
SPECIAL SECTION ON URBAN COMPUTING AND INTELLIGENCE

Received July 10, 2019, accepted September 1, 2019, date of publication September 13, 2019,
date of current version September 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941371

Effect of Event-Based Sensing on IoT Node
Power Efficiency. Case Study: Air Quality
Monitoring in Smart Cities
CARLOS SANTOS , JOSÉ A. JIMÉNEZ, AND FELIPE ESPINOSA, (Senior Member, IEEE)
Electronics Department, University of Alcalá, 28871 Alcalá de Henares, Spain

Corresponding author: Carlos Santos (carlos.santos@uah.es)

ABSTRACT The predicted growth of urban populations has prompted researchers and administrations
to improve services provided to citizens. At the heart of these services are wireless networks of multiple
different sensors supported by the Internet of Things. The main purpose of these networks is to provide suffi-
cient information to achieve more intelligent transport, energy supplies, social services, public environments
(indoor and outdoor) and security, etc. Two major technological advances would improve such networks in
Smart Cities: efficient communication between nodes and a reduction in each node’s power consumption.
The present paper analyses how event-based sampling techniques can address both challenges. We describe
the fundamentals of the triggering mechanisms that characterise Send-on-Delta, Send-on-Area, Send-on-
Energy and Send-on-Prediction techniques to restrict the number of transmissions between the sensor node
and the supervision or monitoring node without degrading tracking of the sensed variable. At the same time,
these aperiodic techniques reduce consumption by sensor node electronic devices. In order to quantify the
energy savings, we evaluate the increase achieved in the average lifetime of sensor node batteries. The data
provided by Smart City tools in the city of Santander (Spain) were selected to conduct a case study of themain
pollutants that determine city air quality: SO2, NO2, O3 and PM10. We conclude that event-based sensing
techniques can yield up to 50% savings in sensor node consumption compared to classical periodic sensing
techniques.

INDEX TERMS Air quality monitoring, event-based sampling, sensor energy saving, smart cities technolo-
gies, wireless sensor network.

I. INTRODUCTION AND MOTIVATION
According to predictions, two-thirds of the world’s popula-
tion will live in cities by 2050 [1], [2]. Although there are
several interpretations of the Smart City concept [3]–[10],
the main goal is to achieve better use of public resources
by means of digital and telecommunications technologies,
increasing the quality of services offered to inhabitants, pub-
lic administrations and businesses.

Sensing is at the heart of Smart Cities, and is used to
monitor variables related to a plethora of applications for
the environment, health care, transport and mobility, house-
hold energy consumption, security and surveillance, etc. [11].
Special mention should be made of battery-powered wireless
sensor networks (WSN), due to their capacity for ubiquitous
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real-time sensing. A WSN can generally be described as a
network of nodes that cooperatively sense and may control
the environment, enabling interaction between individuals
or computers and the surrounding environment [12]. How-
ever, WSNs present two constraints compared to classical
wired networks: instability in communication and energetic
autonomy [13].

The Smart City paradigm is supported by the Internet of
Things (IoT), i.e. by a communication infrastructure that
provides unified, simple and economical access to a profusion
of public services, thus unleashing potential synergies and
increasing transparency to citizens, companies and public
administrations [14]–[17]. Some of the typical urban services
that are enabled by the IoT paradigm include the structural
health of buildings, waste management, noise monitoring,
traffic congestion, energy consumption, smart parking, smart
lighting, automation, the health impact of public buildings
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and air quality. Together with gateway and cloud solutions,
sensor nodes comprise the basic IoT architecture, and some
of the main associated challenges include protocols and stan-
dards, privacy and security, technological compatibility and
power management [18]–[20].

