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ABSTRACT The channel estimation and data detection of orthogonal frequency-division multiplexing with
index modulation in doubly selective channels is a challenging problem due to the large number of channel
parameters and the severe inter-carrier interference. In this paper, an iterative channel estimation and data
detection scheme is proposed with the aid of the recent compressed sensing algorithm of approximate
message passing (AMP). The time-varying channel is first approximated by basis expansion model (BEM)
to reduce the number of channel parameters to be estimated, and AMP is utilized to estimate the BEM
coefficients based on the pilot signals and soft information of data from the decoder. The channel is then
reconstructed from the estimated BEM coefficients, and AMP is also employed to recover the transmit data
based on the estimated channel and soft information of data from the decoder. The soft information of AMP
detector is further sent to the decoder, which feeds soft information to bothAMP estimator andAMP detector.
To address the undesired measurement matrix in both channel estimation and data detection, two variants
of AMP, i.e., damped AMP and vector AMP (VAMP), are utilized as practical estimator and/or detector
here. Moreover, in both damped AMP/VAMP estimator and detector, the efficient utilization of soft data
information is presented. Finally, simulation results are given to verify the performance of the proposed
receiver.

INDEX TERMS OFDM, index modulation, approximate message passing, doubly selective channel, basis
expansion model, pilot-assisted estimation, turbo receiver.

I. INTRODUCTION
Orthogonal frequency division multiplexing with index mod-
ulation (OFDM-IM) is a novel multi-carrier modulation tech-
nique [1]–[3]. In OFDM-IM, the N subcarriers of one OFDM
symbol is partitioned into multiple blocks with IM being per-
formed independently in each block. By IM, the information
is conveyed by both specified subcarrier activation patterns
(APs) and conventional signal constellation symbols, and the
resulted signal is sparse. Due to this sparse signal character
and the additional information conveying by subcarrier AP,
OFDM-IM shows advantages over OFDM in several aspects
such as energy efficiency and robustness to Doppler spread.
Due to these potential advantages, OFDM-IM has attracted
much attention. The recent research progresses include the
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performance analysis [4], [5], the methods and schemes to
achieve coding gain [6], transmit diversity gain [7], [8],
higher energy and/or spectral efficiency [9]–[11], to reduce
the peak-to-average power ratio [12], the efficient signal
detection [13], [14], and the extensions and variants to
the parallel channel [15], the rapidly time-varying (RTV)
channel [16], [17], and the multiple-input multiple-output
(MIMO) channel [18]–[21]. Interested readers are referred to
the recent surveys in [22]–[24] for further information.

Here, we focus on the performance of OFDM-IM in
the doubly selective channel (DSC), i.e., channel with both
frequency-selective and time-selective property. DSC is used
typically to model high-mobility wireless communication
and underwater acoustic communication. In this channel,
channel estimation and data detection are two challenging
problems. Firstly, due to the large amounts of channel param-
eters resulted by the time-varying channel property, channel
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estimation is tricky to handle. Further, the RTVwill introduce
Doppler effects which destroy the orthogonality between sub-
carriers when multicarrier modulation such as OFDM is uti-
lized to overcome the frequency-selectivity [25]. Therefore,
the channel matrix in the frequency domain is full matrix
instead of a diagonal matrix, which increases the difficulty of
signal detection. On the other hand, the AP constraint (part
information is conveyed by specific APs) of IM signal also
enhances the difficulty of efficient signal detection. In this
paper, we study the challenging channel estimate and signal
detection of OFDM-IM in the DSC.

A. RELATED WORK
Although the channel estimate of OFDM-IM over DSCs has
not been reported in the literature, the channel estimate of
OFDM over DSCs has attracted extensive research. An effec-
tive method to reduce the complexity of channel estimation
is to introduce basis expansion model (BEM) [25]–[28].
Based on BEM, some effective channel estimation algo-
rithms have been reported [27]–[36], [49]. In [26], several
estimators were presented, including linear minimum mean
square (LMMSE) estimator, least squares estimator and
the best linear unbiased estimator (BLUE). In [29],
the maximum-likelihood (ML) approach was applied to esti-
mate the BEM coefficients. In [30], BEM was utilized with
Bayesian approaches to capture the time-variation of the
channel in OFDM transmissions over DSCs at low computa-
tional cost. In [31], an expectation maximization (EM)-based
blind channel estimator with the framework of BEM for the
OFDM system was proposed by utilizing the historical infor-
mation of high speed railways. In [32], the authors considered
the autoregressive model and BEM to estimate the carrier
frequency offset and the channel based on EM algorithms.
In [33], the authors adopted different kinds of BEM basis
in sparse massive MIMO channels and acquire the channel
side information (CSI) through prior information based block
sparse Bayesian learning scheme. In [34], a sparse chan-
nel estimation scheme for massive MIMO-OFDM downlink
transmission over time-varying channels was presented. This
proposed scheme exploited the sparsity in the delay domain
and the high correlation in the spatial domain. Furthermore,
turbo iteration approach is usually utilized to improve the
performance of channel estimation. In [35], a turbo iterative
receiver consisting of LMMSE BEM channel estimation,
LMMSE data detection and maximum a posterior (MAP)
decoding was proposed. By utilizing the soft data information
from decoder, the channel estimation becomes more accurate
than that only use the pilot signals. In [36], more efficient
belief propagation (BP) algorithm was utilized as the channel
estimator in the turbo iterative approach. However, the com-
plexity of BP is still high, since the factor graph constructed
based on BEM is usually very dense. In [49], an efficient
Turbo message passing framework for joint channel esti-
mation and data detection was proposed, which made more
efficient use of the prior information about the channel and
the data for inter-carrier interference cancellation.

