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ABSTRACT Neoadjuvant chemotherapy (NAC) has become the main treatment option for breast cancer.
Its adverse drug reactions (ADRs) make NAC painful both physiologically and psychologically. The factor
pathological complete remission (pCR) describes how well a series of six or more chemotherapeutic treat-
ments works on a patient. This study investigated the possibility of predicting pCR using only the nodal sizes
of the first three treatments. A best feature combination for each breast cancer subtype was screened from the
real nodal sizes of the first three treatments and the nodal sizes‘ of the next three treatments predicted from
those of the first three ones. The prediction was evaluated by the metrics Avc = (sensitivity+ specificity)/2.
A triple-negative breast cancer (TN) patient may have an estimation of pCR Avc = 0.8696 after taking just
three treatments. At least Avc = 0.7594 was achieved for all the four breast cancer subtypes investigated in
this study.

INDEX TERMS Pathological complete response (pCR), breast cancer, neoadjuvant chemotherapy,
biomarker detection, feature selection.

I. INTRODUCTION
Breast cancer is one of the most frequently occurred cancer
type for females [1], [2] and exceeds the combined inci-
dences of the next three top-ranked female cancer types in
the United States, i.e., lung & bronchus, colon & rectum,
and uterine corpus [3]. It is also the top-ranked cancer type
for females in China [4]–[6] and its incidence rate keeps
increasing since 2000 [7]. Despite the invention and deploy-
ment of many diagnosis and treatment techniques [8], [9],
breast cancer is among the top two ranked cancer types for
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annual mortalities in both countries [3], [7]. Tumor size is
one of the main factors positively correlated with the long-
termmortality [10]–[13] and it is recommended to use various
screening technologies to detect breast cancer smaller than
2 cm [14], [15].

Subtypes of breast cancer varied significantly in both
pathological phenotypes and have different recommended
treatment plans [16]–[18]. Although the incidence rates of
all the breast cancer subtypes increase with the age, they
tend to have different tumor sizes. The subtype luminal A
tends to have a smaller tumor size than the subtype luminal-
HER2. For example, 63% of the luminal A patients have
tumor sizes smaller than 2 cm in the British Columbia cohort,
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while 61% of the luminal-HER2 patients have tumors larger
than 2 cm [16]. This supports the two previous observa-
tions that the subtype luminal A has a longer median sur-
vival duration than the subtype luminal-HER2 [19], [20],
and there is a positive correlation between the tumor size
and mortality [10], [21]–[23]. So a conservative radiation
treatment is usually recommended for the subtype luminal
A while luminal-HER2 patients need both mastectomy and
radiotherapy [16]. Adjuvant chemotherapy is one of the main
effective treatment options for breast cancer patients with or
without mastectomy [24]. It was reported that a combination
of multiple treatment technologies may significantly improve
the survival durations of breast cancer patients [25]. While
neoadjuvant chemotherapy demonstrated its effectiveness to
a wide spectrum of breast cancer subtypes, the drug resistance
may rapidly develop and the tumor recurred with a high rate
[26], [27]. Pathologic complete response (pCR) was defined
to describe the status of no invasive and no in situ residuals in
the breast tissue [28], [29], and breast cancer patients with a
positive pCR achieved a much better disease-free and overall
survival rates [30].

This study investigated the pCR prediction problem using
only the data of the first three neoadjuvant chemother-
apeutic treatments. Despite its effectiveness, neoadjuvant
chemotherapy is notorious for the adverse drug reac-
tions (ADRs), including neutropenia [31], memory retrieval
impairment [32], muscle and joint pain [33], and cognitive
impairment [34], [35], etc. This study firstly trained a clas-
sification model for the factor pCR using the clinical data
of the first three treatments. Then the data of the next three
treatments were predicted by a personalized regressionmodel
using those of the first three treatments. The pCR classifica-
tion model was refined by these predicted data. The proposed
algorithm demonstrated satisfying pCR prediction accuracies
and achieved the best accuracy for the subtype TN.

II. MATERIALS AND METHODS
A. DATA COLLECTION
This study manually curated the database of the electronic
medical records and retrospectively collected the clinical data
of 495 breast cancer patients diagnosed and treated with
neoadjuvant chemotherapy (NAC) during 2011-2016 at the
Department of Breast Surgery in the First Hospital of the
Jilin University. 2 male patients were excluded from further
analysis, as summarized in Table 1.

