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ABSTRACT Tool wear is inevitable in manufacturing and affects the surface quality and geometric tolerance
significantly. A robust and efficient tool condition monitoring (TCM) system is needed to maximize tool life,
ensure work-piece quality, and benefit the cost control of manufacturers. This paper presents a systematic
singularity analysis approach of cutting force and vibrations for feature extraction of TCM in milling. The
singularity of sensory signals is estimated by Holder Exponents (HE), which are determined by wavelet
transform modulus maxima (WTMM). A comprehensive wavelet basis selection approach is proposed to
choose the appropriate wavelet basis for different sensory signals. A de-noising algorithm based onWTMMs’
estimation was used as a pre-processing technique to improve noise reduction and preserve the singularities.
The mutual information method was employed to rank HE features. The effectiveness of the singularity
analysis approach is validated through the Support Vector Machine (SVM) models trained by these ranked
features. The estimating results of case studies confirm the efficacy and efficiency of the proposed approach.

INDEX TERMS Force, vibrations, tool condition monitoring, singularity, holder exponents, wavelet basis
selection, support vector machine.

I. INTRODUCTION
Manufacturing sectors play an essential role since they are
among the largest energy consumers in modern societies [1].
Especially, the high-end manufacturing industry, such as
aviation and aerospace fields, has always been the vane of
manufacturing development due to its technological advan-
tages. In these fields, materials with excellent properties
such as titanium alloys and nickel-based alloys are widely
applied. During machining these difficult-to-machine mate-
rials, the interactions between the cutting tools, work-pieces,
and chips put cutting tools in extreme working conditions and
result in the shape change of tools, such as gradual tool wear,
or tool breakage [2]. Moreover, surface quality and geometric
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tolerance are highly related to the tool conditions, especially
when high-added-value components like aeronautical engine
blades and monolithic parts, are manufactured. However, tool
replacements in most factories still rely heavily on workers’
experience. Premature tool replacements can lead to wasting
of resources and increasing of economic costs. And late
replacement of worn tool may cause unpredicted machine
breakdown and affect the machining quality. To ensure
the machining quality of high value-added components,
workers often tend to adopt conservative tool replacement
strategies. Therefore, a robust and efficient tool condition
monitoring (TCM) system is needed to maximize tool life,
ensure work-piece quality, and benefit the cost control of
manufacturers [2].

For the implementation of monitoring schemes, most of the
current studies on TCM are based on empirical analysis [3],
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or sensing-oriented approaches such as cutting forces [4]–[8],
motor current analysis [9], [10], vibration analysis [11], [12],
and acoustic emission (AE) [13], [14]. Several comprehen-
sive surveys of these works have been published [15], [16].
Essentially, the core issue of TCM could be seen as a pattern
recognition problem, in which the vital procedure is to obtain
appropriate features from sensory data by the adequate signal
processing means. The milling process is discontinuous, and
this produces highly nonstationary signals. Wavelet analysis
has a strong capacity in coping with nonstationary signals and
is sensitive to tool conditions in milling TCM [17], [18].

In the signal processing, singularities can be thought of as
either an abrupt change or a sudden shift of the signal’s mean
value to a different level. For condition monitoring, singulari-
ties can be found in sensor signals captured duringmachining,
such as when chipping and tool breakage occur. There is an
excellent time-frequency localization property provided by
singularity analysis in wavelets [19]. The original goal of
singularity analysis is to estimate the localization and degrees
of abrupt changes in a signal or image edges [20]. It has been
studied in machinery condition monitoring lately [21], [22],
but little is studied in TCM of milling. Because it is robust
and stable in capturing signal changes, it can be expected that
these singularity-based features will provide valuable studies
in TCM.

The singularity analysis with wavelet for TCM was first
introduced by Chen and Li [23]. They chose the wavelet
coefficient norm and their statistics as features to indicate the
tool conditions. Their wavelet features are robust in case of
noise, but they are still subject to the limitation in choosing
threshold, which also varies with working conditions. Some
other studies applied fractal features to describe the signal
singularities. Fractals are objects that display self-similarity
over scales [24]. Fractal features were applied to characterize
the tool states [25]. Bukkapatnam et al. [26] studied the
fractal properties of force and vibration for turning TCM. The
flank wear is estimated by associating the fractal properties
of machining dynamics and flank wear through a recurrent
neural network. Zhu et al. [27] estimated tool conditions
from probability densities of forcewaveform singularitymea-
surements in micro-milling. However, there is still a lack of
systematic research on the difference of singularity analysis
on various sensory signals in milling at present.