The signal detection of OFDM-IM over DSCs was
first studied in [3], where the MMSE log-likelihood ratio
(MMSE-LLR) detector, the block cancellation detector based
on the successive interference cancellation (SIC) strat-
egy, and the ordered SIC-based signal-power detector were
proposed. In [37], we proposed the group-based SIC semid-
ifinite relaxation detection to achieve a flexible performance-
complexity tradeoff by integrating the AP constraint in the
convex constraints of the equivalent convex programming
problem. Moreover, in [37], a two-stage detection strategy
was also proposed. In [38], we further proposed to utilize the
recent compressed sensing algorithm of approximate mes-
sage passing (AMP). The AP constraint is transferred into
the prior probability of IM signal block and integrated in
the posterior mean and variance update procedure of AMP
detector. With a proper damping, the AMP detector shows
superior performance in terms of both bit error rate (BER)
and computational complexity.

B. OUR CONTRIBUTIONS
AMP algorithm [39]–[42] is a principal approximated frame-
work for sum-product algorithm (SPA). By leveraging central
limit theorem and other Taylor expansions, messages in AMP
are manipulated associated with nodes instead of edges on
the factor graph. This makes AMP very computationally
efficient with predictable performance for a large Gaussian
measurement matrix with independent and identically dis-
tributed (i.i.d.) entries [43], [44]. However, for general mea-
surement matrix, the convergence and good performance of
AMP can not be guaranteed [43], [44]. To deal with this issue,
two feasible approaches are proposed. In [45], the damping
strategy was introduced in AMP to address the compressive
phase retrieval problem. In [46], [47], vector AMP (VAMP)
algorithm was proposed, which extends AMP’s guarantees
from i.i.d. sub-Gaussian measurement matrix to the larger
class of right-rotationally invariant matrix.

In the literature, the combination of AMP and BEM for
channel estimation in OFDM-IM has not been reported.
Motivated by the good signal recovery performance and
computationally efficient implementation of damped AMP
and VAMP for general measurement matrix, in this paper,
we propose to extend our early work in [38] to turbo receiver
[35], [36] consisting of channel estimator, data detector, and
channel decoder. Specifically, damped AMP and VAMP are
taken as either channel estimation or data detection. In the
presented turbo receiver, the soft information transmitted
among estimator, detector and decoder, the efficient utiliza-
tion of soft information in estimator and detector, and mes-
sage scheduling are studied.

The main contributions of this paper can be summarized as
follows:

1) AMP-based channel estimator for OFDM-IM in DSCs.
To the best of our knowledge, the application of AMP
algorithm in the BEM-based channel estimation over
DSCs has not been reported in the literature. Specifi-
cally, the implementations of damped AMP and VAMP
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channel estimators are derived for BEM-based DSCs.
It is found that the proposed AMP estimator can
achieve nearly the same performance as LMMSE esti-
mator with much lower computational complexity.

2) The VAMP data detector for OFDM-IM in DSCs is
first introduced. The AMP-based turbo receiver of
OFDM-IM over DSCs is studied. The soft informa-
tion transmitted among estimator, detector and decoder,
is properly designed. The efficient utilization of soft
information in estimator and detector is given. More-
over, the message scheduling is also presented.

3) Computer simulation shows that the proposed
AMP-based turbo iterative receiver with proper damp-
ing factors can achieve superior performance.

The rest of the paper is organized as follows. In Section II,
signal model is first given. In Section III, the AMP andVAMP
algorithms are briefly introduced. In Section IV, the proposed
AMP-based turbo receiver is presented. Simulation results are
given in Section V. Finally, Section VI concludes this paper.
Notation: C represents the field of complex numbers, |S|

denotes the size of set S, the superscripts (·)∗, (·)T , (·)H

and (·)† indicate complex conjugate, transpose, Hermitian
transpose, and Moore-Penrose inverse of the argument,
respectively, CN (µ, σ 2) denotes a complex Gaussian ran-
dom variable with mean µ and variance σ 2, C (n, k) is the
binomial coefficient, and b·c denotes the floor function. The
notation ⊗ represents the Kronecker product, E{·} and var{·}
denote the expectation and variance, respectively, diag{x}
denotes the diagonal matrix with the vector x as its diagonal.
Further, we use xn or x(n) to indicate the n-th element of
the vector x, and Xm,n or [X]m,n to indicate the (m, n)-th
entry of the matrixX, 〈x〉 is the empirical averaging operation

defined as 〈x〉 := 1
N

N∑
n=1

xn for the N -dimensional argument

x. For two vectors x and ywith the same size, x/y denotes the
component-wise division.

FIGURE 1. OFDM frame consisting of data signals and equidistant pilot
clusters.

II. SIGNAL MODEL
Consider OFDM symbol with N subcarriers. The transmit
signal x is composed of Nd -dimensional data symbol xd

and Np-dimensional pilot symbol xp with N = Nd + Np.
As shown in Fig. 1, we adopt the equidistant pilot cluster
schedule, there are M pilot clusters of length Lp denoted as
xpm, m = 0, . . . ,M − 1.
At the receiver, the received frequency domain (FD) singal

y can be expressed as

y =WN RCPHTCP︸ ︷︷ ︸
Ht

WH
N x+ω = Hf x+ω (1)

Here, WN is the normalized discrete Fourier transfer (DFT)
matrix with [WN ]p,q = 1

/√
N exp(−j2πpq

/
N ), p, q =

0, · · · ,N − 1, TCP
1
=
(
ITCPIN

)T is the (N + L) × N matrix
that inserts the cyclic prefix (CP) with ICP consisting of the
last L rows of the identity matrix IN , RCP

1
= (0N×LIN ) is

the N × (N + L) matrix that removes CP, Hf ∈ CN×N

is FD channel matrix, and ω ∼ CN
(
0, σ 2I

)
∈ CN is

additive noise. Furthermore, the time-domain (TD) channel
H ∈ C(N+L)×(N+L) is

H =



h10

h21 h20
...

