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ABSTRACT Non-negative matrix factorization (NMF) approximates a non-negative data matrix with the
product of two low-rank non-negative matrices by minimizing the cost of such approximation. However,
traditional NMF models cannot be generalized in the cases when the dataset contains outliers and lim-
ited knowledge from domain experts. In this paper, we propose a robust semi-supervised NMF model
(RSS-NMF) to overcome the aforementioned deficiency. RSS-NMF utilizes the L /L;-norm to encourage
approximation and makes the model insensitive to outliers by prohibiting them from dominating the cost
function. To incorporate the discriminative information, RSS-NMF utilizes the structured normalization
method when learns a diagonal matrix to normalize the coefficients such that they get close to the label
indicators of the given labeled examples. Although the multiplicative update rule (MUR) can be adopted to
minimize RSS-NMF, it converges slowly. In this paper, we adopt a fast gradient descent algorithm (FGD) to
optimize RSS-NMF and prove its convergence to a stationary point. FGD uses a Newton method to search the
optimal step length and thus, FGD converges faster than MUR. The experimental results show the promise
of RSS-NMF comparing with the representative clustering models on several face image datasets.

INDEX TERMS Non-negative matrix factorization, semi-supervised learning, Lp/L;-norm, structured

normalization.

I. INTRODUCTION

Semi-supervised clustering is a longstanding problem in
machine learning filed and has extremely widespread appli-
cations, ranging from document processing [36], segmenta-
tion [37], behavioral analysis [38], to face recognition [39].
It is a learning method which fully utilizes the prior knowl-
edge to clustering procedure. Based on semi-supervised
learning and clustering analysis, the clustering perfor-
mance can be improved. The semi-supervised algorithms
are generally divided into two categories: (1) the constraint-
based algorithms, which utilize constraint information to
optimize clustering effect, such as SemiSync [31] and
MSAEClust [30]; (2) the distance-based algorithms, which
learn a distance measure by the assistance of prior kowledge,
such as SCKMM [40] and K-EDML [41].
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Recently, non-negative matrix factorization(NMF, [1]) has
been applied to semi-supervised clustering consistently and
has been demonstrated excellent clustering performance. The
non-negativity constraint incorporated on two factor matrices
induces parts-based representation, which is consistent with
the intuition of learning parts to form a whole in human
brain [7]-[9]. Since standard NMF minimizes the squared
Ly-norm of the approximation error between data matrix and
the product of two factor matrices, it is sensitive to outliers as
in this case the contaminated entries dominate the objective
function.

Over the past decades, many models have been proposed
to improve the robustness of NMF. Kong et al. [3] proposed
an L 1-norm based NMF model (L, ;-NMF) which replaces
the Lp-norm in classical NMF model with L j-norm. Since
Ly 1-NMF measures the loss by summing the Lp-norm of
columns of the error matrix, it prohibits outliers from domi-
nating the objective function. Lam [19] proposed an L;-norm
based NMF model (L;-NMF) which measures the loss by
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using the L;-norm of the error matrix. Since L;-NMF avoids
the domination of outliers in the objective function, it is more
robust than classical NMF models. Hamza and Brady [6]
proposed a robust NMF model (RNMF) which measures
the loss by summing the L,/Lj-norm of errors. Since the
Ly /Li-norm gets close to the squared Lp-norm when error
goes to zero and gets close to the Lj-norm when error goes to
infinity, RNMF inherits the advantages of both classical NMF
and L{-NMF.

The above NMF variants are intrinsically unsupervised
models, that is, they do not make use of any discrimina-
tive information to promote the learning process. In recent
years, many studies [2], [11], [12] have shown that the
learning quality of NMF can be enhanced significantly by
using a small amount of labeled data. In this situation, many
semi-supervised NMF methods are proposed. CNMF [12]
regards the label information as additional constraint, namely,
samples from the same class are supposed to be mapped
to the same representation in the new data representation.
However, CNMF fails in case that the label information is
rather limited. SCNMF [42] is proposed to solve the above
problem. It softens the hard constraint in CNMF by intro-
ducing a diagonal matrix with positive diagonal elements to
normalize the decomposition. These semi-supervised NMF
models incorporate prior information only, but are not robust
to noises and outliers.

In this paper, we propose a robust semi-supervised NMF
(RSS-NMF), and the clustering process of which is displayed
in Figure 1. This model utilizes the Ly /L;-norm [6] to mea-
sure the cost of NMF approximation and make the model
insensitive to outliers by prohibiting them from dominating
the cost function. Furthermore, RSS-NMF aims at improv-
ing the clustering performance by incorporating discrimi-
native information. More concretely, structured normaliza-
tion regularization is provided to learn a diagonal matrix to
normalize the coefficients such that they get close to the
label indicators of the given labeled examples. RSS-NMF
jointly learns the representations from both labeled examples
and unlabeled examples in the presence of outliers on both
sides.

Many works have applied the multiplicative update rule
algorithm (MUR) to optimize the robust NMF models.
Kong et al. [3] proposed a power method based MUR to
optimize L ;-NMF which updates each factor matrix by
MUR with an adaptive re-weighting strategy. Du et al. [10]
applied a half-quadratic based MUR for optimizing several
robust NMF models including correntropy induced metric
based NMF, Huber function based NMF, Welsh function
based NMF, and Cauchy function based NMF. Although
MUR decreases the corresponding objective function, they do
not guarantee convergence. For optimizing L;-NMF, Lam [5]
reformulated the objective function and optimized this model
by using linear programming (LP). Although the LP algo-
rithm implicitly converges to a local minimum, [5] does
not give explicit proof. For optimizing RNMF, Hamza and
Brady [6] applied the gradient descent algorithm with a
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FIGURE 1. Clustering process via RSS-NMF with the noise interference.
Suppose the data points are divided into four categories, which are
distinguished with each other by four colors. The circles containing a
letter ‘L’ represent the labeled examples, and the outliers are marked with
text. (a) Original data points. (b) Clustering result after the first iteration.
(c) Clustering result after the i-th iteration. (d) The final clustering result.

smartly chosen step size. However, the convergence is not
guaranteed. For robust NMF model, the convergence of opti-
mization algorithm is important because convergent algo-
rithm makes the learned factor matrices less influenced by
initialization.

To optimize RSS-NMF, we present a fast gradient descent
algorithm (FGD) for much faster convergence. Since the
objective function of RSS-NMF is non-convex, FGD alter-
natively updates one factor matrix with another one fixed.
For updating each factor matrix, FGD first constructs an
auxiliary matrix to make the newly updated matrix satisfy
K.K.T. conditions, and then searches along the scaled neg-
ative gradient with a suitable step size. The optimal step size
is determined by line search based on the Newton algorithm.
For theoretically analyzing the convergence of RSS-NMF,
we first prove that FGD decreases the objective function, and
then prove that any limit points of the generated sequence are
stationary points. By showing that the generated sequence has
at least one limit point, we prove that FGD converges to a
stationary point. Experimental results on both synthetic and
real-life datasets demonstrate that FGD is efficient.

This paper is organized as follows: Section II briefly
reviews the related works; Section III proposes the robust
semi-supervised NMF model (RSS-NMF) and proposes a
multiplicative update rule algorithm (MUR) for optimizing
RSS-NMF, and then proposes a fast gradient decent (FGD) to
accelerate MUR; Section IV empirically evaluates RSS-NMF
by showing its efficiency and effectiveness; Section V con-
cludes this paper.