The goal of this paper is to provide a systematic singu-
larity analysis of cutting force and vibration which could
be employed for TCM in milling. Its underlying assumption
is that a new tool produces various signal waveforms and
singularities from a worn-out one, then HE as a direct index
of singularity is estimated based on WTMM [27]. The main
contributions of this paper include the following 3 points:

1. A comprehensive wavelet basis selection approach
is proposed to decide which order vanishing moment is
appropriate for the different sensory signals without any
knowledge of their singularity properties beforehand. The
wavelet basis with 1 vanishing moment is found quite effi-
cient to analyze cutting force signals, and the wavelet basis

FIGURE 1. Signal waveform shapes of different tool conditions.

with 2 vanishing moments is most suitable for vibration
signals.

2. The de-noising algorithm based on the estimation
of WTMMs with appropriate wavelet basis could improve
de-noising effect and preserve the singularities in signals
compared with traditional filters.

3. The statistical features extracted from HE values
selected by the mutual information method could obtain
higher machine learning classification rate; the singularity
characteristics of the cutting force are more correlated to the
tool conditions than the vibration signal.

The following Section II discusses the theoretical basis
of waveform analysis for TCM. The experiment and results
are then presented in Section III. The singularity analysis
and discussion are then presented in Section IV. Section V
concludes the results.

II. SINGULARITY ANALYSIS
A. SIGNAL WAVEFORM SHAPES AND TOOL CONDITION
Cutting force and vibration signals are the most widely
acquired process signals in milling, which have been found
quite sensitive to different tool conditions and extremely
suitable for TCM [12]. As mentioned above, the basic idea of
this paper is that changes of tool conditions are strongly asso-
ciated with the variations in signals’ waveforms, which show
various singularity or disorder, with the proceeding of milling
process [27], which is briefly described in Figure 1. These
disorders or singularities could be estimated by Holder Expo-
nent (also named Lipschitz Exponent in mathematics) [28].

B. HOLDER EXPONENT
The singularity means discontinuity; if a function f (t) is not
differentiable at v, we say the f (t) is singular at v. From the
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perspective of signal processing: During machining, singu-
larities can generally be found in the sensor signals when
chipping and tool breakage occur. When the signals’ wave-
form undergoes slow variation without abrupt changes, the
singularity degree measures how close the signal is related to
the singularity and also provides abundant information on the
tool condition variations [27]. We qualitatively describe the
geometrical characteristics of signals with discontinuity, dis-
order, smoothness, etc. In mathematics, the Holder Exponent
(HE) α is a good index for this characterization [29]. Usually,
a large HE indicates a regular point in the signal while a small
HE indicates a singular point.

A function f (t) is said to be Holder Exponent α ≥ 0 at
t = v if there exists A > 0 and a polynomial pv of degree
m(m is the largest integer satisfying m ≤ α) such that

f (t) = pv (t)+ εv (t) (1)

|εv (t)| ≤ A |t − v|α (2)

As A is a constant, this upper bound is decided by the
exponent α. The HE of f (t) at t0 is the supremum of α for
which (2) holds. Higher αmeans that the function f (t) is more
regular.With n < α < n+1, then f (t) is n-time differentiable,
but the nth derivative is singular at t0, where α characterizes
this singularity.

However, the estimation of HE is nontrivial. Mallat and
Wen [19] have shown that the HE of a signal can be estimated
from its wavelet maxima and the decay of the WT modulus
in the time-scale plane.

The local extrema along the scale are first obtained by set-
ting the partial differentiation of wavelet transformWψ f (u, s)
of signal f (t) at position u to zero

∂WTf (u, s)
∂u

= 0. (3)

Along the modulus maxima line, the wavelet coefficients
have the scaling behaviors in the vicinity of t as follows [19]:

|WTfs (t)|A ≤ sα+1/2. (4)

where A is a constant (A > 0) related to the wavelet ψu,s(t).
By taking the discrete scale s = 2j along themodulus maxima
line, the wavelet coefficients have the scaling behaviors as
follows:

log2
∣∣WT2j f (t)∣∣ ≤ log2 A+ j

(
α + 1

/
2
)
. (5)