. . .

hLL−1
. . . hL0

. . .
. . .

hN+LL−1 hN+LL−2 · · · hN+L0


(2)

with hjl ∼ CN
(
0, σ 2

l

)
denoting the channel gain of l-th tap at

j-th time slot with l = 0, . . . ,L − 1, j = 1, . . . ,N + L. Ht ∈

CN×N is the TD channel matrix incorporating CP processing
at transceiver. Here, we assumption that the maximum chan-
nel order is equal to the CP length, both denoted by L.

A. OFDM-IM
Here, the data signal xd is generated by OFDM-IM. Specifi-
cally, theNd data subcarriers in one OFDM symbol is divided
intoG0 = Nd/N0 blocks, each containingN0 subcarriers. The
length-m0 corresponding information sequence is partitioned
into G0 = m0/p0 blocks as well, each having p0 bits. In each
block, only n0 out of N0 subcarriers are activated to transmit
signals, the other N0 − n0 subcarriers are silent. The first p1
bits are used to determine the indicies of the active subcarriers
and the remaining p2 = p0 − p1 bits are mapped into n0
symbols of QAM/PSK constellation X . Obviously, it has
p1 =

⌊
log2C(N0, n0)

⌋
and p2 = n0log2 |X |.

Denote the set of the indices of n0 active subcarriers in the
β-th, β= 1,2, · · · ,G0 block by

Iβ = {iβ,1, iβ,2, . . . , iβ,n0} (3)

with iβ,γ ∈ {1,2, . . . ,N0}, γ= 1,2, . . . ,n0. Correspondingly,
the set of n0 QAM/PSK symbols is denoted by

Sβ = {sβ,1, sβ,2, . . . , sβ,n0} (4)

with sβ,γ ∈ X , γ= 1,2, . . . ,n0. Here, sβ,γ is assumed to be
energy-normalized, i.e., E

{
|sβ,γ |2

}
= 1. Then, the FD signal

in this block can be expressed by

xdβ =
n0∑
γ=1

sβ,γ eiβ,γ (5)

where en is the N0-dimensional all-zero vector except a one
in position n. Finally, the data signal in one OFDM symbol
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can be expressed by

xd =
[
xd,T1 , . . . , xd,Tβ , . . . , xd,TG0

]T
(6)

with xdβ ∈ CN0 .

B. BEM MODEL
Consider the time-varying behavior of the l-th channel tap
within oneOFDMsymbol in theN×1 vector, and stack all the
channel taps within the block in a single NL× 1 vector ht :=[
h10, · · · , h

1
L−1, · · · , h

N
0 , · · · , h

N
L−1

]T
. The BEM permits to

express the vector as

ht = (B⊗ IL)h (7)

where B :=
[
b1, . . . ,bQ

]
is a N × Q matrix that collects Q

(Q� N ) orthonormal basis functions bq as columns, h is the
QL×1 vector that collects all the BEM coefficients of all the
channel taps, which is represented as

h :=
[
h1,0, · · · , h1,L−1, · · · , hQ,0, · · · , hQ,L−1

]T
(8)

with hl :=
[
h1,l, · · · , hQ,l

]T representing the BEM coeffi-
cients for the l-th tap.

In light of the BEM, the input-output equation (1) can be
rewritten as

y =
Q∑
q=1

DqCqx+ω (9)

Here, Dq is a circulant matrix whose first column is the
frequency response of the q-th basis function, i.e.,

Dq =WNdiag{bq}W
H
N (10)

and Cq is a diagonal matrix whose diagonal is the frequency
response of the BEM coefficients corresponding to the q-th
basis function, i.e.,

Cq = diag{FL[hq,0, . . . , hq,L−1]T } (11)

Here, FL stands for the first L columns of the DFT matrix
√
NWN .

III. AMP AND VAMP
In this section, we briefly introduce the AMP algorithm and
VAMP algorithm.

A. PROBLEM FORMULATION
Consider the problem of recovering an unknown vector x ∈
CN given the observation y ∈ CM and known measurement
matrix A, i.e.,

y = Ax+ w (12)

where w is the noise vector. This recovery problem is known
as compressed sensing when M � N and x is sparse.

B. AMP ALGORITHM
AMP algorithm [39]–[42] is an iterative compressed sensing
approach to recover x from measurements of the form (12).

Algorithm 1 gives a brief summarization of AMP algorithm.
In Algorithm 1, g1(·, γ ) is the denoiser function, x̂k is the
estimate of x in the k-th iteration, vk is the residual vector.
The term N

M αk−1vk−1 is known as the Onsager term, which
makes AMP achieve guaranteed performance.

Algorithm 1 AMP [47]
1: Initialization: initialize r0, γ0 as the mean and variance

of x, respectively, set v−1 = 0 and k = 0.
2: x̂k = g1(rk , γk )
3: αk =

〈
g′1(rk , γk )

〉
4: vk = y− Ax̂k + N

M αk−1vk−1
5: rk+1 = x̂k + AHvk
6: Select γk+1
7: k ← k + 1

One of the important limitations of AMP is the suscep-
tibility to the measurement matrix. AMP shows superiority
with the large i.i.d. sub-Gaussian measurement matrix, how-
ever, it diverges under the more general ill-conditioned A
[43], [44]. To overcome this problem partly, two feasible
approaches are proposed. One is to introduce damping, and
the resulted damped AMP [45] usually has improved perfor-
mance over AMP for general measurement matrix. The other
is the VAMP algorithm, which extends AMP’s guarantees
from i.i.d. sub-Gaussian measurement matrix to the larger
class of right-rotationally invariant matrix.

