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ABSTRACT Speller had been proved that it’s a kind of well interactive manners for brain computer interface
(BCI) system. In this study, we proposed a novel steady-state visual evoked potential (SSVEP) BCI speller
developed for numerical input. Based on a previous off-line method of SSVEP recognition, a sliding control
protocol was used for our real-time spelling task. For ten subjects, on-line experiments of 10 consecutive
number inputs were conducted for two different control conditions. In contrast to traditional static protocol
of multi-phase SSVEP signal extraction, the average information transmission rate (ITR) of sliding control
protocol reached 23.45 bits/min, higher than that of traditional static protocol (19.85 bits/min). The results
showed the validity and high-efficiency of sliding control paradigm for a real-time multi-phase SSVEP
speller.

INDEX TERMS BCI, speller, multi-phase, sliding control paradigm, SSVEP.

I. INTRODUCTION
Over the past few years, BCI technology has got rapid
increase attention on the development of relevant stud-
ies. EEG-based BCI system builds a novel transmission
channel between the human brain and external devices by
commands control without body movement [1]–[4]. Among
these systems, BCI-speller can be considered as one of the
first proposed applications and has opened the door for tech-
nology improvement in the field [5]–[7].

Generally, speller systems are based on neurophysiolog-
ical protocols such as event-related potentials (e.g., P300)
[8]–[12], event-related desynchronization/synchronization
(ERD/ERS) [13]–[17] and steady-state evoked potentials
(SSVEPs) [18]–[22]. Among these patterns, it has been ver-
ified that SSVEP has more precise classification accuracy
and better performance than those of other patterns of EEG
signals [23]–[26]. And SSVEP-based BCI devices are largely
investigated for real applications.

For SSVEP speller, visual stimulus is characterised by
positive and negative fluctuations to evoke corresponding
EEG patterns with a specific stimuli in a graphic user
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interface (GUI) [27]. The user needs to focus on the target
stimuli on behalf of the appropriate character. The advan-
tage of this way is that it does not require training time
for model calibration [25]. And the stimulus number is
greatly increased for improving the speed of BCI speller
[28]. Consequently, the development of GUI is considered
as the essential factor for performance enhancement in this
field.

Bremen Speller is one of the earliest high-speed SSVEP
BCI spellers contributed by the multi-target stimulus
paradigm [29]. And Jiang et al. proposed a dynamic stop-
ping strategy for improving the performance of high-speed
BCI speller [30]. Moreover, multi-phase SSVEP spellers are
utilised by a low number of distinct stimuli [31]. This cat-
egory of BCI speller is used for outputting a character by
several times of SSVEP recognitions in the corresponding
time phases. The numerical limitation of stimulus results in
a low spelling speed [32]. The reason is that multi-target
one-phase SSVEP speller is unfriendly for users. Much more
flashing stimulus are not comfortable for subjects. On the
other hand, mental workloads of control tasks are too unsus-
tainable to control this system efficiently for subjects. Hence,
multi-phase SSVEP spelling systems may be convenient for
BCI control.
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FIGURE 1. Two-layer speller was designated for character input. The subject could select the associating character by gazing
corresponding flickering square layer by layer.

In this study, we proposed a novel real-time SSVEP-based
BCI system for character input. Previously, a sliding control
protocol had been used for improving the efficiency of robotic
devices [33], [34]. It was confirmed that sliding control is
widely applied for mechanical control owing to manipulation
effort. As well, it was demonstrated that the sliding control
protocol raised the classification accuracy of SSVEP recogni-
tion [35]. Consequently, our study aimed to develop the safety
and feasibility of onlinemulti-phase BCI system for character
input with a sliding control protocol.

II. MATERIALS AND METHODS
A. SYSTEM PARADIGM OF REAL-TIME BCI
In this paper, a two-layer interface of characters selection was
proposed for numerical input (Fig. 1). There were four stim-
ulus square areas flickered within different fixed frequencies
in a layer. 10 digits and 3 symbols (‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’,
‘‘5’’, ‘‘6’’, ‘‘7’’, ‘‘8’’, ‘‘9’’, ‘‘0’’, ‘‘Cancel’’, ‘‘Ret’’, ‘‘Delete’’)
were divided into four square areas in the first layer. After the
user targeted one certain area, one of four target characters
could be hit in the second layer. Except for ten numbers,
‘‘Ret’’ was used for returning former layer when the subject
made a mistake in the first selection. ‘‘Cancel’’ was used
for cancelling the former input digit. And ‘‘Delete’’ was
designed for cleaning all input numbers. These buttons were

applied to correct false manipulations. In a run, four flashing-
block stimulus were used for presenting flickering squares at
four frequencies. It was verified that the bandwidth 6-16 Hz
was most effective for SSVEP recognition [36]. In order to
reduce experimental fatigue and increase the discriminability
of neighboring target frequencies, four low frequencies (i.e.
6, 7, 8, 9 Hz) were selected as the fundamental parameters for
stimulus presentation. The target square was selected by gaz-
ing the corresponding flashing block. The monitor resolution
is 1,280×768 pixels.

