GSA framework, i.e., less than one in
the case of Proposition 3.

V. EXPERIMENTAL RESULTS
In order to gain further insights into the performance of the
iterative procedure for solving P for a given target CSL a, we
conduct comprehensive experiments on randomly generated
instances in C++ with Visual Studio 6.0 compile, and all
experiments were carried out on a PC with 2.30 GHZ and
8.00 Go RAM.

A. PARAMETER SETTINGS
We consider an assembly system with 7 stocks (see Figure 1).
Each stock has only two immediate predecessors and one
immediate successor, except for the stocks with no predeces-
sor at the highest level of the BOM and for the end stock with
no successor at the lowest level. All the parameters setting is
given in Table 2.

B. PROCEDURE FOR SOLVING MODEL P
Since it is uncertain whether the cost function of model P is
convex with respect to the target CSL α, in solving model P
we vary α from 0.5 to 0.98 and discretize it with an interval of
length 0.001 (with precision 0.001) by considering its values
0.5+0.001k , k = 0, 1, . . . , 480. For each possible value of
α, we solve model P by using the procedure BETA. The
(approximate) optimal solution of model P is obtained by
comparing the total costs for all the values ofα. In this test, the
procedure is evaluated by computational experiments on 10
instances randomly generated as mentioned in subsection A,
and for each instance, we calculate six values as the optimal
value of β (β∗), and optimal inbound service time (SI∗),
optimal outbound service time (S∗), optimal lead time (LT∗),
optimal order sizes (Q∗) for each stock i, i =1,2,...,7 and
the reorder point at the end stock (R1). The results are given
in Table 3 and Table 4, with the restricted case s1<T1 and
s1 ≥ T1, respectively.
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From the results, we can demonstrate that: (1) the proce-
dure BETA has a good convergence property and is computa-
tionally efficient for solving the model P with a given CSL
α; (2) for all 10 instances, we can derived that S1 = s1,
SI4 =SI5 =SI6 =SI7 =0, this solution can verify Proposi-
tion 1; (3) for the restricted case: s1<T1, from Table 3, the
following optimal solutions are also derived: LT1 >0, R1 >0
and β >0, this solution satisfies Proposition 2; (3) Similarly,
Proposition 3 can also be identified by the optimal solution
that LT1 =0, R1 =0 and β =1 in Table 4.

C. SENSITIVITY ANALYSIS
From the experiment results, we identify three important
drivers for the optimality of the cost structure: unit operating
flexibility cost (p), an upper bound of the outbound service
time at the end stock (s1) and the CSL (α). To assess the
effect of the three parameters on the cost structure, three sets
of instances are evaluated, and for each instance, except the
optimal value of β (β∗), we also compare fixed order costs,
inventory holding costs, operating flexibility costs and total
costs in each set of instances.

1) UNIT OPERATING FLEXIBILITY COST p
Firstly, we explore the impact of the unit operating flexibility
cost on randomly generated instances with α =0.8 and s1 =1.
10 sets of instances were tested, each set corresponds to a
different unit operating flexibility cost p by r×h1, where
r ∈{10, 20, 50}. The results of this test are given in Table 5.

From Table 5, the results indicate that with an increase
in the unit operating flexibility cost, operating flexibility
costs and total costs increase slightly, other optimal values
remain unchanged, since they only depend on the β∗. It is
demonstrated that the unit operating flexibility cost (p) has a
minor impact on the fill rate βand the cost structure of the
considered system.

2) UPPER BOUND ON OUTBOUND SERVICE TIME AT THE
END ITEM s1
Similarly, we also evaluate 10 sets of randomly generated
instances with α =0.8 and p =20×h1, each set corresponds
to a different s1 with 1, 3 and 5, other parameters are given
randomly as in Table 2. The results are depicted in Table 6.

From Table 6, we observe that the optimal fill rate β∗, fixed
order costs, inventory holding costs always decrease in s1,
whereas operating flexibility costs increases in s1.

3) CYCLE SERVICE LEVEL (CSL) α
Although the CSL α does not explicitly appear in the GSA
presented, it is also a decision variable of model P, this is
because its objective function depends on D(SI+T -S) which
is in turn depends on α. In addition, another variable, the
fill rate β, depends on the inventory policy parameters, the
net lead time, and the Poisson demand rate of the end stock.
It in turn depends on α. The performance was evaluated by
computational experiments on 10 sets of randomly generated
instances as presented in Table 2. For each set of instances,

four different CSL level varies in 0.5, 0.7, 0.8 and 0.9. The
results are given in Table 7.