Il. RELATED WORKS
In this section, we review clustering, semi-supervised clus-
tering, semi-supervised NMF and robust NMF variants.
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We theoretically analyze their loss functions for understand-
ing their advantages as well as disadvantages.

A. CLUSTERING AND SEMI-SUPERVISED CLUSTERING
VARIANTS

Clustering is an unsupervised learning problem which divides
examples into several groups according to intrinsic charac-
teristics or similarity. Recently, several clustering algorithms
have been proposed, such as partitional clustering [46], [47],
density-based clustering [23], [24], and clustering based on
non-negative matrix factorization [48], [26]. Inspired by deep
clustering, Guo et al. [32] proposed an improved deep embed-
ded clustering (IDEC) model, which maintains feature space
by using a under-complete autoencoder and a clustering loss
as guidance.

In the past few years, extensive studies have shown that
once a small amount of prior knowledge about the data is
incorporated, the performance of clustering can be improved
greatly [28], [43]. In order to use the background knowl-
edge of data points reasonably, semi-supervised clustering
is proposed. In general, there are generally two types of
semi-supervised clustering methods:

1) CONSTRAINT-BASED SEMI-SUPERVISED CLUSTERING
Such methods add constraint restriction information to clus-
tering procedure. The supervision information is divided into
two major categories.

The first category is independent class label. The origi-
nal data set V is expressed as V. = [V/, V4] € |™"
with n = [ + u, where V' represents the labeled samples
set and V" represents the unlabeled samples set. Usually,
| < u, the number of labeled samples is much smaller
than the number of unlabeled samples. Inspired by the above
idea, MSAEClust [30] was proposed, which directly exploits
background knowledge. It trains multiple autoencoders of
different sizes to incorporate samples together with label
information. SSC-SR [33] was presented as a constrained
optimization model and was solved via the inexact augmented
Lagrangian multiplier (IALM). With the guidance of a small
amount of supervision information, SSC-SR utilizes a matrix
with anti-block-diagonal appearance to regularize the product
of the low-dimensional embedding and its transpose.

The second category is pairwise constraints, which are
formalized as instance-level Must-Link constraints(ML) and
Cannot-Link(CL). ML indicates that two data points belongs
to the same group, while CL is the opposite. That is, given two
data points v; and x; belongs to class K; and K; respectively,
if (vi,vj)) € Must-Link, i = j, and if (v;,v;) € Cannot-
Link, i # j. Zhang et al. [31] proposed a novel model,
namely SemiSync, which focuses on an interesting phe-
nomenon synchronization. SemiSync combines Cannot-Link
and Must-Link constraints by introducing a global interaction
paradigm. Constraints are propagated within the synchro-
nized in a reasonable way and therefore SemiSync achieves
high-quality clustering with limited knowledge is available.
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2) DISTANCE-BASED SEMI-SUPERVISED CLUSTERING
Distance-based semi-supervised clustering methods exploit a
specific distance metric to satisfy the prior knowledge and
then utilizes an existing clustering algorithm to learn the
similarity between data points. LSSC [49] develops a new
metric function by using pairwise constraints and labeled
data. Yin et al. [45] develop a semi-supervised fuzzy clus-
tering algorithm with metric learning and entropy regular-
ization simultaneously (SMUC). Yan et al. [44] presented
a similarity metric clustering method, which utilizes various
viewpoints.

B. ROBUST NMF VARIANTS

To remedy the non-robustness of NMF, Kong et al. [3] pro-
posed a Ly 1-norm based NMF (L 1-NMF) which takes off
the squared operator. The objective function of L ;-NMF is

W>0,H>0 4
]:

Although L ;-NMF is more robust than NMEF, it still cannot
filter out intra-sample outliers. For example, when one pixel
in an image is seriously corrupted, although this image does
not destroy the whole model, the corrupted pixel will conceal
the effects of the rest pixels.

Lam [5] proposed a L1-norm based NMF (L;-NMF) which
minimizes the Li-norm of the residual error of each sample,
ie.,

min_ >V — WH), 3. (1
1

W>0,H>0 4
]:

n
min Z |V —wH),,, )
1
where ||Xj||1 = Zf"zl |Xl-j| for any j. In contrast to L, {-NMF,
L{-NMF successfully inhibits the influences of both outlier
samples and intra-sample outliers. The main shortcoming of
L1-NMF is that it is difficult to be optimized because the
absolute function is non-differentiable at zero.
Hamza and Brady [6] proposed a L, /Lj-norm based NMF
model (L /L{-NMF) which replaces the absolute function in
(2) with the differentiable L, /Li-norm, i.e.,

ymin DD o ((V = WH). 3)

j=1 i=1
where

pr) =V1+22— 1 @)

is the Hypersurface cost function. Comparing with the above
models, RNMF has three advantages: (1) it is more robust to
outlier-samples than NMF because it prohibits large errors
to dominate the objective function; (2) it is more robust
to intra-sample outliers than L, 1-NMF because it prohibits
large error entries to dominate the objective function; (3) it is
differentiable everywhere and thus can be easily optimized by
using gradient based algorithms. L, /L{-NMF performs more
robustly than NMF. However, the gradient descent algorithm
utilized in [6] is complex because the Armijo rule based line
search is complex.
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C. SEMI-SUPERVISED NMF VARIANTS
The aforementioned basic NMF and robust NMF aim at find-
ing parts-based and linear representations of non-negative
data, which take no account of the label information of sam-
ples. Real world data are often sparse and noisy, which may
reduces the accuracy of data representations. And a small part
of data may have prior label information, which, if utilized,
may improves the discriminability of representations.
SSNMF [11] incorporated the data matrix and the partial
class label matrix into NMF. Associated labels are encoded in
the label matrix Y = [y, ..., yu], where each y; is a binary
vector such that only the j-th entry is one and remaining
elements are zero if x; belongs to class j. They consider a
joint factorization of the data matrix V and the label matrix
Y, sharing a common factor matrix H. The loss function of
SSNMF is

L(W,H,U) = |V — WH|* + A|Y — UH|?, &)

where A is a tradeoff parameter determining the importance
of the supervised term.

Liu and Wu [12] introduced constrained nonnegative
matrix factorization (CNMF), which merges the label infor-
mation as additional constraints. CNMF considers a dataset
consisting of n data points, among which the label informa-
tion is available for the first / data points vy, ..., v;, and the
rest of the n-I data points v;11, . . ., v, are unlabeled. The data
points v; and v; have the same low-dimensional representation
h; = h; if they belong to the same class. Specifically, C is an
[ x c indicator matrix where ¢;; = 1 if x; is labeled with
the j-th class and c;; = O otherwise. H is first separated
into two parts: Hy.,, (labeled) and Hy,+ 1., (unlabeled). CNMF
requires that H1.,, = QC for some nonnegative matrix Q. The
reconstruction coefficients H,,11., for unlabeled examples
are not constrained except to be generally nonnegative. Both
these conditions can be expressed by

c 0
H=PA whereP = (Q Hp.n) andA:(O IH),

(6)

where I, is an (n—[) x (n—[) identity matrix. By plugging H
in eq. (6) into the sum of squared errors of the original NMF,
the loss function is

L(V,P) = ||V — WPA|, @)

which is minimized by simple multiplicative updates for W
and P.