A and α can be computed by setting the equality in (5).
This function connects the wavelet scale j and the HE α.
The function also shows the relationship between WTMM
and the wavelet scale j (or s in CWT). A higher α means that
the function f (t) is more regular or smoother. For instance,
white noise with HE = −0.5 − ε(ε > 0); ramp signal
is piecewise linear, 1st order differentiable, with HE = 1;
the 1st derivative of a ramp signal is a step function with
HE = 1 − 1 = 0; and the 2nd derivative of ramp signal is
impulse signal with HE= 1−2 = −1. The HE withWTMM
estimation was initiated to analyze self-similar phenomena in
physics [30], [31] and also have been studied for machinery

FIGURE 2. Experimental setup.

diagnostics [32], [33], which are similar to the task of TCM
in principle.

III. EXPERIMENTS
The experiment data is extracted from the ‘‘prognostic data
challenge 2010’’ database [34], which contains several histo-
ries of high-speed CNC milling machine 3-flute cutters used
until a significant wear stage (Figure 3).

The authors recorded the vibration data from accelerome-
ters during the cut process and measured the amount of wear
after each cut for three experiments (a total of three sets
of 315 cut files). Three Kistler piezo accelerometers were
mounted on the workpiece to measure the vibration of the
cutting process in X, Y, Z direction respectively. The Kistler
dynamometer (9257B) was employed to measure the cutting
force in X, Y, Z directions. The outputs of these sensors
were conditioned through corresponding signal conditioning
accessories such as charge amplifiers or couplers. The voltage
signals were captured by a NI DAQ PCI 1200 board with
12 kHz frequency. These histories were named as cutter1,
cutter2, and cutter3.

The experimental records from these tests were obtained
under constant conditions. The cutting parameters were: the
spindle speed of the cutter was 10400 r/min, the feed rate was
1555 mm/min, the Y depth of cut (radial) was 0.125 mm,
and the Z depth of cut(axial) was 0.2 mm. The data were
acquired at 50 kHz/channel; the experimental setup is shown
in Figure 2.

IV. RESULTS AND DISCUSSIONS
A. SIGNAL DE-NOISING AND WAVELET BASIS
SELECTION APPROACH
Raw cutting force and vibration signals are highly con-
taminated by noises. At the positions where the signal has
positive HEs, the noises would add negative singularities.
In turn, the sum would present as a signal with negative
HEs. Therefore, the raw cutting force signal needs careful
preprocessing before estimating singularities. In practical
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FIGURE 3. Variation of flank wear with cuts.

applications, the useful segment of the signal usually appears
as a low-frequency signal or relatively stable signal, but noise
shows a high-frequency nature. Based on the above charac-
teristics of the noisy signal, the traditional low-pass filter,
band-pass filter or wavelet filter can effectively improve the
signal-to-noise ratio, but they would blur the singular features
in signal, as shown in Figure 4 (b) and Figure 5 (b). Therefore,
how to remove noise while preserving singularities of cutting
force signal becomes an urgent problem before the detection
of singularity.

Since noise produces negative HE values [19], we could
distinguish the WTMM generated by noise from the one
created by signal, by checking the development of their val-
ues along with scales. If the WTMM has a value, which
increases considerably when the scale decreases, it indi-
cates that the corresponding singularities have negative HEs.
These WTMMs are mostly dominated by noise and are
thus removed. After the WTMM selection, we reconstruct
a ‘‘de-noised’’ signal with Mallat’s approach. By compar-
ing Figure 4 (b) and (c), it could be found that the WTMM
de-noising algorithm could significantly improve the noise
reduction effect and acquire a smoother curve.

However, the choice of wavelet basis is especially
important when estimating WTMMs. So far, there is
still no uniform selection criteria for the wavelet basis
for singularity detection. Based on lots of applied
researches [19], [27], [29], [33], the wavelet basis used for
singularity detection should have the following properties:
continuously differentiable, with suitable vanishing moments
and small effective support, regular, symmetry or anti-
symmetry. Among them, the vanishing moment is critical,
which should fit with characteristics of the signal. A wavelet
ψ(t) is said to have n vanishing moments, if and only if for
all positive integer k < n, it satisfies∫

+∞

−∞

tkψ (t) dt = 0. (6)