B. SLIDING CONTROL PROTOCOL OF EEG SIGNAL
RECOGNITION
In the previous study, we had proposed a high-efficiency
sequence detection (SD)-based approach for off-line SSVEP
signals recognition. SD approach was composed of sequen-
tial decisions from sliding observation periods. This method
could be used for the online SSVEP recognition by sequen-
tial signal collection. The control protocols were illus-
trated in Fig. 2 for comparison. When the subject launched
the system, EEG data were acquired for signal process-
ing. The target frequencies were selected by the control
strategy for commands output. We used traditional CCA
and improved SD-CCA methods for performing the real-
time BCI task of character inputting. CCA method was a
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FIGURE 2. The control protocol of BCI speller for two strategies. In our method, EEG data were separated by a TW, and it
was slid with an MW between consecutive trials.

common algorithm for SSVEP-based BCI tasks. For SD
approach, a time window (TW) was applied to extract
EEG data of one trial and a moving window (MW) was
slid for consecutive trials sequentially. In a trial, canon-
ical correlation analysis (CCA) coefficients were calcu-
lated by our algorithm. And the target was hit after
performing several trials according to a threshold strat-
egy. A detailed description of our methodology had been
clarified in the section of SD Analysis Based on CCA.
Parameters of TWs, MWs and thresholds were selected
by the off-line experimental results for all participants.
For traditional CCA method, the target was recognised by
the SSVEP signal processing every time window of static
3 seconds.

C. SD ANALYSIS BASED ON CCA
Instantaneous probability, which represented the probability
for the frequency of the corresponding SSVEP component,
was recognised at the instantaneous period. And we used
CCA coefficients to reflect the instantaneous probability in
this algorithm. CCA was a typical multi-variable correla-
tion technique for two sets of data. The hypothesis of this
means was that the signal source for SSVEP, Y , was the
output of a linear system with the observed signal, X , as
the input. X , at a specified target frequency F could be

decomposed into the Fourier series of its harmonic signals
(sin(2π ft), cos(2π ft), sin(4π ft), . . .):

X =



sin(2π ft)
cos(2π ft)
sin(4π ft)
cos(4π ft)
sin(6π ft)
cos(6π ft)

t =
1
S
,
2
S
, · · · ,

T
S

(1)

where f was a fundamental frequency, T was multi-channel
sampling variables and S was a sampling rate. The method
could detect a pair of linear combinations, y = Y TWY and
x = XTWX , for Y and X, to maximise the dependency
between two canonical variables, y and x, by solving the
optimisation problem:

max
WX ,WY

ρ(x, y) =
E[xT y]√

E[xT x]E[yT y]

=
E[W T

X XY
TWY ]√

E[W T
X XX

TWX ]E[W T
Y YY

TWY ]
(2)

The canonical correlation coefficient ρ was used as the coef-
ficient which represented the relation between the raw signals
and the reference signals.
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In a run of task recognition, EEG data were divided into
several subsequent trials for evaluating instantaneous proba-
bilities. Fig. 2 had illustrated the principle of data segmen-
tation. A time window (TW) was used for acquiring enough
multi-channel data, and it was slid with a moving window
(MW) between consecutive trials. In a trial, we calculated the
instantaneous probability ratio Pbi of the stimulus frequency
i as below,

Pbi =
ρi

Mi
(3)

where Mi was defined as

Mi =

∑
n ρj

n
j = 1, 2, . . . , n (4)

Here, n represented the number of stimulus frequencies. After
m trials, SD coefficient SmF , which denoted a probability ratio
of one stimulus frequency F , could be formulated as

SmF = Pb1F × Pb
2
F × · · · × Pb

m−1
F (5)

A threshold of SD, T , was utilised for the final decision. If
SmF ≥ T , the stimulus frequency F was selected as the target
frequency. If SmF < T , SD continued to assess the point of
Sm+1F in the next trial. In this study, TWs and MWs were
respectively set by subjects’ experimental performances.