The basic operation of a sensor node is as follows. Amicro-
controller receives data from the sensor and processes them
accordingly. Then, the wireless transceiver (RF module)
transfers the data to enable physical communication. In this
process, the transmission of data is responsible for the great-
est energy consumption [18], [21]. Multiple open source
sensor nodes are available to the research community. Some
of the most widely used sensor nodes are Mica2, TelosB,
Stargate and IMote 2 [4]. Although technology based on
microelectromechanical systems has achieved a reduction in
sensor node consumption, their autonomy still depends on
a battery; consequently, research on strategies to increase
battery autonomy is of great interest. Unlike other networks,
inWSNs it can be hazardous, very expensive or even impossi-
ble to charge or replace exhausted batteries, due to the hostile
nature of the environment. There are several areas in which
the challenge of energy autonomy inWSNs can be addressed:
sensor node size and consumption, internal (battery) and
external (ambient energy harvesting) energy sources, com-
munication techniques (BLE, 6LoWPAN, LoRa, SigFox,
etc.), duty cycling and data reduction [13], [22]–[24].

One of the main aspects to consider when evaluating node
energy consumption is the choice of RF technology. In [25],
an energy efficiency study is presented of the different wire-
less communication technologies applicable to IoT, analysing
short-range (WiFi and ZigBee) and long-range (GSM, LoRa)
technologies. The study found that the choice of transmission
module is decisive for battery lifetime and that the com-
munication technology ultimately depends on the distance
range required by the application, besides other factors such
as latency, number of messages to transmit, throughput and
cost. The data reduction techniques proposed in the litera-
ture can be classified into three categories according to the
data-handling step: production, processing and communica-
tion [26]. In [27], the backcasting method is implemented
in the fusion centre to activate or not a node according to
the correlation between the data sensed in the environment;
the central node detects the data characteristics and sends the
appropriate sampling rate to sensor nodes. The work [28]
deals with the algorithm Adaptive Frequency based Sam-
pling to regulate sampling frequency of sensor nodes in dif-
ferent clusters dynamically following the change of signal
frequency. The key idea is to measure periodic signal fre-
quency online in different clustered region, afterwards adjust
signal-sampling frequency following with minimal necessary
frequency criterion. The work considers an adaptation mech-
anism based on the frequency not on the level of the tracked
data. In [29] authors propose an adaptive sampling algorithm
based on temporal and spatial correlation of sensory data for
clustered WSNs. This strategy is interesting for sophisticated
collection processes of sensory data, which consume more

energy than traditional transmission processes. That is the
case of image and video acquisitions, but not of air quality
monitoring.

Most monitoring applications based on sensor networks
rely on a time-based philosophy whereby readings are car-
ried out with a given sampling frequency [30]. To min-
imise the associated problems, upcoming standards (IEEE
802.3az, 802.11ah, etc.) introduce discontinuous transmis-
sion/reception cycles with short wake-ups and large sleep
ranges. A further step is proposed in [31], whereby inter-
connecting devices exchange data only when a particular
event (alarm) has been triggered, and both distributed and
centralised strategies are evaluated by simulation. Regarding
the receiver node, if a prediction model of the sensed process
is provided, some of the data can be predicted instead of mea-
sured at the inter-sampling times [23], [32]. A compression
and transmission strategy with the objective of prolonging
lifetime of sensors while guaranteeing a desired reconstruc-
tion accuracy of the tracked data is described in [33]. Sam-
pling compression, data compression and communication
compression are the pillars of the strategy to prolong the
lifetime of IoT networks for monitoring applications while
satisfying given QoS constraints. The proposal contributes to
reduce the energy consumed by the transceiver but demands a
high-energy cost due to computational complexity even when
the sensed data are not transmitted. In aperiodic sampling
schemes, sampled data are only transmitted when a threshold
is violated, which means that fewer sampled data are trans-
mitted, thus achieving better resource utilisation [34]–[36].

In the context of Smart Cities, WSN and IoT, the present
study examines the event-based sensing approach, i.e. the
sensed variable is only transmitted when a relevant change
is detected, without degrading signal tracking at the remote
monitoring node. This ensures low computational cost and
significant savings in sensor node power consumption what
increases battery lifetime. This paper evaluates the effect of
different measurement-based sampling techniques on reduc-
ing the consumption of commercial sensor nodes. To this end,
a case study is conducted of the city of Santander (Spain)
using the periodic data on several environmental pollution
parameters provided by this Smart City’s services. For a
detailed quantitative analysis of IoT node power consump-
tion, an assessment is conducted of the commercial electronic
devices comprising the main node parts (sensor, micropro-
cessor and communication module) to ensure that the con-
tribution of different event-based techniques to IoT node
battery lifetime is quantitatively evaluated. The results are
then compared with those obtained by means of the classi-
cal time-based alternative. Lastly, the study conclusions are
presented.