C. VAMP ALGORITHM
VAMP algorithm shows stronger robustness to measurement
matrix, it has many similarities with AMP algorithm. The
main difference is the decoupling part, which relates to the
vector and matrix computation instead of scalar computation
as inAMP. InVAMP, it has to perform an initial singular value
decomposition (SVD) of measurement matrix, and the per-
iteration complexity of VAMP can be made similar to that of
AMP [47].

FIGURE 2. Factor graph presentation of VAMP algorithm based on
variable splitting (13).

In VAMP, the unknown vector x is splitted into two iden-
tical variables x1 = x2, thus the equivalent factorization of
equation (12) is represented as

p(y, x1, x2) = p(x1)δ(x1 − x2)CN (y;Ax2, γ−1w I) (13)

where δ(·) is the Dirac delta distribution and γw is the noise
precision. The VAMP can be derived based on the factor
graph constructed from (13), as shown in Fig. 2.

In Fig. 2, the belief of x1 ∼ CN
(
x̂1, η−11 I

)
can be

recognized as the posterior probability under likelihood
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FIGURE 3. Architecture of turbo iterative receiver.

x1 ∼ CN (r1, γ
−1
1 I) and prior x1 ∼ CN (x1; xpri, v

−1
pri I),

which is similar to the AMP. The belief of x2 ∼

CN
(
x̂2, η−12 I

)
can be recognized as the MMSE estimate

of a random vector x2 under likelihood CN (y;Ax2, γ
−1
w I)

and prior x2 ∼ CN (r2, γ
−1
2 I) . The damped VAMP is

summarized in Algorithm 2, where g1(·, γ ) is the denoiser
function, and the MMSE estimation g2(r2,k , γ2,k ) =

(γwAHA+ γ2,kI)−1(γwAHy+ γ2,kr2,k ).

Algorithm 2 Damped VAMP [47]
1: Initialization: initialize xpri and vpri. Select initial

r1,0, γ1,0 and set k = 0;
2: Denoising
3: x̂1,k = g1(r1,k , γ1,k )
4: x̂1,k = ρx̂1,k + (1− ρ)x̂1,k−1
5: α1,k =

〈
g′1(r1,k , γ1,k )

〉
6: η1,k = γ1,k/α1,k
7: γ2,k = η1,k − γ1,k
8: r2,k = γ−12,k

(
x̂1,kη1,t − r1,kγ1,k

)
9: LMMSE estimation
10: x̂2,k = g2(r2,k , γ2,k )
11: α2,k =

〈
g′2(r2,t , γ2,k )

〉
12: η2,k = γ2,k/α2,k
13: γ1,k+1 = η2,k − γ2,k
14: γ1,k+1 = ργ1,k+1 + (1− ρ)γ1,k
15: r1,k+1 = γ−11,k+1

(
x̂2,kη2,k − r2,kγ2,k

)
16: k ← k + 1

IV. AMP-BASED TURBO RECEIVER
A. TURBO RECEIVER STRUCTURE
The turbo receiver structure is shown in Fig. 3. It consists
of three components: channel estimator, data detector and
channel decoder. The information is exchanged among these
components. The channel estimator leverages the received
signals and soft estimates from the decoder to estimate the
BEM coefficients. The estimated coefficients are used to
reconstruct the FD channel. In conjunction with the recon-
structed channel, the data detector leverages the received
signals and soft estimates from the decoder to perform the

refined data detection. Finally, the channel decoder leverages
the soft information from data detector to recover the trans-
mitted data, and the mean and variance of the data are sent
back to channel estimator and data detector for further itera-
tion. This procedure repeats till convergence or a maximum
iteration number is achieved.

B. CHANNEL ESTIMATOR
Based on BEM model, we will only need to estimate QL
BEM coefficients in hwith the aid of pilots instead of directly
estimating tricky Ht , this achieves great computational con-
venience due to QL � NL. As shown in the Fig.3, the means
and the variances of information symbols are updated in each
iteration. The estimated mean of data symbol xd is denoted
as x̂= E{xd} = [x̂1, . . . , x̂Nd ]

T and the estimated variance
is denoted as v̂= var{xd} = [v̂1, . . . , v̂Nd ]

T . In each turbo
iteration, they are updated using soft information from the
channel decoder.

For m-th pilot cluster xpm = [xpIm , · · · x
p
Im+LP−1]

T , Im is

the begin position of m-th pilot cluster. Considering LP +
21 observation samples: yOm = [ypIm−1, · · · y

p
Im+LP+1−1]

T ,
where 1 is the smoothing parameter used to control the
amount of interference taken into consideration for channel
estimation. Obviously, the received FD samples include the
information of both the pilots and the unknown data symbols,
and the larger 1 is, the more data symbols are taken into
consideration.

From (9), them-th observation cluster yOm can be expressed
by, using BEM model,

yOm =
Q∑
q=1

Dp
q,mC

p
qx
p
+

Q∑
q=1

Dd
q,mC

d
q x̂

d
+

Q∑
q=1

Dd
q,mC

d
q x̃

d
+ωm

=

Q∑
q=1

Dp
q,mC

p
qx
p
+

Q∑
q=1

Dd
q,mC

d
q x̂

d
+ d̃m+ωm

=

Q∑
q=1

Dq,mCqx̂+ nm (14)
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where Dp
q,m is a (LP + 21) × Np matrix consisting of the

(LP + 21) rows of Dq with indices from (Im −1) to (Im +
Lp+1−1) and columns corresponding to the positions of the
pilot symbols xp. Dd

q,m is a (LP+21)×Nd matrix consisting
of the (LP + 21) rows of Dq with indices from (Im − 1)
to (Im + Lp + 1 − 1) and columns corresponding to the
positions of the data symbols xd . Dq,m is an (LP + 21) × N
matrix consisting of the (LP + 21) rows of Dq with indices
from (Im − 1) to (Im + Lp + 1 − 1). Cp

q and Cd
q are

submatricies of the diagonal matrix Cq consisting of the
diagonal elements on the positions of pilot and data symbols,
respectively. x̃d = xd − x̂d is the residual interference. x̂
is the estimated symbols including the pilot symbols xp and
means of data symbols x̂d . The equivalent noise nm is the

sum of residual data interference d̃m =
Q∑
q=1

Dd
q,mC

d
q x̃

d and

noise ωm.