Chen et al. [13] proposed a semi-supervised approach
for clustering based on non-negative matrix factorization,
which incorporated the pairwise constraints into the similar-
ity matrix of the data. Users are able to provide supervision
for clustering in terms of pairwise constraints on a few data
objects specifying whether they must or cannot be clustered
together. SEMINMF [14] as another variation of CNMF, not
only utilizes the local structure of the data characterized by
the graph Laplacian, but also incorporates the label informa-
tion as the fitting constraints to learn.
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Symmetric NMF (SNMF) had shown to be effective
for graph representation. Wu et al. [2] proposed a novel
SNMF-based semi-supervised clustering method, named
PCPSNME. PCPSNMF incorporates a small amount of super-
visory information into the learned subspace to guide the con-
struction of the similarity matrix. And then the two matrices
communicate with each other to achieve mutual refinement
until convergence.

Li et al. [4] proposed a robust structured NMF learning
framework, which learns a robust discriminative represen-
tation by leveraging the block-diagonal structure and the
Ly p-norm loss function. The L ,-norm loss function solve
the problems of noise and outliers effectively.

lll. ROBUST SEMI-SUPERVISED NMF

In this section, we introduce the proposed RSS-NMF, which
not only utilizes the local structure of the data, but also
encodes discriminative information of different clusters.
Then we apply multiplicative update rule (MUR) method to
minimizing RSS-NMF. Finally, a fast gradient descent (FGD)
is proposed to accelerate MUR.

A. STRUCTURED NORMALIZATION
Given [/ labeled examples concatenated in a non-negative
matrix V! € 99! and u unlabeled examples concatenated in
a non-negative matrix V¥ € 37" RSS-NMF concatenates
them in single non-negative matrix V = [V!, V¥] € /™"
with n = [ 4 u, and factorizes V into the product of a basis
matrix W € R and a coefficient matrix H € R
According to the composition of V, the coefficient matrix
H is divided into two parts, i.e., H = [H', H"], where
H' € ! and H" € R,

For the labeled examples, RSS-NMF encodes their dis-
criminative information in a class indicator matrix as follows:

yl — 1, ifclass(j) =k
kj 0,
(®)

if class (j) # k,
where class(x) = k means that example x belongs to the
class k.
To incorporate the discriminative information of the
labeled examples, we expect that the coefficient matrix of
labeled examples equals the class indicator matrix, i.e.,

Vi<k<r, VlI<j<l

H =Y 9)

However, the above hard constraint is too strict and may
makes the learned basis shrink to the labeled examples. Intu-
itively, in an extreme case, assuming each class contains one
labeled example, i.e., [ = r, and the k-th labeled example
belongs to the k-th class, the factorization corresponding to
the labeled examples V' is formulated as follows:

vi~ wH'. (10)

According to (9) and (10), Y’ is an identical matrix, and
thus W shrinks to V. To reduce the risk of such shrinkage,
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we relax the hard constraint (9) by introducing a positive
normalizer in learning the coefficient matrix H Iie.,

1 1 [ 2
n}\inEHAH _y HF (11)

where A is a positive diagonal matrix, which normalizes
both W and H such that the discriminative information of
the labeled examples is incorporated into NMF. Therefore,
we call the problem (11) structured normalization. With (11),
we get the objective function of RSS-NMF as follows:

FW.H)=Y"p ((V—WA_IAH)U)—FE HAHI—YZ HF .
i=1
(12)

Theorem 1 shows that the loss function of L, /L;-NMF is
close to that of L;-NMF, and their distance is bounded. This
analysis implies that L, /L;-NMF behaves like L;-NMF, and
is therefore more robust to outlier-samples and intra-sample
outliers than NMF.

Theorem 1: For any x € R™, we have: |[x||; — m <
Yoo () < x|

It is obvious that (12) is non-convex with respect to W, H,
and A. Therefore, we apply the block coordinate descent to
alternating update each variable with other variables fixed.
Since the normalizer A has no relationship with W and H,
it can be updated separately by
(Hy Y]
il H)
With the normalizer A fixed, the factors W and H can be
updated by solving the L, /L;-NMF model (12). Although the
projected gradient descent algorithm (PGD) with Armijo rule
has been applied to solve L, /L-NMF, its computational com-
plexity is too high because the Armijo rule needs to compute
the objective value in each attempt of searching a suitable step
size. In this section, we first propose a multiplicative update
rule algorithm (MUR) to solve RSS-NMF. In the next section,
we will propose a fast gradient descent algorithm (FGD) to
efficiently solve RSS-NMF and prove its convergence to a
stationary point.

Aw = VI <k <r. (13)

B. MULTIPLICATIVE UPDATE RULE FOR OPTIMIZING W
AND H
Let F(W. H) =Y, S0, o (V—=WH)y)+ [AH! Y|
denote the objective function of (12). Since F(W,H) is
jointly non-convex with respect to W and H, we solve (12)
by alternatively updating one factor matrix with another one
fixed.

At the ¢-th iteration round, with W' fixed, we get the first-
order derivative of F’ (W’ JH ) with respect to Hy; as

134000

19 T
+——HAH —YH
2 0Hy; F

-5 (o (- )
+3 0 (v,»q - (W’H)l.q>)

q#j

1
42 (tr (HZATAHI> i (Y’TAH’)
2 0Hy;

—tr (H’TATY’) —tr (YZT Yl)>k'
J

W'H

+
:(WZT
_ WtH)2
VI+H(V —-WIH) "

Vv

J1+ (V= WiH)? Y

T l Tv1
+ATAH[ - ATV (14)

— WTT

Based on (14), with the gradient descent, the update rule for
Hj;j can be written as

Wth
\/1 + (V- W!H")?

t+1 _ ggt t T
ij = ij — w

ki
wi Vv
— WtHH?
\/1 +(V—WHY )
+ ATAH - ATY | (15)

where ot,tcj > 0 is the step size. To preserve the non-negativity
of H ,;TH, we adaptively set the step size as

t
ij

(16)

t
o =
<WfT W!H!

Jrv—wie ATAH! ATYZ)

kj

By substituting (16) into (15), we obtain the multiplicative
update (MU) algorithm for Hy; as

g (w'"—v
kf( HV=WiH)?

o WtT WtH!
1V —WIH??

A7)
+ ATAH! — ATYI)
K
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Algorithm 1 MUR Optimation for RSS-NMF
Input: V e R™" Y € R 1 <k<r
Output: W € R, H € R™*"

1: Initialize Wy, Hy, t = 0.

2: Repeat:

3. Update HH! as

WIT Vv
+1 _ gt (V=W
BT =He wil WIHL AT AR ATyl
1+(V—WH!)?
4:  Update W'T! as
( 14 g+
H—(V—WIHYH)2
witl =wio .
% Ht+lT
‘/1+(V—W’H’+1)2
5:  Update A as
A = bl vi <k </
=l T ERET
6: t=t+1.

7: until Stopping criteria is met

The MU (17) can be written in the matrix form to update the
whole factor matrix H as
W’T %
1+(V—W!H")?
T W!H!

N1+(V—WIH?
We can derive the following MUR for W as

Ht =H'o

+ATAH! —ATY! (19

\4 Ht+lT
1+ (V=wiH+1)?
___WwH Hi+1T
1+ (V=wiH+1)?