In the analysis of real signals, there are two types of
singularities: Type I, which is a discontinuity of the signal
at point a; Type II, which is the discontinuity of the nth
order derivative of the signal at point a. Only by selecting
the wavelet basis with appropriate vanishingmoments we can
effectively detect different types of singular points. If wavelet
ψ has exactly n vanishing moments and a small compact
support, then there exists θ of compact support such thatψ =
(−1)n θ (n) with

∫
+∞

−∞
θ (t)dt 6= 0. The wavelet transform is

rewritten in (7) as a multiscale differential operator

Wf (u, s) = sn
dn

dun
(
f ∗ θ̄s

)
(u) . (7)

If ψ = −θ ′, it has only one vanishing moment, wavelet
modulus maxima are the maxima of the 1st order derivative
of f smoothed by θ̄s, as illustrated by Figure 3. These mul-
tiscale modulus maxima are used to locate sharp variation
points. If ψ = θ ′′, the modulus maxima of W2f (u, s) =
s2 d2

du2
(
f ∗ θ̄s

)
(u) corresponds to Type II singular points and

local maximum curvity around Type I singular point, and it
can be observed that modulus maxima of local maximum
curvity are also closely related to the singularity of sharp
variation points. Therefore a wavelet basis with n vanishing
moments can detect the singularity till HE = 0 in the n − 1
derivative of the signal.

However, we don’t know in advance which kind of sin-
gularity the signal has. Therefore, we propose a quite com-
prehensive approach to select the wavelet basis. Firstly,
we employ several wavelet bases with the different vanishing
moment to de-noise the signal; then we check the smoothness
of the de-noised signal and frequency spectrum analysis is
performed to compare the effect of noise reduction. However,
the number ofmaxima at a given scale often increases linearly
with the number of moments of the wavelet [29]. In order
to ensure the efficiency of the calculation at the same time,
computational efficiency is another crucial factor.

To better compare the effects of different vanishing
moments on signal singularity analysis, it is necessary to
use the wavelet bases of same wavelet family. The Gaussian
derivatives family is built starting from the Gaussian function
by taking its nth derivative, and this nth derivative is a wavelet
basis with n vanishing moments [19], so Gaussian derivatives
family is employed as the wavelet basis in this paper.

Figure 4 and Figure 5 show the de-noised vibration, cutting
force signal of one rotation by different wavelet bases and
their corresponding frequency spectrums.

1) VIBRATION
Comparing Figure 4 (c) and (d), it could be observed that the
signal de-noised by wavelet basis with 2 vanishing moments
is much smoother. It is because that the 2nd derivative of
Gaussian wavelet with 2 vanishing moments can locate both
Type I and II (discontinuities in the 1th derivative of signal)
singular points and create moreWTMMs. Thenwe can evalu-
ate more points which are dominated by noise or not. Preserv-
ingmore real signal points, and eliminatingmore noisemakes
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FIGURE 4. (a) Noisy vibration signal of cutter1 in the feed direction. (b) Signal de-noised by wavelet filter. (c) Signal de-noised by WTMM by the 1st
derivative of Gaussian wavelet with 1 vanishing moment. (d) Signal de-noised by WTMM by the 2nd derivative of Gaussian wavelet with 2 vanishing
moments. (e) Signal de-noised by WTMM by the 3th derivative of Gaussian wavelet with 3 vanishing moments. (f), (g), (h), (i), (j) are the corresponding
frequency spectrum of (a), (b), (c), (d), (e).

the curve smoother. To further evaluate the de-noising effect
of noise reduction, we conducted the frequency spectrum
analysis to signals. The energy of vibration signal should
be distributed at the integral multiples of the tooth passing
frequency (TPF) [35].

TPF = N ×
n
60
= 3×

10400
60
= 520 (Hz) . (8)

whereN and n are quantities of tool cutting edges and spindle
speed (r/min), which are 3 and 10400 respectively.

From Figure 4 (h), (i), and (j), it can be observed that
wavelet basis with 2 vanishingmoments can preserved energy
of vibration signal at integral multiples of TPF while elimi-
nating noise energy at high frequencies significantly. There-
fore, this means that both the Type I and Type II singularities
exist in the milling vibration signal.