With some algebra, the first term of (14) can be
expressed by

Q∑
q=1

Dq,mCqx̂ = Dm{IQ ⊗ [diag(x̂)FL]}h = Amh (15)

Analogously, it has d̃m = Dd
m{IQ ⊗ [diag(x̃d )FL]}h with

Dd
m = [Dd

1,m, · · · ,D
d
Q,m] . Stacking M observation clusters

together, we obtain the received signal expressed by

yO = DO
{IQ ⊗ [diag(x̂)FL]}h+ nO = AOh+nO (16)

where yO is a M (LP + 21) × 1 vector consisting of obser-
vation part in received signals, AO=DO

{IQ ⊗ [diag(x̂)FL]
with DO

= [DT
1 , · · · ,D

T
M ]T , nO = d̃ + ωO with d̃ =

DdO
{IQ ⊗ [diag(x̃d )FL]}h, DdO

= [Dd
1
T
, · · · ,Dd

M
T
]T and

ωO is additive noise. For notation simplicity, we set ξ =
M (Lp + 21).

In (16), the distribution of equivalent noise is assumed to
be nO ∼ CN (0,RnO ) with

RnO = σ
2Iξ+Rd̃ (17)

where

Rd̃ =Eh,x̃d {d̃d̃
H
}

=Eh,x̃d {D
dO
{IQ ⊗ [diag(x̃d )FL]}hhH

×{IQ ⊗ [diag(x̃d )FL]}HDdOH
}

=DdORx̃D
dOH (18)

Rx̃ =Eh,x̃d
{
{IQ⊗[diag(x̃d )FL]}hhH {IQ⊗[diag(x̃d )FL]}

H
}

=Ex̃d
{
{IQ ⊗ [diag(x̃d )FL]}Rh{IQ ⊗ [diag(x̃d )FL]}

H
}

=Ex̃d
{
{IQ ⊗ [diag(x̃d )]}H{IQ ⊗ [diag(x̃d )]}

H
}

(19)

Here,H = (IQ⊗FL)Rh(IQ ⊗ FL)H , andRh is the covariance
matrix of BEM coefficients h which can be calculated by

Rh = Eh{hhH } =
(
B†
⊗ IL

)
Rt
h

(
B†
⊗ IL

)H
(20)

withRt
h being the covariance matrix of the time domain chan-

nel ht . Furthermore, Rt
h dependents on the channel statistic

character and the normalized Doppler spread which are both
assumed to be known at the receiver. In conjunction with
the variance information v̂ (var{xd } in Fig. 3) from channel
decoder, it has

[Rx]m,n =

{
v̂ mod (m,Nd )[H]m,n, if mod (m− n,Nd ) = 0
0, otherwise

(21)

Given the equation (16), the tricky channel estima-
tion problem is transformed to signal recovery problem.
In [25] and [27], LMMSE channel estimation was derived as:

ĥ=RhAOH (AORhAOH
+ RnO )−1yO (22)

However, the LMMSE estimator requires to perform the com-
plexmatrix inverse computation and has a high computational
complexity. Here, we present the application of computation-
efficient AMP algorithm in this channel estimation problem.

1) AMP-BASED ESTIMATOR
AMP algorithm has been briefly introduced in Section III as
Algorithm 1. Note that the entries of the measurement matrix
AO in (16) are not i.i.d. Gaussian distributed, the damping
strategy is employed to improve the performance of AMP
estimator. Algorithm 3 summarizes the proposed damped
AMP channel estimator, where ρ ∈ (0, 1] is the damping
factor.

From Algorithm 3, the complexity of damped AMP
channel estimator is O (T (12QLξ + 7QL + 6ξ)) with
K , 1 ≤ K ≤ Kmax being the actual iteration number.
On the other hand, the complexity of LMMSE estimator is
O
(
ξ3 + (4QL − 1) ξ2 + (4Q2L2 − QL + 1)ξ − QL

)
from

(22). Therefore, in general, a numerous complexity reduction
is achieved by using damped AMP estimator.

2) VAMP-BASED ESTIMATOR
As described in Section III-B, VAMP algorithm is another
feasible method to recover the BEM coefficients from
(16), which has a similar complexity with AMP algorithm
[46], [47]. Analogously, to improve the performance for a
general measurement matrix, the damping strategy can be
utilized [47]. Here, a damping factor ρ ∈ (0, 1] is introduced
in the VAMP channel estimation.

In the proposed damped VAMP channel estimator, firstly,
compute the SVD AO

= USVH and the preconditioned vec-
tor ỹ = γ̃wSHUHyO. Secondly, the belief of h1 is computed
by employing the prior probability h1 ∼ CN (h1; ĥ

0, v̂0) and
the likelihood probability of h1 ∼ CN (r1, γ

−1
1 I) as

h1 ∼ CN
(
ĥ, η−11 I

)
(23)

with

η1,k =
1
QL

∑
i
1
/
v̂0i + γ1,k (24)

ĥ1,k = η−11,k (ĥ
0
/
v̂0 + r1,kγ1,k ) (25)
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Algorithm 3 Damped AMP Estimator
1: Initialization: Initialize the mean and variance of h:
ĥ0i = 0 and v̂0i = [Rh]ii, i = 1, . . . ,QL, V−1j = 1,
Z−1j = yOj , j = 1, . . . , ξ , and k = 0.