The update rules (18) and (19) are simple and easy to
implement. We iteratively update W and H until the objective
value of (12) does not change. The procedure is summarized
in Algorithm 1.

Theorem 2 shows that (18) monotonically decreases the
objective function of (12). We can similarly prove that (19)
monotonically decreases the objective function of (12).

Theorem 2: Fixing W', when (15) updates H from H' to
H'*! the objective function of (12) monotonically decreases.

Similarly, we can prove that (17) decreases the objective
function of (12). In summary, under the MUs (18) and (19),
wehave F (W' H'TY) < F (W' H'™) < F (W', H") for
any ¢t > 0.

witl =wio (19)

C. FAST GRADIENT DESCENT FOR RSS-NMF

Although MUR guarantees decreasing the objective function
of RSS-NMF, it does not guarantee convergence to any sta-
tionary point. The stationarity is important because it is nec-
essary for finding a local minimum. Therefore, we proposed
a fast gradient descent (FGD) algorithm for optimizing RSS-
NME. At the ¢-th iteration, the FGD algorithm updates both
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factor matrices as

ﬁt+1 — Ht _ ﬂt+1 H
WIT L +34
—n\2
1+(V—WtH)
oVyF (W' H") (20)
and
1
Wt+1 — W — yt+l 4
W gt+!

t+17
LA s
l+(V—WH’+1)

o VwF (WL A™), @1
where § is a positive constant, 8! and y*! are step sizes

for updating H and W, respectively, and both H' and W' are
defined as

Hy;, if (VaF (W', H')),; >0

H, = 22
U | max {0} it (VaF (wiH), <0 22

and

W= Wi, if (VwF (Wt’ﬁtﬂ))ik >0
k= max {W}, o}, if (VwF (W’,ﬁ’“))ik <0,

where o is also a positive constant, and Vg F (W’ JH! ) and
VwF (W’, ﬁ"“) are the derivatives of F(W, H) with respect
to W and H, respectively. The intermediate factor matrices
H'*! and W'*! are normalized to obtain H'+! and W'*! as
follows:

HWWH < H'Fif ”W_’“” =0
gt =41 h ko (23)
B ] U

and
wit =14 _ N (24)
g Wi, if |[Wirt =o,

1

The modification does not introduce extra computational
overheads. Therefore, the computational complexity of FGD
is the same as that of MUR.

Looking more carefully at the FGD algorithm (20) - (21),
we can find that they are intrinsically first-order gradient
descent algorithms which search along the rescaled negative
gradient direction. Here we proposed to search the optimal
step size by the Newton algorithm.

At the 7-th iteration round, fixing W?, according to (20),
the rescaled gradient of F(W, H) with respect to H can be
written as

VuF (W', H")

= o VyF (W', H'), (25)
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where Vi F (W', H') = W"' <W’H— +ATAH' -
N1+ (V=W H!)?

ATY! denotes the first-order derivative of F (W’, H ) with

respect to H. The update algorithm (20) can be written in the

following gradient descent form
ﬁl‘+1 — Ht _ ﬁl‘+1§HF (Wt, Ht), (26)

and the FGD procedure for optimizing RSS-NMF is summa-
rized in Algorithm 2.

Algorithm 2 FGD Optimation for RSS-NMF
Input: H' € R"™™", B!
Output: H'T! ¢ |y g+l

1: Initialize ﬂo =pLa=0.

2: Calculate H' as (22).

3. Calculate Vi F (W', H') as (25).
Wlk
4: Calculate A = min { (YwF(W'.H'T1)), | .
(F (v, 1), = o

5: Set B = 0.01 +0.9 x A.
6: Repeat:
7. Update B,+1 as

Bart = Pu— S0

a=a-+1. o

9: until Stopping criteria is met
10: Set A+ = min {Pa, E’}
11: Update H'+! as H't! = H' — BTV, F (W', H").
12: Update H'*! according to (23).

Next, we will introduce how to determine a suitable step
size B. To sufficiently decrease the objective function along
the rescaled gradient direction, we solve the following line
search problem

min F (Wt H — ,BVHF (Wt H’)) 27
BeDy,

where the domain of S is set to
Dy = |BIH" — BVyF (W', H

for preserving the non-negativity of H H't1,

Let ¢«(B) = F (W', H' — gVyF (W', H')), according
to (20), we can obtain its first-order and second-order deriva-
tives with respect to 8 as follows:

)= 0.5=0)

¢1(B)
(W'VyF (W', H ))U
\/1 + (V= WH + W'V F (W', H"))
(V—W'H + BW'VyF (W', H Vi
\/1 +(V = WH! + BW!VyF (W, H’))ij
and

(W'Y F (W', H'))>

ACEDY

— 32
7 (1+(V—W’H’ 4 BWIVLF (W, Hf))fj)
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Since ¢;(B) is continuous and differentiable, and its second-
order derivative is non-negative, i.e., ¢;(8) > 0, the line
search problem (27) is convex. It implies that there exists a
global minimum of ¢,(8). We utilized the Newton algorithm
to solve (27) as follows:

¢/ (Ba)
7 (Ba)’
where a is the iteration counter. The Newton algorithm (28)

converges rapidly and obtains the minimal S, of (27). Subse-
quently, we obtain the final step size as

B! = min {8, B’} (29)

where /’3\‘ = T sup (D}_I) and 7(0 < T < 1) is used to ensure
that H*! is not too close to the boundary of the domain. The
variable sup (D’H) can be computed as

IBa-‘rl = ﬁa - (28)

H}.
— il |
(VuF (W', H"),; . (30)

(VuF (W', H')),; >0

sup (D};) = min

Since 1€ D}, we know that sup (D) > 1.

Similarly, the optimal step size for updating W'*! can also
be searched by using the Newton algorithm. Fixing H'*!,
according to (21), the rescaled gradient direction of F (W, H)
with respect to W can be written as

=

w

/V\WF (WZ, ﬁl+l) —
W H!t! Hi+1T 4+
- 2
(V=W A
o VwF (W’,FI’“), 31)

~ tgt+l_ -~ T
where Vy F (W', H'*1) WAV | gt
(VW)

denotes the first-order derivative of F (W, H'!) with
respect to W. The update algorithm (21) can be written in
the following gradient descent form

WZ-FI — Wt _ yl+1§WF (Wt, ﬁt-{-l). (32)

Next, we will introduce how to determine a suitable step size
y'*1. To sufficiently decrease the objective function along the
rescaled gradient direction, we solve the following line search
problem

min F (W’ —yVwF (Wt,ﬁ[H),ﬁt—H), (33)
BeDy,

where the domain of y is set to
Dy = [y W' —y T (W, B1) = 0,y > 0] 34
for preserving the non-negativity of witl,
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Let Y (y) = F (W' — yVuF (W', ﬁ“‘l), H'), according
to (20), we can obtain its first-order and second-order deriva-
tives with respect to as follows:

(§WF (Wt, ﬁz+1) ﬁt+l)ij

Y=

ij 1+ vV — Wtﬁt+1 2
+7/VWF (WZ,HH_I)HI—H i

(V _ Wzﬁwrl + V§WF (W’, ﬁt+1) I"_jt+l)“

ij
V- WiH ?
1+ <+J//V\WF (W, ﬁt+l)ﬁl+l )ij

X

and

Y=Y

j (V — W )\
1+ < gl "z+1>
+yVwF (W' H*' H i

2

(VwF (W', H'+1) ﬁ’“)l]

Since ¥;(y) is continuous and differentiable, and its
second-order derivative is non-negative, i.e., ¥/ (y) > 0,
the line search problem (33) is convex. It implies that there
exists a global minimum of ¥,(y). We utilized the Newton
algorithm to solve (33) as follows:

Y
! ()
where b is the iteration counter. The Newton algorithm (35)

converges rapidly and obtains the minimal y; of (33). Subse-
quently, we obtain the final step size as

Yo+l = Vb (35)

ytJrl = min{y*, );t}v (36)
where ' = tsup (D},) and 7(0 < 7 < 1) is used to ensure
that W'*! is not too close to the boundary of the domain. The
variable sup (D}, ) can be computed as

(,YWF (W[’Et+l))ik
(FwF (W', BH)),

i

|
>0

sup (D}y) = min 37

Since 1€ D}, we know that sup (DQ,V) > 1.