II. OVERVIEW OF EVENT-BASED SENSING
ALTERNATIVES
Event-based sensing forms part of the event-driven paradigm,
which has aroused considerable research interest in recent
years. It is especially interesting in the context of wireless
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FIGURE 1. Send-on-Delta sampling mechanism.

networked sensor and control systems due to its capacity
to reduce interactions between spatially distributed nodes,
in contrast to classical periodic sampling [34], [37]. Basically,
event-driven sampling reduces sensor node use while main-
taining satisfactory observation accuracy.

In WSN event-triggered sampling, aperiodic or asyn-
chronous sampling schemes update information only when
a relevant change in the measurement is detected. The
triggering mechanism can be activated in the sensor node
(measurement-based or threshold-based sampling) [37], [38]
or in the remote centre (variance-based sampling) which
requests the measurement [39], [40]. The most well-known
measurement-based sampling patterns are: Send-on-Delta
(SoD) [38], Send-on-Area (SoA) [41], Send-on-Energy (SoE)
[42] and Send-on-Prediction (SoP) [43].

The simplest event-based sampling method is the SoD
or constant amplitude difference sampling; this sampling
technique updates the measurement when it reaches a given
difference with the previous sample sent. Where s(t) is a
continuous-time signal to be sensed, the new sampling instant
ti is obtained when the signal deviates from the last sampled
update s(ti−1) by a threshold level 1SoD,

ti = min{t > ti−1||s(t)− s(ti−1)| = 1SoD}. (1)

Thus, the lower the 1, the higher the number of samples and
the resolution of the signal tracking (see Figure 1).
Previous works [43] and [44] present an improved ver-

sion of prediction-based Send-on-Delta (SoP). In this case,
s(t) is only updated if it deviates from the predicted value
ŝ(t) based on the most recent updated sample s(ti−1) by the
threshold 1SoP,

ti = min{t > ti−1||s(t)− ŝ(t)| = 1SoP}, (2)

where ŝ(t) is the predicted value at t derived from the trun-
cated Taylor series expanded at ti−1 (see Figure 2):

ŝ(t)=s(ti−1)+ṡ(ti−1)(t − ti−1)+
s̈(ti−1))

2
(t − ti−1)2+. . . .

(3)

where ṡ(ti−1) and s̈(ti−1) are the first and second time-
derivatives respectively.

FIGURE 2. Prediction-based Send-on-Delta sampling mechanism.

FIGURE 3. Send-on-Area sampling mechanism.

An extension of SoD is integral sampling or SoA [41].
The triggering criterion is to sample when the integral of
the absolute difference between the current signal value s(t)
and the last sample s(ti−1), accumulated over the interval
(ti − ti−1), reaches the threshold 1SoA,

ti = min{t > ti−1|
∫ ti

ti−1
|s(t)− s(ti−1)|dt = 1SoA}. (4)

This sampling technique is depicted in Figure 3.
A further extension of previous schemes is the SoE

paradigm [42]. Following this criterion, a new trigger appears
when the energy of the difference between the signal value
s(t) and the most recent updated sample s(ti−1), accumulated
over the interval (ti − ti−1), reaches the threshold 1SoE :

ti = min{t > ti−1|
∫ ti

ti−1
(s(t)− s(ti−1))2dt = 1SoE }. (5)

A graphical representation of this sampling mechanism is
sketched in Figure 4.

III. CASE STUDY: AIR POLLUTION MONITORING
IN SANTANDER
Clean air is one the main city staff challenges to guarantee
a sustainable and healthy future. Around 91% of the world’s
population lives in places where air pollution levels exceed
World Health Organisation (WHO) limits [45]. For this rea-
son, we focus on air pollution as a case study to evaluate the
benefits of our smart sensing proposal.