2: Decoupling step: For j = 1, . . . , ξ , compute

V k
j = ρ

∑
i

∣∣∣AO
ji

∣∣∣2v̂ki + (1− ρ)V k−1
j

Z kj =
∑
i

AO
ji ĥ

k
i −

V k
j

[RnO ]jj + V
k−1
j

(yOj − Z
k−1
j )

For i = 1, . . . ,QL, calculate

6k
i =

∑
j

∣∣∣AO
ji

∣∣∣2
[RnO ]jj + V

k
j


−1

h̄ki = ρĥ
k
i + (1− ρ)h̄k−1i

Rki = h̄ki +6
k
i

∑
j

AO
ji
∗
(yOj − Z

k
j )

[RnO ]jj + V
k
j

.

Here ρ = 1 is used in the first iteration.
3: Denoising step: For i = 1, . . . ,QL, compute the poste-

rior variance v̂k+1i and mean ĥk+1i using

v̂k+1i = (1
/
v̂0i + 1

/
6k
i )
−1

ĥk+1i = (ĥ0i
/
v̂0i + R

k
i

/
6k
i )v̂

k+1
i

4: Set k ← k + 1 and proceed to step 2 until k >

Kmax or
∑
i

∣∣∣ĥk+1i − ĥki

∣∣∣2 < εtoc
∑
i

∣∣∣ĥki ∣∣∣2.

Thirdly, the prior probability of h2 is computed by h2 ∼
CN (r2, γ

−1
2 I), with

γ2,k = η1,k − γ1,k (26)

r2,k = γ−12,t

(
ĥ1,kη1,k − r1,kγ1,k

)
(27)

Fourthly, the belief of h2 ∼ CN
(
ĥ2,k , η−12 I

)
can be

obtained through employing the prior probability and the
likelihood information CN (yO;AOh2, γ

−1
w I) with γ̃w =

1
ξ

∑
i [RnO ]−1ii . Concretely, it has

ĥ2,k = V(γ̃wS
HS+ γ2,kI)−1(ỹ+ γ2,kVHr2,k ) (28)

η2 =
1
R

∑
r
γ̃ws2r + γ2,k , sr = [S]rr (29)

whereR is the rank ofAO, i.e.,R = rank(AO). Finally, update
the likelihood probability of h1 ∼ CN (r1, γ

−1
1 I) using

r1,k+1 =
(
x̂2,k − α2,kr2,k

)/(
1− α2,k

)
(30)

γ1,k+1 = γ2,k
(
1− α2,k

)/
α2,k (31)

γ1,k+1 = ργ1,k+1 + (1− ρ)γ1,k (32)

The detailed implementation of damped VAMP estimator is
listed in Algorithm 4.

Algorithm 4 Damped VAMP Estimator

1: Initialization: initialize ĥ0i = 0 and v̂0i = [Rh]ii, i =
1, . . . ,QL,. Select initial r1,0, γ1,0 and set k = 0;

2: Compute the SVD AO
= USVH ,R = rank(AO) and

the preconditioned vector ỹ = γ̃wSHUHyO, γ̃w =
1
ξ

∑
i [RnO ]−1ii .

3: η1,k =
1
QL

∑
i 1
/
v̂0i + γ1,k

4: ĥ1,k = η−11,k (ĥ
0
/
v̂0 + r1,kγ1,k )

5: ĥ1,k = ρĥ1,k + (1− ρ)ĥ1,k−1
6: γ2,k = η1,k − γ1,k

7: r2,k = γ−12,k

(
ĥ1,kη1,t − r1,kγ1,k

)
8: Dk = (γ̃wS

HS+ γ2,kI)−1

9: ĥ2,k = VDk (ỹ+ γ2,kVHr2,k )
10: α2,k =

1
R

∑
r

γ2,k
γ̃ws2r+γ2,k

, sr = [S]rr

11: r1,k+1 =
(
ĥ2,k − α2,kr2,k

)/(
1− α2,k

)
12: γ1,k+1 = γ2,k

(
1− α2,k

)/
α2,k

13: γ1,k+1 = ργ1,k+1 + (1− ρ)γ1,k
14: Set k ← k + 1 and proceed to line 3 until k >

Kmax or
∥∥r1,k+1 − r1,k

∥∥2 < εtoc
∥∥r1,k∥∥2.

By performing damped AMP/VAMP channel estimation,
we get the estimated BEM coefficient denoted as ĥ . The
estimated BEM coefficient is utilized to reconstruct the TD
channel through ht = (B⊗ IL) ĥ, which is further transferred
into the FD matrix Ĥf by (1). Finally, the reconstructed FD
channel is sent to detector to help the data detection.

C. DATA DETECTOR
Based on the signal system (1), we can present the input-
output relation of data subcarriers as:

yd = Ĥd
f x

d
+ωd (33)

where yd = y − Ĥp
f x
p, Ĥp

f is a N × Np matrix consisting
of the Np columns corresponding to the positions of the pilot
symbols in x, Ĥd

f is a N × Nd matrix consisting of the Nd
columns corresponding to the positions of the pilot symbols
in x, and ωd is the corresponding additive noise.

1) AMP-BASED DETECTOR
Here, we extend the proposed AMP detector in [38] from the
uncoded system to the turbo receiver with iterative estimator,
detector, and decoder. The proposed damped AMP detector
is listed in Algorithm 5.

In the initialization step, the initial mean and variance are
obtained as follows. In the first global iteration, the initial
values are computed according to the IM signal character
(AP constraint) as presented in [38], since no soft information
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can be obtained from channel decoder in this initial iteration.
In the subsequent global iterations, the initial values are
computed by the soft information from the channel decoder
through a bit-to-symbol mapping as shown in Fig. 3.