The following section will prove that the FGD algorithm
(20)-(24) with the Newton based line search (29) and (36)
converges to a stationary point. If the point (H*, W*) is a
stationary point, it is necessary to satisfy the following K.K.T.
conditions:

0, W*=>0,
0, Vw (W* H")>0,
0, W"oVy (W* H*)=0. (38)
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D. CONVERGENCE PROOF
The following Theorem 3 will prove that the FGD algorithm
(20) - (24) with line search (29) and (36) converges to a
stationary point. Before proving Theorem 3, we prove the fol-
lowing Lemma 1 to Lemma 4. For the clarity of presentation,
we deduce the proofs of Lemma 1 to Lemma 4 to appendices.
Lemma 1: If the FGD algorithm (20) - (24) with the line
search (29) and (36) generate an infinite sequence {H rw! },
then

F (WH-I Hz+1) —F (V’[}t+1 ﬁt+1)
< F(WLAT) < F (WL (39)

Lemma 2: Assume {H'}, 1 € T, is a convergent subse-
quence and

lim H' =H*. (40)
teT,t—o00
Then
lim H'*'' = H* 41)
teT,t—>00

Next, we will prove that at any limit point {H*, W*},
the matrix H* satisfies the K.K.T. conditions.

Lemma 3: Assume {H',W'}, t € T, is a convergent
subsequence, and

: t t * *
teTl}tn_l)oo(H,W)—(H,W). (42)
We have that: (1) ifH,j‘j > 0, then Vg F (W*, H*);; = 0; (2)
ifH,:‘j =0, then Vg F (W*, H*);; > 0.

Furthermore, the above conclusions (1) and (2) imply that
any limit point of the sequence {H Lw! } is a staionary point.

Lemma 4: The sequence {H', W'} generated by the FGD
algorithm (20) - (24) has at least one limit point.

We are now ready to prove that the FGD algorithm
(20) - (24) with the line search (29) and (36) converges to
a stationary point.

Theorem 3: The sequence {H', W'} generated by the FGD
algorithm (20) - (24) has at least one stationary point.

Proof: By Lemma 2, there exist a convergent subse-
quence such that
Jim (W’, FI’“) = (W*, H). (43)
teT,t—o00
Then, we can use the same proof procedure like Lemma 3
to show the stationarity condition on W*. Together with
Lemma 3, we know that any limit point of the sequence
{H', W'} is a stationary point. According to the Lemma 4,
we know that the sequence {H', W'} has at least one limit
point. Above all, the generated sequence {H i W’} has at
least one stationary point. This completes the proof.

E. COMPUTATIONAL COMPLEXITY ANALYSIS

Since the object function of RSS-NMF and other typical
NMF-based methods are minimized by alternating optimiza-
tion algorithms, it is necessary to analyse their computational
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cost of one iteration round. We firstly discuss the compu-
tational complexity of RSS-NMF optimized by MUR and
FGD in detail and then give the complexity analysis of other
NMF-based methods in the experiments.

For MUR, inspired by [34], we compute W'H'*+1 f!+1"

T .
as W?! (H 1+l ), thus, reduce the computational com-

plexity of (18) and (19) from O (mnr) to O (max{m, n}rz)
for r <« min{m,n}. Thus, the overall complexity is
@ (mnr + max{m, n}r* + rnz).

For FGD, the time cost is mainly spent on (20),
(21) and (28). The complexity of (20) and (21) is
same as (18) and (19) and the time cost of (28) is
O (mnr + max{m, n}r2 + rnz). Therefore, the overall cost is
the same as MUR for minimizing RSS-NMF in one iteration,
i.e., O (mnr + max{m, n}r*> + m?). Since FGD has a faster
convergence speed compared with MUR, the overall time cost
of FGD is less than MUR.

For one step, the overall cost for NMF is O (mnr) and
the overall cost for CNMF in F-norm formulation is the
same; the time cost for CNMF in divergence formulation is
O (n(m + n)r); the complexity for GNMFis O (mnr + n’m);
and for semi-GNMF, extra O (n’) is needed to learn the
Mahalanobis distance space [35], thus the overall cost is
@) (mnr +n’m+ n3). For single step, the time cost of
RSS-NMF is a little more than NMF and CNMF in F-norm
formulation. However, the overall comutational complexity
of RSS-NMF may not be slower, since its iteration number for
convergence is smaller as shown in the experiments below.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed RSS-NMF comparing with nine other representa-
tive algorithms, including both unsupervised models and
semi-supervised models. The unsupervised clustering meth-
ods include PCA [15], NMF [16], GNMF [17], IDEC [32]
and RNMF; the semi-supervised clustering methods include
Semi-GNMF, CNMF [18], MSAEClust [30], SSC-SR [33]
and RSS-NMF.

Several comparison experiments are carried out for effec-
tiveness evaluation of RSS-NMF on four image datasets
including Yale, COIL-100, UMIST, and GT. In addition,
We analyze the convergence speed of RSS-NMF with FGD
versus MUR.

A. EVALUATION METRICS
Accuracy (AC) and normalized mutual information (NMI)
are two important metrics widely used to evaluate the clus-
tering performance of different clustering algorithms.
Accuracy (AC) is used to evaluate cluster results by com-
paring the obtained label of each sample with the label pro-
vided by the dataset. Given a dataset containing images, let
[* is the label obtained by applying different algorithms, and
[ is the ground true label. The accuracy (AC) is defined as

>_io1 8 (1, map (%))

n

AC = (44)
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TABLE 1. Statistics of the four datasets.

Dataset Size (N) | Dimensionality (M) | No. of classes (K)
Yale 165 1024 15
COIL — 100 7200 1024 100
UMIST 575 1600 20
GT 750 768 50

where §(x, y) is the delta function that equals one if x =
y and equals zero otherwise, and map (/*) is the map-
ping function that maps cluster to the corresponding pre-
dicted label. The best mapping is gained by Kuhn-Munkres
algorithm.