From Figure 4 (d), (e), (i) and (j), we could find that
the signal de-noised by wavelet basis with 3 vanishing
moments becomes smoother, but not so noticeable. And a
tiny difference in the frequency spectrums illustrates the
same condition. Considering the computational efficiency
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FIGURE 5. (a) Noisy cutting force of cutter1 in feed direction. (b) Signal de-noised by wavelet filter. (c) Signal de-noised by WTMM by 1st derivative of
Gaussian wavelet with 1 vanishing moment. (d) Signal de-noised by WTMM by 2nd derivative of Gaussian wavelet with 2 vanishing moments. (e) Signal
de-noised by WTMM by 3th derivative of Gaussian wavelet with 3 vanishing moments. (f), (g), (h), (i), (j) are the corresponding frequency spectrum of
(a), (b), (c), (d), (e).

and de-noising effect, the wavelet basis with 2 vanishing
moments is efficient to analyze the singularity of milling
vibration signals.

2) CUTTING FORCE
Comparing Figure 4 (c), (d) and (e), it could be observed
that the smoothness of the de-noised signals by wavelet basis
with 1-3 vanishing moments is almost the same. The same
condition happens to the frequency spectrums. Therefore,
it can be perceived that the singularity in the cutting force
signal is dominated by the Type I singularities. Then the

wavelet basis with 1 vanishing moment is efficient to detect
these singularities.

By comparing the singularities of the vibration and cutting
force, it could be concluded that it needs to employ different
wavelet bases to meet the singularity detection requirements
of different signals. Otherwise, some useful information in
the signal would be ignored.

B. HE ESTIMATION PROCEDURE
In this paper, both the HE estimation and the signal de-
noising need to calculate WTMM. In order to improve the
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FIGURE 6. HE estimation procedure.

computational efficiency, the de-noising algorithm is inte-
grated into HE estimation. The numerical implementation of
HE estimation of signal f (t) is shown in Figure 6.

In the de-noising algorithm based on wavelet modulus
maxima, since the density of modulus maxima of noise
decreases as the scale (2j) increases [29], so we need choose
a relatively large scale to make the useful signal dominant,
but too large scale would lose some important local singular
points, j = 4 − 5 is chosen generally [27]. After WTMM
for all (u, s) is computed, we would search the modulus
maxima dominated by the noise through setting the threshold
T of the modulus maxima at the largest scale. The modulus
maxima below T will be eliminated. After removing pseudo-
maxima at different scales, HE of remaining WTMM would
be calculated. The T is set as

T = log2

(
1+ 2

√
PN
)

J + Z
×M . (9)

where Z is a constant, is set as 2 [27]. The discrete scale
s = 2j(j = 0, 1, 2 . . . J ), J is the maximum.
M is the maximum modulus,M = max

∣∣W2J (xi)
∣∣

C. HOLDER EXPONENT ANALYSIS
In the TCM research of micro-milling [27], [36], Zhu et al.
found that the HE values of three force components all are
located within narrow bands and their variation areas over-
lap a lot, which means the HE values alone could not be
used as features for TCM. However, they noticed that the
probability densities of HE values were well approximated
with Gaussian densities and the HE ranges could be divided
into three separate areas corresponding to three tool states.

FIGURE 7. HE probability densities of vibration estimated by 2nd
derivative of Gaussian wavelet.

Figure 7 and Figure 8 show HEs’ probability densities of
three typical tool wear states (corresponding to 5th, 100th
and 250th cut according to Figure 3) calculated from axial
vibration Ax and axial force Fx samples of cutter 1. It is
perceived that Gaussian densities can estimate all these prob-
ability densities of HEs, but the distributions of three tool
states are extremely overlapping, which is a totally different
scenario from the micro-milling. Moreover, the same case
happens to the HEs’ probability densities of Ay, Az, Fy and
Fz. So the conditional probability density ratio employed
in [27] cannot be used in this case. This means that only
the basic parameters µ (means), and σ (standard deviations)
of the Gaussian distribution are insufficient to distinguish
the distributions of different tool states. However, it is also
observed that the probability densities of different tool wear
states are different in shapes and ranges significantly. There-
fore, we extracted Maximum, Minimum, Skewness, Kurtosis
of HE values to describe the distribution further. In the estima-
tion ofWTMMs,we found that in the case of the same amount
of data, different tool states would cause significant variations
in the quantities of singular points. Then we extracted these
7 statistical features from every component of cutting force
and vibration, 42 features in total.