From Table 7, we can see that the optimal fill rate β∗

increases in α, in turn, the fixed order costs, inventory holding
costs also increases in α, whereas the operating flexibility
costs decreases in α.

VI. CONCLUSION
In this paper, we have studied a continuous review assembly
inventory system with Poisson demand, fixed order costs,
and controlled by an echelon (R, Q) policy. We used the
extended GSA to optimize the parameters of the policy under
the assumption that excessive demand beyond a pre-specified
bound will be fulfilled by using operating flexibility mea-
sures. Different from original GSA proposed by the authors
of [4], we also consider fixed order costs for placing orders
at each stock and the operating flexibility costs for fulfill-
ing excessive demand. We first formulated a deterministic
mathematical model for the inventory policy optimization
problem. Then the model is solved by an iterative procedure
when the target CSL is given. We also analyze the model and
get some important properties about the optimal solution of
the model. Experiments results and the sensitivity analysis
demonstrate the efficiency of the algorithm and the properties
of optimal solutions presented in this paper are also verified
to be correct.

This study has demonstrated advantages of the GSA for
the optimization of assembly systems with fixed order costs
and operating flexibility costs. The results in this paper can
be extended to more general multi-echelon inventory sys-
tems with other demand process such as normally distributed
demand. Moreover, the conclusion in this paper can also be
used in the optimization of closed-loop supply chain with the
consideration of reverse logistics. These will be our future
research topics.

REFERENCES
[1] A. J. Clark and H. Scarf, ‘‘Optimal policies for a multi-echelon inventory

problem,’’ Manage. Sci., vol. 6, no. 4, pp. 475–490, 1960.
[2] K. F. Simpson, ‘‘In-process inventories,’’ Oper. Res., vol. 6, no. 6,

pp. 863–873, 1958.
[3] S. Klosterhalfen and S. Minner, ‘‘Safety stock optimisation in distribution

systems: A comparison of two competing approaches,’’ Int. J. Logistics
Res. Appl., vol. 13, pp. 99–120, Mar. 2010.

[4] S. C. Graves and S. P. Willems, ‘‘Optimizing strategic safety stock place-
ment in supply chain,’’ Manuf. Service Oper. Manage., vol. 2, no. 1,
pp. 68–83, 2000.

[5] G. E. Kimball, ‘‘General principles of inventory control,’’ J. Manuf. Oper.
Manage., vol. 1, no. 1, pp. 119–130, 1988.

[6] S. Minner, ‘‘Strategic safety stocks in reverse logistics supply chains,’’ Int.
J. Prod. Econ., vol. 7, pp. 417–428, May 2011.

[7] S. C. Graves and S. P. Willems, ‘‘Optimizing the supply chain configura-
tion for new products,’’Manage. Sci., vol. 51, no. 8, pp. 1165–1172, 2005.

[8] S. Humair and S. Willems, ‘‘Optimizing strategic safety stock placement
in supply chains with clusters of commonality,’’ Oper. Res., vol. 54, no. 4,
pp. 725–742, 2006.

[9] T. L. Magnanti, Z.-J. M. Shen, J. Shu, D. Simchi-Levi, and C.-P. Teo,
‘‘Inventory placement in acyclic supply chain networks,’’ Oper. Res. Lett.,
vol. 36, pp. 228–238, Mar. 2006.

[10] J. M. Bossert and S. P. Willems, ‘‘A periodic-review modeling approach
for guaranteed service supply chains,’’ INFORMS J. Appl. Anal., vol. 37,
no. 5, pp. 420–435, 2007.

VOLUME 7, 2019 139107



P. Li, D. Wu: Optimization of (R, Q) Policies for Assembly Inventory Systems With Operating Flexibility

[11] J. Y. Jung, G. Blau, J. F. Pekny, G. V. Reklaitis, and D. Eversdyk,
‘‘Integrated safety stock management for multi-stage supply chains
under production capacity constraints,’’ Comput. Chem. Eng., vol. 32,
pp. 2570–2581, Nov. 2008.

[12] S. C. Graves and S. P. Willems, ‘‘Strategic inventory placement in supply
chains: Nonstationary demand,’’ Manuf. Service Oper. Manage., vol. 10,
no. 2, pp. 278–287, 2008.