The other metric is normalized mutual information (NMI).
Let C is the set of clusters gained from the dataset and
C'’ is obtained by applying proposed algorithm. The mutual
information MI (C, (o4 ) is defined as

()

MI(C.C)= > p(ci’ c’/> logp(Ci)P(C//)

cieC,cieC’

., (45)

where p (c;) and p (cj’> are the probabilities that a image

belongs to the cluster ¢; and cj/-, respectively, and p (ci, c]’)
denotes the joint probability that this arbitrarily selected
image belongs to the cluster ¢; as well as cj’. at the
same time. MI (C, C’) takes values between zero and
max (H(C), H (C ! )), where H(C) and H(C') are the entropies
of C and C’, respectively. It reaches the maximum
max (H(C), H (C’)) when the two sets of image clusters are
identical and it becomes zero when the two sets are com-
pletely independent. In our experiment, we use the normal-
ized mutual information (NMI) which takes values between
zero and one. NMI (C ,C’ ) is defined as

MI (C,C)

NML(C. €) = ) 1 @)

(46)

B. CLUSTERING PERFORMANCE EVALUATION

We evaluate the clustering performance on four image
datasets. The important statistics of these datasets are
reported in Table 1 and the details are described individually.

For each dataset, we conduct the evaluations with different
number of clusters k. We randomly select k categories from
each dataset. By applying different algorithms as listed above
to different datasets, we obtain new data representation H,
the dimensionality of which is the same as the number of
clusters k.

The label information is important for semi-supervised
clustering algorithms, and with the increase of labeled data,
the cluster results are better and more accurate. For each
cluster, we assign labels for 10% and less samples as the
labeled data at random. In our experiments, we randomly pick
up 2, 2, 5, and 10 labeled images on the Yale, COIL-100,
UMIST, and GT dataset for each cluster.

VOLUME 7, 2019



L. Wang et al.: Robust Semi-Supervised NMF With Structured Normalization

IEEE Access

TABLE 2. The AC and NMI of RSS-NMF, PCA, NMF, GNMF, IDEC, RNMF, Semi-GNMF, CNMF, MSAEClust and SSC-SR on the Yale dataset.

k 2 5 8 10 15
PCA 63.64 52.67 36.18 37.53 30.45
NMF 69.69 54.45 46.00 40.22 36.89
AC GNMF 71.50 51.09 49.67 39.58 30.66
IDEC 70.42 61.53 48.11 42.69 38.31
. . RNMF 77.67 58.23 48.45 44.08 40.71
Unsupervised algorithms
PCA 45.38 33.68 41.66 39.02 44.10
NMF 34.82 38.18 42.65 43.76 47.31
NMI GNMF 38.54 35.22 38.07 40.40 39.34
IDEC 46.26 39.51 45.03 44.82 39.06
RNMF 42.63 44.56 48.91 47.59 50.63
Semi-GNMF 69.17 53.39 56.79 41.19 35.54
CNMF 66.12 55.00 55.64 43.33 39.58
AC MSAEClust 70.54 69.88 63.21 56.00 49.17
SSC-SR 74.88 60.72 60.15 58.34 46.39
. . . RSS-NMF 80.24 77.67 60.11 62.42 58.40
Semi-supervised algorithms -
Semi-GNMF 39.03 37.79 39.88 41.77 42.10
CNMF 33.67 42.56 45.20 45.50 48.27
NMI MSAEClust 43.63 39.50 42.62 38.04 39.03
SSC-SR 52.77 44.03 43.97 44.82 38.55
RSS-NMF 49.33 44.26 46.42 49.57 55.92

Then K-means is applied to the new data representation
H for clustering. For a particular algorithm and dataset, clus-
tering experiments is repeated ten times and the final result
is obtained by averaging the test values. Finally, we compare
the obtained clusters with the labels from dataset to compute
the AC and NML

We run algorithms for n iterative rounds until convergence.
The convergence criterion is defined as

Fn_Fn—l

| <6 47)

where £ is a positive constant and empirically set to a small
value, and F, is the loss function value in the n-th iteration of
each algorithm.

In our proposed RSS-NMF, there are four parameters,
ie., 8, o, 7, and &. Parameters selection is a complex
problem. Fortunately, performance of RSS-NMF is less sen-
sitive to the above four parameters when they are in the range
of [1070,1077], [107%,1077], [0, 1], and [107%,1077],
respectively. In our experiments, &, o, 7, and & is set to
107°,107°,0.9, and 1079, respectively. For other algorithms,
the parameters are selected when they can achieve the highest
performance.

C. PERFORMANCE EVALUATION AND COMPARISONS
Tables 2, 3, 4, and 5 show the detailed clustering accu-
racy and normalized mutual information of ten algo-
rithms on Yale, COIL-100, UMIST, and GT dataset,
respectively.

1) YALE DATASET
The Yale database [21] contains 165 grayscale images
collected from 15 individuals. There are 11 images per
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subject with different facial expression or configuration.
In our experiments, each image is normalized to 32 x 32 pixels
with 256 gray levels per pixel.

Table 2 describes the accuracy and normalized mutual
information of ten algorithms (including unsupervised
versus semi-supervised algorithms) with different number
of clusters k on the Yale dataset. It shows that our pro-
posed RSS-NMF achieves better performance than other
state-of-the-art algorithms significantly on the Yale dataset.
Specifically, compared to the up-to-date semi-supervised
clustering methods, e.g. MSAEClust, RSS-NMF raises the
AC by 9.7, 7.79, 6.42, and 9.23 percent when k is set to 2,
5, 10, and 15.

2) COIL-100 DATASET

The COIL-100 database [25] contains 7200 images
of 100 objects. The objects were placed on a motorized
turntable against a black background. The turntable was
rotated through 360 degrees to vary object pose with respect
to a fixed color camera. Images of the objects were taken
at pose intervals of 5 degrees. This corresponds to 72 poses
per object. In our experiments, all images was normalized to
32 x 32 pixels.

Table 3 gives the clustering results on the COIL-100
dataset. By comparing the accuracy and normalized mutual
information of RSS-NMF with other state-of-the-art mod-
els, it can be concluded that RSS-NMF outperforms other
algorithms regardless of the number of clusters. Specifically,
RSS-NMF gains 4 and 5 highest values in AC and NMI
respectively. Furthermore, the NMF-based algorithms outper-
form the PCA algorithm, which indicates that the part-based
representation enhances clustering effect compared with the
global representation of data.
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TABLE 3. The AC and NMI of RSS-NMF, PCA, NMF, GNMF, IDEC, RNMF, Semi-GNMF, CNMF, MSAEClust and SSC-SR on the COIL-100 dataset.

k 10 20 50 80 100
PCA 64.44 55.57 52.34 47.78 48.10
NMF 64.36 58.44 49.98 50.99 41.12
AC GNMF 84.11 63.41 54.86 50.21 45.65
IDEC 86.84 69.06 51.37 52.86 48.33
. . RNMF 85.22 74.85 68.17 58.56 49.22
Unsupervised algorithms
PCA 75.23 73.48 74.62 72.11 73.47
NMF 77.50 79.31 63.24 74.08 69.40
NMI GNMF 84.73 74.37 76.50 70.55 76.12
IDEC 86.20 85.33 79.05 76.58 71.44
RNMF 87.05 78.86 79.34 72.46 74.68
Semi-GNMF 92.08 66.78 60.41 47.46 41.35
CNMF 80.21 70.41 68.80 50.19 44.07
AC MSAEClust 90.35 78.48 73.08 60.77 49.63
SSC-SR 85.79 79.05 73.49 64.70 50.13
. . . RSS-NMF 86.30 79.16 77.68 65.81 53.14
Semi-supervised algorithms -
Semi-GNMF 91.64 79.88 74.65 73.38 68.45
CNMF 84.92 82.51 78.37 78.36 70.61
NMI MSAEClust 91.70 84.14 85.22 79.03 74.18
SSC-SR 88.06 83.55 79.32 77.61 74.92
RSS-NMF 92.27 88.20 89.48 85.64 79.57