NAC was usually taken to reduce the tumor size before
a radical treatment and mostly consisted of sequentially six
to eight treatments [36]–[38]. This study hypothesized that
the data of the first six NAC treatments were significantly
associated with the final pCR status. So this study utilized the
clinical data of at least six NAC treatments for each patient.
Only the patients with at least six treatments were kept for
further analysis. 115 patients with missing clinical data were
removed. So among the 378 female patients with at least
six chemotherapy treatments, there are 5 sub-types of breast

TABLE 1. Numbers of samples for the four breast cancer subtypes, i.e.,
TN, HER2, LBP, and LBN. The three columns for the dataset ‘‘Raw’’ gave
the sample numbers within the original cohort, and the three columns for
the dataset ‘‘6 + Treatments’’ gave the sample numbers of the final
cohort investigated in this study.

cancer. The sub-type luminal A has only 27 patients, and
was excluded from further analysis due to the limited number
of samples. The two sub-types of luminal B with HER2
positive and negative have 74 and 154 patients, respectively.
They were denoted as ‘‘LBP’’ and ‘‘LBN‘‘. The sub-type
HER2 (+) has 63 patients and was denoted as HER2. There
are 60 triple-negative sub-type patients and this group of
patients was denoted as ‘‘TN’’. The final cohort has 351
female breast cancer patients from the four sub-types, i.e.,
LBP, LBN, HER2 and TN. This study was approved by the
Institutional Review Board (IRB) of the First Hospital of the
Jilin University. This study analyzed the archived medical
records and individual patient consent was waived by the
IRB of the First Hospital of the Jilin University, including
the approval for the waiver request of authorization to collect
protected health information.

B. DATA PREPROCESSING
Each patient has the breast cancer nodal sizes for each con-
secutive chemotherapeutic treatment and the clinical pCR
diagnosis. This study assumed that the tumor nodals were
rectangles, and a nodal size was measured by the product
of the largest diameter and its middle vertical diameter in
millimeters. If a patient carried multiple nodals, the sum of
the nodal sizes was calculated as the feature for that specific
chemotherapeutic treatment of that patient. We observed that
some nodal sizes were zero and added a pseudo-one to all the
nodal sizes to avoid the division by zeros.

C. PROBLEM SETTING AND PREDICTION ALGORITHMS
The pCR prediction was modelled as a binary classification
problem of samples with pCR = 1 or 0 [39], [40]. Samples
were grouped as positive and negative ones, if the pCRs
values were 1 and 0, respectively. That is to say, the value pCR
is 1 if the specific patient achieved the pathological complete
remission (pCR) after the six neoadjuvant chemotherapy
(NAC) treatments. Otherwise pCR is 0 if the patient didn’t
achieve the pathological complete remission after all the six
NAC treatments.

Six representative classifiers were evaluated for their pre-
diction performances using sensitivity (Sn), specificity (Sp),
Accuracy (Acc), balanced accuracy Avc = (Sn + Sp)/2, and
Matthew’s correlation coefficient (MCC) [41]–[45]. Sn and
Sp were defined as the ratios of correctly predicted positive
and negative samples, respectively. Acc was the ratio of
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correctly predicted samples. MCC was calculated between
the samples’ predicted pCR values and their real pCR values,
and was between −1 and +1. The higher MCC, the better a
prediction was.

The six representative classifiers were Support Vector
Machine (SVM), k nearest neighbors (KNN), Naïve Bayes
(NBayes), Decision Tree (DTree), Random Forest (RF) and
extreme gradient boosting (XGB).

The detailed description of the problem setting and predic-
tion algorithms may be found in the SupplementaryMaterials
at http://www.healthinformaticslab.org/supp/.