D. HE FEATURES SELECTION
Now we have a lot of features extracted from HE values,
including some redundant and irrelevant features. If we don’t
choose the most relevant ones, it will increase the complexity
of machine learning models and lead to problems of overfit-
ting and dimension disaster. In this paper, we employed the
Mutual Information based feature selection method, which
has been proved effective to rank the class-discriminant
capability of features [37], [38]. Since the mutual infor-
mation method is only applicable to discrete variables, but
the HE features extracted are continuous variables, then the

VOLUME 7, 2019 134119



C. Zhou et al.: Singularity Analysis of Cutting Force and Vibration for TCM in Milling

TABLE 1. SU of different cutting force HE features.

MinimumDescription Length Principle (MDLP) [39], [40] is
employed to discretize these continuous features firstly.

The mutual information could quantitatively characterize
the relationship either between any two features or between
a feature and a class variable. The mutual information of 2
discrete variables X ,Y could be described as:

I (X;Y ) = H (X)− H (X |Y ) . (10)

where H (X ) is the entropy measure of X :

H (X) = −
∑
X∈�X

p (x) log2 (p (x)) . (11)

andH (X |Y ) is the conditional entropy of variable Y given the
occurrence of variable X , is estimated as:

H (X |Y ) = −
∑
X∈�X

∑
X∈�Y

p (x, y) log2 (p (x |y )) . (12)

where �X and �Y are the variable spaces of X and Y . And
p(x), p(y), p(x, y) are the probability density functions of X ,
Y and (X ,Y ). p(x|y) is calculated as:

p (x |y ) =
p(x, y)
p(x)p(y)

. (13)

After the mutual information is estimated, the symmetric
uncertainty (SU ) analysis is employed to score different fea-
tures. SU (X ,Y ) is calculated as:

SU (X;Y ) = 2
I (X ,Y )

H (X )+ H (Y )
. (14)

To further illustrate the influence of wavelet base selection
on HE estimation, the SUs of HE features estimated from
wavelet bases with vanishing moments of 1 and 2 are calcu-
lated. The top 10 results of SU analysis of cutting force and
vibration HE features are shown in Table. 1 and 2.

1) CUTTING FORCE
From Table.1, it could be observed that in the Top 10 features,
the ones estimated by wavelet basis with 1 vanishing moment
score a higher SU value than that with 2 vanishing moments.

TABLE 2. SU of different vibration HE features.

The Quantity and Kurtosis of Fy, the Mean and Standard
deviation of Fx are highly correlated with the tool conditions,
and these features could be used to train the machine learning
models. In addition, it could be found that the HE features
estimated by wavelet basis with 2 vanishing moments also
have a correlation with the tool conditions; it could be per-
ceived that the HE features estimated with different vanishing
moments all can obtain some useful information. Only by
selecting the most suitable wavelet base, the obtained HE
features can extract as much useful information as possible
from the original signal.

2) VIBRATION
From Table.2, the same scenario happens to the vibration;
the difference is that the wavelet basis with 2 vanishing
moments is more suitable for vibration. The Mean of Ax and
the Skewness of Ay score higher SU value than other features.

By comparing Table.1 and Table.2, it can be found that
the SU values of the HE features of the cutting force are
much higher than that of the vibration. This is because the
cutting force is a direct indication of the tool-workpiece inter-
actions [2], and it has been found the most effective sensory
signal for TCM.And due to the limitations of accelerometers’
installation, the collected vibration signal is far away from
the cutting zones and is contaminated by lots of interference.
This phenomenon is consistent with the literature on TCM
with different signals [4], [17].

Figure 9 shows the variations of the top features ranked by
mutual information algorithm of cutting force and vibration
(Quantity of Fy and Mean of Ax) throughout the tool life.
By observing the trend and distribution of these two features,
it can be easily seen that there is a higher correlation between
the cutting force HE features and the tool conditions, which
is consistent with the result of mutual information.

Considering the calculation efficiency and the correla-
tion of features, this paper selects the Top 2 HE features
of cutting force and vibration respectively as input features
of the machine learning models detailed in the following
section.
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FIGURE 8. HE probability densities of cutting force estimated by 1st
derivative of Gaussian wavelet.

FIGURE 9. HE probability densities of cutting force estimated by 1st
derivative of Gaussian wavelet.