TABLE 4. The AC and NMI of RSS-NMF, PCA, NMF, GNMF, IDEC, RNMF, Semi-GNMF, CNMF, MSAEClust and SSC-SR on the UMIST dataset.

k 2 5 8 10 20
PCA 69.13 68.81 62.87 55.46 41.08
NMF 72.21 53.78 60.36 60.44 47.32
AC GNMF 78.54 71.00 78.54 69.54 43.01
IDEC 80.42 73.61 74.50 68.42 64.46
. . RNMF 72.42 76.45 81.33 61.28 52.66
Unsupervised algorithms
PCA 79.46 61.62 70.39 68.33 55.34
NMF 80.49 76.26 69.58 62.45 59.69
NMI GNMF 87.16 717.55 75.44 73.98 63.21
IDEC 87.99 84.28 74.23 70.54 69.66
RNMF 89.34 81.11 77.21 79.60 61.54
Semi-GNMF 75.31 69.60 68.13 72.14 50.46
CNMF 84.90 75.50 68.44 69.44 60.22
AC MSAEClust 82.73 78.99 72.46 64.38 65.50
SSC-SR 87.81 84.24 79.02 73.18 64.51
. . . RSS-NMF 88.52 84.33 80.05 71.40 67.58
Semi-supervised algorithms -
Semi-GNMF 77.10 70.41 71.43 54.52 68.33
CNMF 91.33 80.54 79.65 75.74 60.45
NMI MSAEClust 88.73 84.42 85.90 78.22 68.00
SSC-SR 91.85 86.44 86.30 78.46 69.58
RSS-NMF 90.42 87.07 88.41 76.94 69.81

3) UMIST DATASET
The UMIST database [22] contains 575 of 20 distinct subjects
taken in different poses from profile to frontal views. All
images are down sampled to a size of 40 x 40 pixels and
reshaped to a vector.

Table 4 shows that RSS-NMF and SSC-SR outperform the
other algorithms. Although RNMF performs well for sev-
eral clusters, its accuracy declines as the number of clusters
becomes higher. According to experimental results, we notice
that with the number of categories k varying from 2 to
20, both accuracy and normalized mutual information of all
algorithms decrease. It is necessary to carry out sufficient

134006

experiments for each k each datasets, thus the clustering
results are more compelling.

4) GT DATASET

The GT database [27] contains 750 images of 50 people
taken in two or three sessions. All people in the database are
represented by 15 color JPEG images with cluttered back-
ground taken at resolution 640 x 480 pixels. The pictures
show frontal and/or tilted faces with different facial expres-
sions, lighting conditions and scale. In our experiments,
the average size of the faces images is normalized to 150x 150
pixels.
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TABLE 5. The AC and NMI of RSS-NMF, PCA, NMF, GNMF, IDEC, RNMF, Semi-GNMF, CNMF, MSAEClust and SSC-SR on the GT dataset.

k 2 5 10 30 50
PCA 78.26 62.34 64.45 56.48 60.38
NMF 71.95 63.90 66.38 52.20 54.77
AC GNMF 76.08 79.66 58.07 63.44 63.36
IDEC 78.92 77.53 72.86 62.77 60.38
. . RNMF 87.93 75.40 67.72 70.33 64.05
Unsupervised algorithms
PCA 84.33 717.70 63.43 59.55 57.21
NMF 79.95 77.84 69.97 61.03 60.48
NMI GNMF 84.07 74.41 67.00 60.36 71.36
IDEC 82.73 83.64 77.49 76.08 72.11
RNMF 85.54 89.86 79.23 80.54 65.71
Semi-GNMF 71.33 63.24 66.36 65.44 56.98
CNMF 70.66 68.35 60.01 70.49 54.33
AC MSAEClust 79.56 72.82 68.04 69.22 63.66
SSC-SR 82.16 76.41 69.07 68.29 66.18
. . . RSS-NMF 89.33 71.39 70.62 73.40 69.38
Semi-supervised algorithms -
Semi-GNMF 81.27 76.58 71.22 66.36 53.62
CNMF 76.96 70.83 64.99 79.68 58.30
NMI MSAEClust 83.47 84.33 79.56 74.32 70.66
SSC-SR 79.28 77.02 72.89 75.29 68.44
RSS-NMF 90.30 89.62 81.27 77.95 64.86
o .
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FIGURE 2. Objective values versus CPU seconds of MUR and FGD on the
Yale dataset with reduced dimensionality. (a) r = 15. (b) r = 5.

Table 5 presents the accuracy and normalized mutual
information of ten algorithms on the UMIST dataset. Among
unsupervised clustering algorithms, RNMF achieves the best
performance. In semi-supervised algorithms, RSS-NMF per-
forms the best in most cases. In contrast to unsupervised
clustering algorithms, semi-supervised clustering algorithms,
including Semi-GNMF, CNMF, MSAEClust, SSC-SR,
RSS-NMF have obvious advantages in clustering accu-
racy and normalized mutual information. It suggests that
label information plays a key role in improving discrim-
inability of representations and clustering effect. Among
semi-supervised clustering methods, our proposed RSS-NMF
achieves the best effectiveness due to its robust formulation
as presented in section III.

D. CONVERGENCE STUDY OF RSS-NMF WITH FGD
VERSUS MUR
To evaluate the convergence efficiency of our proposed FGD,
we compare FGD with MUR for optimizing RSS-NMF on
Yale, COIL-100, UMIST, and GT database.

Figure 2 shows objective values versus CPU seconds
of FGD and MUR on the Yale dataset with reduced
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FIGURE 3. Objective values versus CPU seconds of MUR and FGD on the
COIL-100 dataset with reduced dimensionality. (a) r = 100. (b) r = 10.
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FIGURE 4. Objective values versus CPU seconds of MUR and FGD on the
UMIST dataset with reduced dimensionality. (a) r = 20. (b) r = 10.

dimensionality of 15 (see Figure 2(a)) and 5 (see Figure 2(b)).
It shows that FGD reduces the objective values more rapidly
and converges to a lower objective values compared with
MUR.

Similarly, Figures 2, 3, and 4 present objective values
versus CPU seconds of FGD and MUR on the COIL-100,
UMIST, GT datasets with different reduced dimensionali-
ties. For each test, the initialization and parameters selec-
tion of FGD and MUR are identical. Through a series of
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FIGURE 5. Objective values versus CPU seconds of MUR and FGD on the
GT dataset with reduced dimensionality. (a) r = 50. (b) r = 10.

comparison experiments, we observe FGD converges in
less time and obtain smaller loss function values than
MUR. Thus, we conclude that FGD works well for
optimizing RSS-NMF and usually converges to a local
minimum.