III. RESULTS
A. SUBTYPE TN: pCR PREDICTION BASED ON THE FIRST
THREE TREATMENTS
This study firstly investigated whether a patient’s patholog-
ical complete remission (pCR) may be predicted by taking
only the first three neoadjuvant chemotherapeutic treatments.
Each treatment was described by the total area of all the lesion
nodes. Six different representative classifiers were utilized to
calculate the stratified 5-fold cross validation performances
[46]–[51] of the binary classification problem between the
subtype TN breast cancer patients with and without pCR, i.e.,
pCR = 1 and 0, respectively. Three prediction performance
metrics were used to compare the six classifiers on the given
dataset, i.e., balanced accuracy Avc = (Sn + Sp)/2 [44],
[45], [52], sensitivity (Sn) and specificity (Sp), as shown in
Figure 1 (a). XGB achieved the best classification Avc =
0.7990 for predicting pCR of the TN breast cancer patients.
This suggested that the proposed model may accurately pre-
dict whether an TN breast cancer patient would achieve the
pathological complete remission (pCR = 1). The next two
best classification algorithms are DTree and RF, and both of
these two algorithms achieved a slightly worse Avc, about
2% decrease. The second best classifier DTree achieved a
slightly worse Sn = 0.7300 than that (Sn = 0.7933) of XGB,
but a better Sp = 0.8631 than that (Sp = 0.8048) of XGB.
The metrics Sn described how accurately those patients with
pCR = 1 may be detected, while Sp described the detection
accuracy of the patients with poor prognosis (pCR = 0).

Firstly, the exploratory experimental data suggested that
the subtype-TN breast cancer patients may be split into the
groups of good (pCR= 1) or poor (pCR= 0) prognosis with
reasonable prediction performances, in the measurements of
Avc, Sn and Sp. Secondly, the clinicians may choose a clas-
sification model based on whether they were more interested
in Sn or Sp.

So this study conducted a comprehensive evaluation of the
binary classification model for the other three breast cancer
subtypes.

B. THE OTHER THREE SUBTYPES: pCR PREDICTION
BASED ON THE FIRST THREE TREATMENTS
The pCR of the subtype HER2-positive patients can also
be satisfyingly predicted using the data of the first three

FIGURE 1. Predicting pCR by the first three chemotherapeutic treatments
of breast cancer patients. The five classification performance
measurements of all the six classifiers were calculated here for the
subtypes (a) TN, (b) HER2, (c) LBP, and (d) LBN.

treatments, as shown in Figure 1 (b). The algorithm KNN
achieved the best prediction Avc = 0.7493 and MCC =
0.4725. KNN also outperformed all the other five classifiers
in the prediction metrics Sn and Sp. This suggested that after
the first three chemotherapeutic treatments, a HER2-positive
subtype patient may get an estimation of whether she can
achieve the pathological complete remission (pCR = 1) by
taking three or more treatments. The data in Figure 1 (b)
also demonstrated that the other classification algorithms
performed much worse than KNN, with at least a decrease
0.0765 in Avc.

Figure 1 (c) and (d) showed that the other two subtypes
LBP and LBN had worse pCR prediction performances,
which may be due to the limited number of positive samples.
The algorithm KNN achieved the best pCR prediction Avc

VOLUME 7, 2019 134699



X. Feng et al.: Accurate Prediction of Neoadjuvant Chemotherapy pCR for the Four Sub-Types of Breast Cancer

0.5989 and 0.6930 for the two subtypes LBP and LBN,
respectively. Although KNN outperformed all the other five
classifiers in both Sn and Sp, its prediction sensitivities (Sn)
were smaller than 0.5000, and required a reasonable improve-
ment. So this study investigated how our pCR prediction
models may be improved in the following sections.

C. ESTIMATING THE LESION AREAS AFTER THE FIRST
THREE TREATMENTS
We hypothesized that a pCR prediction model may per-
form better using data of more treatments. Most patients
in our cohort received 6 chemotherapeutic treatments. But
chemotherapeutic treatment may induce various adverse drug
reactions (ADRs) [31]–[34]. So we chose to estimate the
nodal sizes of the next three treatments using the data of the
first three ones.

A simple regression function y = axb + c was chosen to
predict nodal sizes of the treatments 4/5/6 using the data of
the treatments 1/2/3. The three parameters a, b and c were
determined by the training data of the first three treatments.
The nodal sizes of some patients reached 0 before treatment 6,
which caused program errors for the regression training. So
a pseudo-one was added to all the nodal sizes during the
training step and was subtracted in the final prediction results.
A prediction of the nodal size was defined as a correct pre-
diction if the predicted size has a difference to the real size
smaller than 20%.

The regression model was trained on the data of three
consecutive treatments and predicted the next treatment. The
real data of only the first three treatments were used. So
treatment 4 was predicted by the model trained on the real
data of treatments 1/2/3. Treatment 5 was predicted by the
model trained on the real data of treatments 2/3 and the
predicted data of treatment 4. Treatment 6 was predicted by
the model trained on the real data of treatment 3 and the
predicted data of treatments 4/5.