[13] T. Schoenmeyr and S. Graves, ‘‘Strategic safety stocks in supply chains
with evolving forecasts,’’ Manuf. Service Oper. Manage., vol. 11, no. 4,
pp. 657–673, 2009.

[14] S. Humair and S. P.Willems, ‘‘Technical note—Optimizing strategic safety
stock placement in general acyclic networks,’’ Oper. Res., vol. 59, no. 3,
pp. 781–787, 2011.

[15] S. Humair, J. D. Ruark, B. Tomlin, and S. P. Willems, ‘‘Incorporating
stochastic lead times into the guaranteed service model of safety stock
optimization,’’ INFORMS J. Appl. Anal., vol. 43, no. 5, pp. 421–434, 2013.

[16] J. Grahl, S. Minner, and D. Dittmar, ‘‘Meta-heuristics for placing strategic
safety stock in multi-echelon inventory with differentiated service times,’’
Oper. Res., vol. 242, no. 2, pp. 489–504, 2014.

[17] S. Minner, Strategic Safety Stocks in Supply Chains (Economics andMath-
ematical Systems). Berlin, Germany: Springer, 2000.

[18] A. S. Eruguz, Z. Jemai, E. Sahin, and Y. Dallery, ‘‘Cycle-service-level
in guaranteed-service supply chains,’’ in Proc. 5th Int. Conf. Modeling,
Simulation Appl. Optim. (ICMSAO), Apr. 2013, pp. 1–6.

[19] A. S. Eruguz, E. Sahin, Z. Jemai, and Y. Dallery, ‘‘A comprehensive survey
of guaranteed-service models for multi-echelon inventory optimization,’’
Int. J. Prod. Econ., vol. 172, pp. 110–125, Feb. 2016.

[20] J. Rambau and K. Schade, ‘‘The stochastic guaranteed service model
with recourse for multi-echelon warehouse management,’’ Electron. Notes
Discrete Math., vol. 36, pp. 783–790, Aug. 2010.

[21] J. Rambau and K. Schade, ‘‘The stochastic guaranteed service model with
recourse for multi-echelonwarehousemanagement,’’Math.Methods Oper.
Res., vol. 79, pp. 293–326, Jun. 2014.

[22] M. K. Doğru, A. G. de Kok, and G. J. Van Houtum, ‘‘Optimal control of
one-warehouse multi-retailer systems with discrete demand,’’ Techn. Univ.
Eindhoven, Eindhoven, The Netherlands, Working Paper, 2004, pp. 1–22.

[23] P. Li, H. Chen, and A. Che, ‘‘Optimal batch ordering policies for assembly
systems with guaranteed service,’’ Int. J. Prod. Res., vol. 51, no. 20,
pp. 6275–6293, 2013.

PENG LI received the B.S. degree in management
from Zhengzhou University, the M.S. degree in
management science and engineering from North-
western Polytechnical University, China, and the
Ph.D. degree in supply chain management from
the University of Technology of Troyes, France,
in 2013. Since 2014, she has been a Lecturer with
the Faculty of Economics and Management, Xi’an
University of Technology, China. She has authored
one book and more than ten articles. Her research

interests include supply chain management, inventory optimization, and
logistics management.

DI WU received the B.S. degree in mathematics
and applied mathematics fromNorthwestern Poly-
technical University, and the M.S. degree in man-
agement science and engineering from the Xi’an
University of Technology, in 2016, where he is cur-
rently pursuing the Ph.D. degree with the Supply
Chain Integration and Service Innovation Institute.
He has been engaged in dual-channel reverse sup-
ply chain, since 2016, and has published several
related papers in the field.

139108 VOLUME 7, 2019


	INTRODUCTION
	RELATED LITERATURE
	GUARANTEED-SERVICE APPROACH
	COMMON ASSUMPTIONS AND CHARACTERISTICS
	MODEL FORMULATION

	SOLUTION METHODOLOGY
	LINE SEARCH
	PROPERTIES OF THE MODEL

	EXPERIMENTAL RESULTS
	PARAMETER SETTINGS
	PROCEDURE FOR SOLVING MODEL P
	SENSITIVITY ANALYSIS
	UNIT OPERATING FLEXIBILITY COST p
	UPPER BOUND ON OUTBOUND SERVICE TIME AT THE END ITEM s1
	CYCLE SERVICE LEVEL (CSL) 


	CONCLUSION
	REFERENCES
	Biographies
	PENG LI
	DI WU