V. CONCLUSION

In this paper, we propose a robust semi-supervised NMF
(RSS-NMF). RSS-NMF is robust to outliers by using the
L>/Li-norm and incorporates few labeled examples by uti-
lizing the structured normalization. In this way, RSS-NMF
can learn from labeled and unlabeled data and obtains a more
disciminating power representation space for data. In order to
optimize RSS-NMF, We firstly introduce an MUR algorithm
and theoretically show its convergence, and then propose
an FGD algorithm to accelerate MUR. We also prove the
convergence of FGD, and show that they converge to a
stationary point. Empirical studies show that FGD is more
efficient than MUR in optimizing RSS-NMF. We experi-
mentally verify that RSS-NMF outperforms both unsuper-
vised and semi-supervised models in terms of clustering
performance.

APPENDIX A
PROOF OF THEOREM 1

Proof: For the convenience of presentation, we construct
an auxiliary function f(x) = +/1 +x2 — 1 — |x|. Since the
absolute function is non-differentiable at zero, we prove in

Lo e / _ X —

two cases: (i) if x < 0, we have f'(x) = N +1 =
11—,/ 1-)‘:-% > 0. Thus, f(x) is an increasing function in the
range (—o0, 0), and f(—o00) < f(x) < f(0); and (ii) if x > O,
we have

flx) = «/117 -1 = 1+2 — 1 < 0. Thus, f(x) is

a decreasing function in the range (0, +00), and f(400) <
f&x) < f(0).
Since lir}_l V14 x2 — x = 0, we know that f(4+00) =
X—> 100

lirJIrl MJi+x2 — 1 —x = -1 and f(-o0) =
X—> 100
lim V1+x2—14+x= lim ~/14+x2—-1—x=—1.

X—>—00 x—>+400
By summarlzmg the above two cases and the additional case

when x = 0, we know that —1 < f(x) < 0. Therefore,
we have 7% p(x) < [Ix|l1 and [Ix|[1 — 27, p(xi) < m.
This completes the proof.
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APPENDIX B
PROOF OF THEOREM 2
Proof: Let M; = 1

[1+(v—wiHn?
o ((v-wnr),) - So(wv-wer,)

i i

1 2
-5 | XM (v—wa)

we have that

y

ZM’ (V- W'H"),

:Z(\/1 (V- Wfo+l \/1+(V W’H’)
ij

(V- wiH)? (v —wa);

2\/1 + (V= WIHD] 2\/1 +(V —WH]

JU+ (v = e
—\/1 +(V — WIHD]

721+ v - W
<0. (48)

Since the previous H' is fixed, the matrix M is also fixed,
the MUR algorithm (18) intrinsically optimizes the weighted
non-negative least squares model [1], i.e.,

: t t 2
min ZM,,(V — W'H);. (49)
[}

According to [1], we know that the objective function
decreases under the MUR (18), i.e.,

S MV - wiHT < ZM’(V W'H');.  (50)

By combining (48) and (50), we have
D oV = WH) <3 p((V = WIHY). (51

This completes the proof.

APPENDIX C
PROOF OF LEMMA 1
Proof: The first equality is strict as the normalization

(23) and (24) does not change the objective value. We con-
centrate on proving the next two inequalities. Taking the last
inequality for example, we prove at the following two steps:

(1) When the step size ﬂfq = 1, let the updated value of
(20) to be

-1

H
Wi (—2E s

Vi+v—way

j_‘lt—H —H —

oVygF(W' H").

(52)
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At this step, we prove that F (W', FI’“) <F (W' H"). Let

M= ——1 , we consider the following formulation,
v [14+(V=W!H)

i.e.,

F <Wt, ﬁl‘+1> —F (Wt, Hl‘)

1 t tryt+1 2
-3 ZM,-J-(V—WH )
ij

ij
ZM’ vV-w H)
s ((r-w) ) -Sao-wm)
- Z\/l +(V = W) — Z\/l +(V — WH;
ij y

1 (V _ th’:’lt-i-l)?j

71+ (V= WiHn?
2
(V- Ww'H");

71+ (V= WiH?

~ 2
JU+ (v = wik)
— 1+ v = wiH?

7 -2 /1+ (v - WiHY
<0, (53)

where the last equality is derived in a similar way as (48).
From (53), we have

~ 1 ~
t t+1 t 1 t trrt+152
FW' HTY_—FW' H") < 3 ZMU(V—WH )5
ij
13 tyrrtN2
= DMV — WH'
=
(54)
Therefore, it suffices to prove the following inequality
ZM (V= WHHE ="MV — WH') | <o0.
ij
(35)
Towards this end, we divide the inequality into n separate
inequalities because it is the sum of n functions, each of which

relates to one column of H. Hence, it suffices to consider any
column 4 and prove the following inequality

(Zm(v WiRt+!)? Zm(v th) 0, (56)
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where m',v, 7' and h' are the corresponding columns of M,
V,H'*! and H', respectively.

Let f(h) = % | m" o (v — W'h) ||%, we obtain the partial
derivative of f (h) ath' as Vy,f (h') = W’TDﬁn(W’h’ —v), where
D!, = diag(m") is a diagonal matrix that puts the elements of

m'in the diagonal entries. According to (22), we have
_ h if Viof (B'), >0
h;( k* 1 wf ( ) k= (57)

max {h}, o}, if Vif (hf)k

Let
I = {k|h}, > 0, Vif (W')x # 0or hl, =0, Vif (W) < 0}
= {kih > 0. Vif (h' )i # 0)
denote the indices of the elements of A’ that do not satisfy the

K.K.T. conditions (38).
Define an auxiliary function

G (1) = (i) + (h—h')] Vif ('),

3 (=) D 1), (= K, (58)

where D(h',m',I) is a diagonal matrix whose diagonal
entries are defined as

(W’TD‘mW’ﬁ[>k+8 .

D 1)y = | kel

0, ifkgl.

(59)

Since D(h', m', Iy is positive definite, G(h, h') is a strictly
convex function of 4;, and the unique minimal of G(h, h')
satisfies

D, m, Dy (h — kD + Viuf (W) = 0. (60)
From (60), we have

argminG (h, h')

hy
— 1y —D (W, m', 1), Vuf (i),
—t
= hj — i — o Vif (1),
(WZTDan’h )1 +s
= it 61)

Letl’={1,...,r}/I = {kmz = 0 or Vif (h')r = 0} denote
the indices of & excluding /.According to (22), it is obvious
that 7t = i,

Since f(h) can be written as a quadratic function

Fy=f (1) + (h— 1) Vuf (')
+ % (h—1) W' DLW (h— ). (62)
For any h with iy = h!,, we consider the following function
G (h ') =) = (h— 1), Vif (i),
3 (= 1)) D (i 1) (1 ),
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— (h=h")" Vif ()
- % (h—n) W' DLW (h—h')
- % (h— )] (D (K m', 1)
— W DLW D (h = 1), (63)
Since, for any k € I, we have
t Tt it
(o @t om 1) —w'DLw")
(W’TDinW’Et> +3
_ k . Tt gt
- v (W D'\w )
1

T -t T =1
(W D, W )k +6— (W D,'ﬂwf)kk i,

kk

T
>0, (64)

where the matrix (D(A', m', I) — WtTDant )i is positive
definite. Thus, according to (63), we have

G (h, ') —f(h) = 0. (65)
By substituting i+ into (65), we have
FRTY < G ) < G WY =f (B, (66)

where the second inequality is derived by (61). It implies that
(55) is satisfied.

Therefore, we have 2(ZUM (V
XMV — WIHE) <
F(W!, H'+‘) <F(Wf HY).

(2) When the step size is