D. OPTIMIZING THE NODAL SIZE PREDICTION MODELS
All the six binary classification algorithms were evaluated
using the real data of treatments 1/2/3 and the regressed data
of treatments 4/5/6, as shown in Figure 2. The classification
algorithm XGB still achieved better than the other four clas-
sifiers (except for RF) on the subtype TN (Figure 2 (a)), and
its Avc reached 0.7619. But XGB achieved Avc = 0.7990
for the subtype TN using only the real data of the first three
treatments, as shown in Figure 2 (a). The best Avc = 0.7748
was achieved by the classifier RF, which also achieved the
best Sn = 0.7933. But RF’s specificity (Sp) was worse than
the three classifiers SVM, XGB and DTree.

The classifiers RF and XGB achieved the best prediction
performances in all the three metrics Avc/Sn/Sp for the sub-
types HER2 and LBP, as shown in Figure 2 (b) and (c). The
prediction performance measurement mAvc was decreased
by 0.1026 and 0.0673 by adding the predicted data of treat-
ments 4/5/6 to the training data. The classifier XGB achieved
the best Avc = 0.6257 but its specificity (Sp = 0.9181) was

FIGURE 2. Predicting pCR by the first six chemotherapeutic treatments of
breast cancer patients. The five classification performance measurements
of all the six classifiers were calculated here for the subtypes (a) TN, (b)
HER2, (c) LBP, and (d) LBN.

slightly worse than that (Sp= 0.9188) of the classifier KNN,
as shown in Figure 2 (d).

The overall pCR prediction of the subtype LBP was sig-
nificantly improved by integrating the predicted data of treat-
ments 4/5/6 in the training data, as shown in Figure 2 (c).
The best pCR prediction model by the data of the first three
treatments was achieved by the algorithm KNN, with mAvc
= 0.5989. After the data integration of all the six treatments,
the algorithm XGB achieved the best performance mAvc =
0.7183, with an increase of 0.1194.

E. SELECTING BEST FEATURES
FOR DIFFERENT SUB-TYPES
We further hypothesized that we may need to select dif-
ferent feature combinations for the best pCR prediction
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FIGURE 3. Prediction performances of pCR for the four breast cancer
subtypes. (a) TN, (b) HER2, (c) LBP, and (d) LBN. The evaluated
classification performance measurements are Sn, Sp, Acc, Avc, and MCC.

performances for the four subtypes [53]–[55]. So we collect
the real nodal sizes of the first three treatments (S1, S2, S3)
and the predicted nodal sizes of the next three treatments
(S4, S5, S6) as the features for each participating patient.
A combination of features with the best pCR prediction per-
formance Avc was screened for each classification algorithm
on a breast cancer subtype. There were 26 = 64 different
feature combinations in total for the six features and an
exhaustive feature screening step was carried out to find the
best feature subset [56].

The pCR prediction performance Avc reached the best
value 0.8696 by the algorithmRF for the subtype TN patients,
as shown in Figure 3 (a). Our aforementioned hypothesis was
also supported by the observation that this best RF model
used only the two features S3 and S4. This model achieved
an improvement of 0.0706 for the best Avc = 0.7990 by

the algorithm XGB using the three features S1, S2 and S3.
Even the same algorithm XGB performed better on these two
features S3 and S4, with an improvement 0.0498 in Avc. Both
Sn and Sp were also improved compared with the cases in
Figures 1 (a) and 2 (a).

An improved Avc was also obtained for the subtype HER2
patients, as shown in Figure 3 (b). The algorithm KNN
achieved the best Avc = 0.7493 using the first three features
S1, S2 and S3 in the above sections. After the step of feature
selection, the algorithm XGB achieved a better Avc= 0.7763
using only two features S1 and S6. Another algorithm DTree
also achieved a better Avc = 0.7543 using the features S2,
S4 and S6. The first three features seem to be the optimal
feature subset for the classifier KNN, since it achieved the
same performance after the step of feature selection. The two
classifiers DTree and KNN outperformed XGB in Sp but not
in Sn, as shown in Figure 3 (b).

The step of feature selection significantly improved the
pCR prediction performance for the subtype LBP, as shown
in Figure 3 (c). The algorithm KNN achieved the best Avc =
0.5989 using the three original features S1, S2 and S3. After
integrating the three predicted features S4, S5 and S6, XGB
improved Avc to 0.7183 using all the six features. Figure 3 (c)
demonstrated that not every feature positively contributed to
the prediction model, and a significant improvement 0.0941
may be achieved by the classifier XGB using only the three
features S1, S4 and S6. This best model also improved both
Sn and Sp of all the previous models for the subtype LBP.