E. TOOL CONDITION ESTIMATION WITH HE FEATURES
1) TOOL CONDITION ESTIMATION APPROACH
In this paper, to ensure the repeatability and generality of
machine learning models, models are generated using the
‘‘Classification learner’’ toolkit provided by MATLAB. Sev-
eral classical machine learning models were trained includ-
ing Support vector machine (SVM), k-Nearest Neighbor
(KNN), Decision Tree, Ensemble Learning, Artificial Neural
Networks (ANN) and Hidden Markov Model (HMM), etc.
Input features of two experiments (cutter2 and cutter3) are
selected as training samples; the data of cutter1 is used as test
samples.

Cutting tools experience several wear mechanisms during
machining, namely abrasion, adhesion, diffusion, fatigue, and
chemical wear [41]. Typical wear situations usually involve
more than one of these types of wear. However, from the pro-
cess point of view, flank wear is the most important and VB,
the width of the flank wear land, is the most recommended
variable used to evaluate tool wear states. This article divides

FIGURE 10. Scheme of the Tool condition estimation approach.

the tool conditions into three categories: State 1 is the slight
wear state with wear range 0-60 µm; State 2 is medium wear
state with wear range 60-120 µm; State 3 is severe wear
state with wear larger than 120 µm. The boundaries between
different wear states are decided by the closest 10 µm of
cross-over points of 2nd derivative of the Taylor tool life
curve [42].

The scheme of the tool condition estimation approach is
illustrated in Fig.10. The training accuracies of selected mod-
els are listed in Table. 3. From Table.3, it can be observed that
the SVM models could achieve higher training accuracies in
both conditions with 97.1% and 86.2%. The SVM is a classic
small sample learning method with a solid theoretical basis,
which is quite suitable for the situation in this study. After-
ward, these models are used to classify the corresponding
HE features of cutter1. Besides, it also can be seen that the
training accuracies of the machine learning models trained
by the cutting force HE features are much higher than those
of the vibration HE features, which demonstrates the stronger
correlation between the cutting force and the tool conditions
again.

2) TOOL CONDITION ESTIMATION RESULTS
Figure 11 and Figure 12 show the classification results.
By comparing the defined tool conditions andmeasured flank
wear, the classification rate of the SVM model trained by
cutting force and vibration HE features could reach 94.9%
and 69.8% respectively (the classification rate is based on
counting the ratio of correctly classified samples over all
testing samples). We could find that the cutting force HE
features could have more accurate classification results. This
result is comparable to the classification efficiency in up-to-
date published studies [27], [42]–[45] on the tool condition
monitoring with different cutting force features in milling
operations, as shown in Table 4. From the perspective of
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TABLE 3. Training accuracy of machine learning models.

TABLE 4. Studies published on tool condition monitoring with cutting
force in milling. TD: Time domain. FD: Frequency domain. WD: Wavelet
domain.

FIGURE 11. Tool condition estimation of cutter1 with cutting force HE
features.

model classification results, the singularity analysis with
suitable wavelet bases could extract as much useful infor-
mation as possible from the original signals, which helps to
obtain a higher classification rate.

It also could be observed that most misestimated points
with cutting force HE features occur at transitions of different
wear states. This phenomenon also happens in [27], [36],
These may be due to the fact that the 3 identical tools in
the public database have different tool wear trends under the
same cutting conditions, as shown in Fig. 3.

FIGURE 12. Tool condition estimation of cutter1 with vibration HE
features.

V. CONCLUSION
A systematic singularity analysis method has been proposed
for the feature extraction of TCM in milling in this paper.
A comprehensive wavelet basis selection approach is pro-
posed to decide which order vanishing moment is appropriate
for different sensory signals without any knowledge of their
singularity properties. The wavelet basis with 1 vanishing
moment is found quite efficient to analyze cutting force
signals, and the wavelet basis with 2 vanishing moments is
most suitable for vibration signals. As a preprocessing of the
raw signals, the de-noising algorithm based on the estimation
of WTMMs with appropriate wavelet bases was employed,
which could improve de-noising effect and preserve the sin-
gularities in signals compared with traditional filters. The
statistical features extracted form HE values were ranked by
themutual informationmethod, the singularity characteristics
of the cutting force were found more correlated to the tool
conditions than the vibration signal. The SVM model trained
by the ranked HE features of cutting force could reach a
94.9% classification rate, and this result shows that the pro-
posed method is capable of providing practical guidance on
tool replacement.

Future studies will be carried out on optimizing the adapt-
ability of this method to accommodate other machiningmeth-
ods such as turning, drilling, etc.
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