The core of SSVEP recognition was how to determine the
deadline point when the mental activities stayed in the steady
state. Suppose that K stimulus frequencies F1,F2, . . . ,FK
were designated for evoking relevant potentials and EEG data
had been collected from N channels within a time window
of L s. In this strategy, stimulus frequency Fs, corresponding
to one specified flickering module concerned by one subject,
must satisfy

Fs = max
F

S(F) S(F) > T ,F = F1,F2, . . . ,FK (6)

where S(F) was the SD coefficients. X and Y were defined
in (1). In the online experiment, the character would be out-
putted if Fs the threshold was exceeded. The target frequency
was selected by the current maximum value of SmF .

D. EVALUATION METHODS
In this study, classification accuracy was applied to evaluate
the experimental performance. Only right runs of selecting
target numbers were valid for character input. The classifi-
cation accuracy was defined as the percentage of valid runs
in which classification results were consistent with target
characters. Let Fs be the classification result determined by
the recognising method and Fstim be the target frequency of a
run. Thus, the classification accuracy could be formulated as
follows.

Acc =
number of valid runs(Fs = Fstim)

number of runs
× 100% (7)

Information transfer rate (ITR) was conventionally used
for assessing the communication capacity of our BCI system.

This indicator was represented by the information transmit-
ted within bits per minute. The definition of ITR (Br ) was
described as:

Br =
60
S
×

[
log2 N + P× log2 P+ (1− P)

× log2

(
1− P
N − 1

)]
(8)

S was calculated as the mean time of character input. In our
experiment, the final character was outputted by two trials
for two-layer paradigm design. Hence, for traditional static
protocol, the value was 6 seconds (the time consumption of
one trial was 3 seconds). Moreover, the output speed was
determined by the real time consumption of all runs for
sliding control protocol. The detailed values were listed in the
section of Result. N indicated the number of target choices
which equals to 16 in online experiments (4 × 4 character
choices) and P denoted the correct probability of character
selection.

E. SUBJECTS AND EXPERIMENTAL SETTINGS
10 of 14 subjects who performed best off-line experimental
performances (9 males and 1 female, aged from 22 to 28,
mean age 24.6 years) participated in further real-time BCI
tasks. All of them had normal or corrected-to-normal vision.
These subjects had no experience on the online SSVEP-based
BCI tasks. They were divided into two groups with an equal
number. Every participant was randomly selected to one of
two groups. Sliding control protocol (SCP) was used for data
process in one group, and traditional static protocol (TSP)
was used for the other. Each subject was asked to seat in an
armchair and pay attention to the computer screen. After a
cross arrow appeared 5 seconds, 10 fixed numbers (from 0
to 9) were displayed in a random order. It was fair for two
control groups by maintaining the consistent task difficulty.

All subjects performed this BCI task of real-time numerical
input. A high-performance amplifier (g.Tec) was used for
collecting scalp EEG signals. SSVEPs were typically related
to the neural activities on the visual cortex. Therefore, the
record electrodes of four channels (POz, O1, Oz, O2) were
placed on the occipital area according to the standard 10-20
international system (Fig. 3). Reference electrode was on the
unilateral (left or right) ear lobe and a ground electrode was
placed on the anterior head. Impedances of all electrodes
were kept below 10 k� and the sample rate was 256 Hz.
The signal was preprocessed by notch filtering with 50 Hz
and bandpass filtering between 0.1 and 30 Hz. The same
parameters (TSP: TW = 3 s; SCP: TW = 3 s, MW = 0.6 s)
were determined by the off-line experiments for eliminat-
ing subject-dependent difference. However, the performances
with these parameters were excellent for all subjects in the
off-line tasks, especially for ITR. Moreover, the time delay
of software would influence the performance of experimental
result. We made a record of total task time (Timetotal) from
start to end for each subject by programming. Thus, the
average time consumption per trial could be calculated as
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FIGURE 3. The record electrodes of four channels (POz, O1, Oz, O2) were placed on the
standard 10-20 international system.

TABLE 1. The comparable results between TSP and SCP, including ACC, ITR and time consumption per trial.

TABLE 2. The detailed process of character inputs for all subjects.

Timetotal/Numbertrials. Numbertrials was the number of all
trials, and it was meaningful for computing the evaluation
indicator exactly.

III. RESULTS
A. SYSTEMATICAL PERFORMANCE FOR TWO GROUPS
Table 1 showed the comparison results of these two groups.
The results of paired t-test (ACC: t = 2.476, p < 0.05; ITR:
t = 1.278, p > 0.05) verified the significant improvement
of classification accuracy for SCP. Though the average time
consumption of SCP was higher than that of TSP, the mean
ITR of SCP was larger than that of TSP. It was indicated that
the longer time of data collectingwas useful for improving the
efficiency of the online BCI system. These findings validated
the efficiency of SCP strategy for online BCI tasks.