An increase 0.0399 was achieved for the subtype LBN by
the algorithm XGB for Avc by using the two features S3
and S6, as shown in Figure 3 (d). Even the previous best
algorithm KNN was improved with 0.0166 in Avc by using
fewer features. And the best model for the subtype LBN was
achieved by the classifier RF with Avc = 0.7594 using the
features S5 and S6. This best model performed slightly worse
in Sp= 0.9188 than that (Sp= 0.9192) of the classifier KNN
using the first three features (S1/S2/S3), but it significantly
improved the sensitivity (Sn = 0.6000) of the previous best
model (Sn = 0.4667).

IV. DISCUSSION
This study explored the possibility of predicting the patho-
logical complete remission (pCR) for breast cancer patients
using only the data of the first three chemotherapeutic treat-
ments. At least Avc = 0.7594 (Sn = 0.6000 and Sp =
0.9188) was achieved for the four subtypes of the breast
cancer patients, and the algorithm RF may predict pCR for
the triple-negative breast cancer (TN) patients with Avc =
0.8696 (Sn = 0.8429 and Sp = 0.8964). It’s interesting to
observe that the classifier XGB achieved the best accuracies
for the two breast cancer subtypes, i.e., HER2 and LBP. And
XGB performed the third (Sn= 0.8762 and Sp= 0.8233) and
second (Sn= 0.5333 and Sp= 0.9323) best Avc for the other
two subtypes TN and LBN, respectively.

The best models utilized the area data (S3, S4), (S1, S6),
(S1, S4, S6), (S5, S6) for the subtypes TN, HER2, LBP and
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LBN, respectively. So the tumor sizes after treatments 1, 3, 4
and 6 were important to predict the final pCR rates, even
when S4/S5/S6 were calculated by the regression models of
S1/S2/S3.

Our experimental data also demonstrated the importance
of selecting a good feature subset for the prediction models.
The pCR prediction Avc of the best model was improved
from 0.7990 (Sn = 0.7933 and Sp = 0.8048) to 0.8696
(Sn = 0.8429 and Sp = 0.8964) for the subtype TN, with
an improvement 0.0706 in Avc. Only two features S3/S4 as
the model inputs also reduced the model calculation time.
The pCR prediction Avc for the two subtypes LBP and LBN
were improved by 0.0941 and 0.0664. The least improvement
0.0270 in Avc was achieved for the subtype HER2.

The subtype-specific pCR prediction models for breast
cancers proposed in this study had the potential for clinical
applications. Our models focused on simplifying the required
input features and calculated the pCR prediction using only
the tumor sizes of the first three neoadjuvant chemotherapies.
A patient does not have to take a complete series of 6-8 neoad-
juvant chemotherapy treatments to determine the prognosis
(pCR = 1 or 0). After the first three treatments, the patient
may make his or her own decision based on whether this
patient was predicted to be able to achieve the pathological
complete remission (pCR = 1) or not (pCR = 0) after three
additional NAC treatments.

A multi-center clinical trial is being planned to carry out
the cross-center validation of our models, before their appli-
cations in the clinical practice. Due to the clinical regulations,
our models had to take all the procedures to officially get
involved in the clinical decision process. We released our
models and an easy-to-use pipeline for scientific research
purpose only at http://www.healthinformaticslab.org/supp/.

Due to the difficulty in collecting clinical data under a
study design, most of the clinical investigations recruited
fewer than 300 participants [57]–[63]. This study estab-
lished the initial pCR prediction models by recruiting 351
breast cancer patients who received at least 6 neoadjuvant
chemotherapy treatments. The above-mentioned plan of a
multi-center clinical trial will collect more categories of data
entries and recruit more breast cancer patients to cross val-
idate our models. This is anticipated to at least partially
avoid the overfitting problem of our models and to cover a
population in more habitats.

In conclusion, the pathological complete remission (pCR)
rate of breast cancer patients undergoing neoadjuvant
chemotherapy treatments may be predicted based on the
tumor sizes after only the first three treatments. The pCR
prediction models may be further improved by describing
the heterogeneous status of breast cancer patients from the
molecular and imaging perspectives.
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