In the denoising step, the posterior mean and variance
are updated as follows. The posterior probability utilized to
compute posterior mean and variance can be obtained by
the product of prior probability and likelihood probability.
In the first global iteration, the prior probability is computed
according to the IM signal character (AP constraint) as pre-
sented in [38]. In the subsequent global iterations, the soft
information from the channel decoder is taken as the updated
prior information, and the posterior distribution of xi can be
computed by

qk (xi) ∝ CN (xi; x̂0i , v̂
0
i )CN (xi;Rki , 6

k
i ) (34)

where x̂0i and v̂0i are the prior mean and variance obtained
from the soft information from the decoder. Then, the poste-
rior variance and mean estimates of xi can be calculated as

v̂k+1i = (1/v̂0i + 1/6k
i )
−1 (35)

x̂k+1i = (x̂0i /v̂
0
i + R

t
i/6

k
i )v̂

k+1
i (36)

Algorithm 5 Damped AMP Detector

1: Initialization: Initialize x̂0i and v̂0i , i = 1, . . . ,Nd by
(6) and (7) in [38] for the first global iteration, and then
initialized by the soft estimates from the decoder for
the subsequent iterations, V−1j = 1, Z−1j = ydj , j =
1, . . . ,N , and k = 0.

2: Decoupling step: For j = 1, . . . ,N , compute

V k
j = ρ

∑
i

∣∣hji∣∣2v̂ki + (1− ρ)V k−1
j

Z kj =
∑

i
hjix̂ki − V

k
j (y

d
j − Z

k−1
j )

/
(σ 2
+ V k−1

j )

For i = 1, . . . ,Nd , calculate

6k
i =

∑
j

∣∣hji∣∣2
σ 2 + V k

j

−1, x̄ki = ρx̂ki + (1− ρ)x̄k−1i

Rki = x̄ki +6
k
i

∑
a
h∗ai(y

d
a − Z

k
a )
/
(σ 2
+ V k

a )

Here ρ = 1 is used in the first global iteration.
3: Denoising step: For i = 1, . . . ,Nd , compute x̂k+1i and
v̂k+1i using (15) and (16) in [38] for the first global
iteration, and (35) and (36) for the subsequent iterations,
respectively.

4: Set k ← k + 1 and proceed to step 2) until k >

Kmax or
∑
i

∣∣∣x̂k+1i − x̂ki

∣∣∣2 < εtoc
∑
i

∣∣x̂ki ∣∣2.

2) VAMP-BASED DETECTOR
Here, we present the damped VAMP detector for the signal
recovery problem of (33).

In the dampedVAMP detector, the initialization is the same
as that in damped AMP detector. The subsequent steps are
as follows. Firstly, compute the SVD Ĥd

f = USVH and
preconditioned vector ỹ = γwSHUHyd . Given r1,t , γ1,t and
prior probability xd1 ∼ CN (x̂0, v̂0), compute the belief of

xd1 ∼ CN
(
x̂1, η−11 I

)
according to

η1,k =
1
Nd

∑
i
1
/
v̂0i + γ1,k (37)

x̂1,k = η−11,k (x̂
0
/
v̂0 + r1,kγ1,k ) (38)

Secondly, compute the message from variable node x1 to
factor node f2: µxd1→f2

(xd1 ) ∼ CN (r2, γ
−1
2 I), with

γ2,k = η1,k − γ1,k (39)

r2,k = γ−12,t

(
x̂1,kη1,k − r1,kγ1,k

)
(40)

Thirdly, compute the belief of xd2 ∼ CN
(
x̂2, η−12 I

)
.

This can be recognized as the MMSE estimate of a random
vector xd2 under likelihood CN (y;Hf x2, γ

−1
w I), γ−1w = σ 2

and prior xd2 ∼ CN (r2, γ
−1
2 I). Thus, it has

x̂2,k = V(γwS
HS+ γ2,kI)−1(ỹ+ γ2,kVHr2,k ) (41)

η2 =
1
R

∑
r
γws2r + γ2,k , sr = [S]rr (42)

with R = rank(Ĥd
f ).

Finally, update the likelihood probability of xd1 using

r1,k+1 =
(
x̂2,k − α2,kr2,k

)/(
1− α2,k

)
(43)

γ1,k+1 = γ2,k
(
1− α2,k

)/
α2,k (44)

To improve the detection for general measurement matrix,
as suggested in [47], the damping factor ρ ∈ (0, 1] is
introduced. The detailed implementation of damped VAMP
detector is presented in Algorithm 6.

V. SIMULATION RESULTS
In this section, the bit error rate (BER) performance of
the proposed damped AMP/VAMP channel estimator and
AMP/VAMP detector is given by computer simulations.

We adopt the complex-exponential (CE) BEM [27] to
model the time-varying channel. The number of subcarriers
is N = 128, the Jakes model [48] is used to generate the
RTV Rayleigh fading channels. The exponential power-delay
profile is considered, i.e., the variance of the l-th channel tap
is σ 2

l ∝ exp
(
−l
/
L
)
. The OFDM-IM parameters are N0 =

4, n0 = 2, and QPSK modulator is used. We use code rate-
1/3 (133, 171, 165)8 convolutional code as channel code,
and the code length is 6900. In both damped AMP/VAMP
estimator and detector, Kmax = 15 and εtoc = 10−12. The
SNR is defined as Eb

/
σ 2
0 where Eb = (N + L)

/
(G0B0) and

σ 2
0 = n0σ 2

/
N0 is the noise variance in the time domain.