B. MANIPULATION CONTROL FOR ON-LINE BCI
The detailed process of character inputs was reported at
Table 2. Generally, the number of error manipulations for
SCP was lower than that of TSP. This result was consistent
with the conclusion of off-line sliding control strategy [35].
The observation of sequence segmentation was beneficial
against instantaneous mental disturbance. It was validated
that sliding control was feasible for on-line BCI tasks.

IV. DISCUSSION
The main findings of this study imply that SCP enabled high-
efficiency and precise BCI system for character input. The
control strategy strengthens the robustness of online BCI
spellers. With the development of hardware technology, it
will be useful for real applications in future.
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FIGURE 4. The number of manipulation errors in the first layer and the second layer of GUI
for TSP group.

FIGURE 5. The number of selection errors of target frequencies (6 HZ, 7 Hz, 8 Hz, 9 Hz)
for TSP group.

Conventionally, the number of stimulus and time consump-
tion were considered as the main factors of improving the
efficiency of BCI spellers [21], [37]. However, the complexity
of systematical control was almost not mentioned in pre-
vious studies. Comparing with state-of-art multi-phase BCI
spellers, the performance of our BCI system reaches the same
level with those of them [31], [32], [38]. Our system adopts
SCP for eliminating mental interference. It enhances positive
experiences due to the least error happened in control. In
the previous task, we used more collected time for SSVEP
recognition to verify the feasibility of the proposed method.
Moreover, the number of target choices was added to 16 in the
online experiments. The reduction of time consumption and
the increasement of target choices were adopted to improve
the efficiency of real-time BCI system. Hence, the average
ITR of the off-line task was significantly lower than of the
online task.

In this experiment, subjects performed the online character
spelling task by two control protocols. subjects in the group
of SCP had lower false manipulation than that of subjects in
the group of TSP. We report the numbers of manipulation

errors in the first and second layers in Fig. 4. Firstly, gaze
shifting is considered as an influential factor when the visual
focus diverts from one target to another between two con-
secutive trials. In contrast with SCP, these operation errors
indicated that visual deflection has an impact on experimental
results. Moreover, selection errors of target frequencies are
listed in Fig. 5 for evaluating these strategies. It is shown
that the targets (i.e., 6 Hz and 7 Hz) selections in the top
of the interface are more difficult than thus in the bottom.
We speculate that it is related to the visual range of the
user interface. The details will be revealed in the next para-
graph. Generally, TSP is challenging to eliminate external
interference.

For instance, Fig. 6 shows the process of target evaluation.
The interference stimuli (i.e., 8 Hz) is selected at the first three
trials. Although, target selection is not performed because
the coefficient is lower than the threshold in the process. In
the subsequent trials, the score of right stimuli (i.e., 6 Hz)
surpassed that of the interference stimuli. It is clearly demon-
strated that SCP improves the robustness of the SSVEP-BCI
speller against mental interference.
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FIGURE 6. The chart illustrates the process of SD coefficients at stimulus
frequencies for Subject 9. In the first two trials, The SD coefficients of
target frequency (i.e. 6 Hz) are less than those of the interference
frequency (i.e. 8 Hz) However, it surpasses that of the interference
frequency at subsequent two trials and the threshold is hit at the last trial.

In our experiment, the time consumption per trial is ranged
from 4.04 to 4.36 seconds for SCP. It is implied that the
subject spends more time in performing one recognition of
SSVEP signal. Comparatively, the recognising time window
of TSP is set to three seconds for one recognition, which is
dependent on the off-line task result. These parameters were
reasonable for the comparison between these two control
protocols.

For SCP group, they gave positive feedback to the manipu-
lation experience for their online BCI experiments. However,
it was difficult for TSP group to make a correct selection by
the subjects’ experiences. It was implied that the subjective
confidencewas raised in the condition of few false operations.
Furthermore, none of participants gave negative responses
for real-time missions. The conclusion proves that, SCP is
acceptable for online BCI system.

As introduced, four channels are used for signal acquiring.
It is suitable for the real application with dry-electrodes. It is
confirmed that this device will be exploited for commercial
applications in future.

In our study, the brain-switch is not used in our system.
However, it is helpful for safety control in the field ofmechan-
ical engineering. In the further work, we will designate it in
our BCI speller for self-paced control.

V. CONCLUSION
In this paper, we presented a novel SSVEP-based BCI system
with sliding control protocol. These findings validated the
high-efficiency of our proposed BCI speller. And the com-
parison result with the static control protocol verified that the
superiority of sliding control strategy for real-time tasks.
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