We adopt the frequency domain Kronecker delta (FDKD)
pilot structure with equidistant placed pilot clusters. In each
pilot cluster, there is only one nonzero symbol in the middle
and two zero symbols surrounding it. That is, there are guard
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Algorithm 6 Damped VAMP Detector

1: Initialization: Initialize x̂0i and v̂0i , i = 1, . . . ,Nd by
(6) and (7) in [38] for the first global iteration, and then
initialized by the soft estimates from the decoder for
the subsequent iterations. Select initial r1,0, γ1,0 and set
k = 0;

2: Compute the SVD H̃d
f = USVH ,R = rank(H̃d

f ) and the
preconditioned vector ỹ = γwSHUHyd , γw = 1

/
σ 2.

3: η1,k =
1
Nd

∑
i 1
/
v̂0i + γ1,k

4: x̂1,k = η−11,k (x
0
/
v0 + r1,kγ1,k )

5: x̂1,k = ρx̂1,k + (1− ρ)x̂1,k−1
6: γ2,k = η1,k − γ1,k
7: r2,k = γ−12,k

(
x̂1,kη1,k − r1,kγ1,k

)
8: Dk = (γwS

HS+ γ2,kI)−1

9: ĥ2,k = VDk (ỹ+ γ2,kVHr2,k )
10: α2,k =

1
R

∑
r

γ2,k
γws2r+γ2,k

, sr = [S]rr
11: r1,k+1 =

(
x̂2,k − α2,kr2,k

)
/
(
1− α2,k

)
12: γ1,k+1 = γ2,k

(
1− α2,k

)
/α2,k

13: γ1,k+1 = ργ1,k+1 + (1− ρ)γ1,k
14: Set k ← k + 1 and proceed to step 2) until k >

Kmax or
∥∥r1,k+1 − r1,k

∥∥2 < εtoc
∥∥r1,k∥∥2.

FIGURE 4. BER performance of damped AMP estimator with varying
damping factors.

bands around the nonzero pilot in each cluster. Np = 36 pilot
symbols are inserted in the transmitted signal with M = 12,
Lp = 3. In one OFDM symbol, only 92 subcarriers are used
for data transmission. The number of BEM tap is Q = 3,
the smoothing parameter is 1 = 0 for the first iteration and
1 = 2 for the subsequent iterations.

A. IMPACT OF DAMPING FACTOR
We adopt the ρ = 0.95 in both VAMP estimator and
VAMP detector, which is suggested in [47] and also per-
forms well in our simulation. Similarly, in damped AMP
detector, the damping factor is set to be 0.3, which is used
in [38] and performs well here. To design proper damping
factor in damped AMP estimator, extensive simulations are
performed. Fig. 4 gives the performance of damped AMP

FIGURE 5. BER curves of turbo receiver for varying global iteration
numbers at fD = 0.15. Here, damped AMP estimator and damped AMP
detector are used.

estimator with different damping factor at SNR = 8dB. From
the figure, it can be observed that ρ = 0.2 is the best damping
factor for the normalized Doppler spread fD = 0.15 and
ρ = 0.1 for fD = 0.077. These damping factors are employed
in the later simulations.

B. IMPACT OF GLOBAL ITERATION NUMBER
Fig. 5 gives BER curves of turbo receiver for varying global
iteration numbers at fD = 0.15. Here, damped AMP estima-
tor and damped AMP detector are used. From this figure,
a further iteration will improve the performance obviously
when the global iteration numbers are 1 and 2, and the further
increase of iteration after 3 iterations achieves only slight
gain. Thus, in the later simulation, we set the global iteration
number to be 3.

FIGURE 6. Performance comparison of LMMSE estimator and damped
AMP estimator at fD = 0.077.

C. COMPARISON OF DIFFERENT ESTIMATORS
In Fig. 6, the BER performance of LMMSE estimator and
damped AMP estimator is given. As a reference, the per-
formance with perfect channel is also presented. In this
simulation, damped AMP detector is adopted and normal-
ized Doppler frequency is 0.077. From the figure, the BER
performance of the damped AMP estimator is close to the
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FIGURE 7. BER performance of four AMP-based estimator/detector
combinations at fD = 0.077.

FIGURE 8. BER performance of four AMP-based estimator/detector
combinations at fD = 0.15.

LMMSE estimator. On the other hand, from Section IV-B,
the damped AMP estimator has a numerous complexity gain
over LMMSE estimator. Thus, the damped AMP estimator
can achieve the LMMSE estimation performancewith amuch
lower complexity.

D. COMPARISON OF DIFFERENT ESTIMATOR/
DETECTOR COMBINATIONS
Fig. 7 and Fig. 8 show the BER performance of four AMP-
based estimator/detector combinations at fD = 0.077 and
fD = 0.15, respectively. From these figures, the dampedAMP
detector has better performance than dampedVAMP detector.
When dampedAMP detector is used, dampedAMP estimator
and dampedVAMP estimator show similar performance. This
can be partly interpreted by the fact that the AP constraint of
OFDM-IM is not taken into account fully in the first global
iteration in the damped VAMP detector. In fact, the damped
AMP detector utilizes the AP constraint of OFDM-IM fully
by computing the posterior mean and variance according
to (15) and (16) in [38], as shown in denoising step of
Algorithm 5.

VI. CONCLUSION
In this paper, the AMP algorithm was utilized in the iterative
channel estimation and data detection of OFDM-IM in DSCs.

Note that the guaranteed performance of AMP can not be
achieved due to the measurement matrices in both BEM
coefficient estimate and data detection are general (not i.i.d
sub-Gaussian). The damped AMP and VAMP algorithms
which have stronger robustness to the measurement matrix
were taken as the practical channel estimator and/or data
detector here. In the proposed turbo receiver, the message
propagated among channel estimator, data detector and chan-
nel decoder was designed, and the corresponding message
scheduling was presented. Furthermore, the efficient inte-
gration of soft input information in damped AMP/VAMP
estimator and detector was proposed. Finally, the superior
performance of the proposed AMP-based turbo receiver was
demonstrated by extensive computer simulations.
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