Santander is a benchmark Smart City in Spain. Exam-
ples of smart sensor network applications in Santander
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FIGURE 4. SoE sampling mechanism.

include traffic management, irrigation optimisation for parks
and gardens, waste management and air pollution [46]. For
mobile environment monitoring, besides measuring parame-
ters at static points, devices located on vehicles are used to
collect data on environmental parameters such as SO2, NO2,
O3 and PM10, associated with given parts of the city. About
150 devices are installed on public vehicles such as buses,
taxis and police cars. The accessibility of data on these param-
eters via the Smart Santander platform enabled us to use them
as a proof-of-concept to validate the benefits of event-based
sensing in Smart City applications. Here, we analyse air pol-
lution measurements collected throughout October 2018 and
compare the effect of the different event-based strategies on
the number of transmissions over the wireless sensor network
and on IoT node consumption in comparison with 15 min
periodic updating in Santander [46].

WSN applications are usually implemented in digital
devices and algorithms are processed in discrete time instead
of in continuous time. In our case, we discretize Equa-
tions (1)-(5) regarding the before mentioned event-based
sampling methods. We choose the same 1 value for a fair
comparison among the aperiodic sensing techniques. There-
fore, the i-th triggering time ti is calculated, by the tracking
error between the sampled signal sk and the last sent si−1 to
the remote node, as follows:

SoD: i = min{k > i− 1||sk − si−1)| ≥ 1}. (6)

The discrete integration for SoA and SoE is periodically
evaluated by the summation and it is sample normalized.

SoA: i = min{k > i− 1|
k∑

j=i−1

|sj − si−1| ≥ 1}. (7)

SoE i = min{k > i− 1|
k∑

j=i−1

(sj − si−1)2 ≥ 12
}. (8)

The signal predictor formulation derives from the linear
discretization of the Taylor expansion:

SoP: i = min{k > i− 1||sk − ŝk )| ≥ 1},

ŝk = si−1 + (si−1 − si−1)(k − (i− 1)), (9)

where si−1 is the previous sample to the transmitted si−1.

TABLE 1. Comparison of different sampling strategies using number of
updates and mean absolute error as performance parameters.

To evaluate aperiodic sampling performance, we calcu-
lated the tracking error of the different aperiodic sampling
techniques compared to the periodic one using the mean
absolute error (MAE),

MAE =
1
N

N∑
i=1

|s(ti)− s(t)|, (10)

where N is the size of the dataset. The threshold established
by the designer implies a trade-off between the number of
system updates (with the consequent energy costs) and the
tracking error of the signal.We set a reference threshold equal
to 10% of each air pollutant critical value, taking into account
the recommendations of the World Health Organisation [47]:
1PM10 = 5µg/m3, 1SO2 = 2µg/m3, 1NO2 = 20µg/m3 and
1O3 = 10µg/m3.

Table 1 summarises the effect of different sampling strate-
gies applied to air qualitymeasurements registered in the San-
tander region in Spain (Santander and Reinosa cities) [46].
The number of updates and MAE are the parameters selected
to evaluate the performance of each alternative.

We use the periodic sampling method as the relative per-
formance reference (MAE = 0) with 2976 updates (31 days
x 24 hours/day x 4 updates/hour). For all the air pollutants
under study, the SoD method yields the lowest number of
wireless channel accesses and the SoA the best tracking
error. However, from the designer’s point of view, there
are intermediate alternatives balancing updates number and
tracking error.

Figure 5 shows the Santander City PM10 data periodi-
cally sampled over one month, as well as the updates per-
formed by the different event-based sampling alternatives.
In this figure, it can be appreciated how in the zone around
sample 2500, when the signal has low variation, only the
SoA and SoE techniques generate new triggers due to their
cumulative character in which sampling errors are integrated
over time.

To better appreciate the effect of different event-based sam-
pling techniques we present Figure 6. It shows a zoom of the
first 50 samples, in the upper graphic the signal captured by
the sensor and the prediction applied with SoP are presented,
in the middle graphic we show the sampling instant regard-
ing each sampling method and finally in the lower graphic
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FIGURE 5. PM10 periodically sampled data in Santander City and updates performed by the different event-based
sampling strategies (SoP, SoE, SoA and SoD).

FIGURE 6. First 50 periodic samples of PM10 recorded in Santander City and updates performed by the
different event-based sampling strategies.

the evolution of the sampling error periodically evaluated
according to the different triggering mechanism. As can be
appreciated, SoD only takes into account the last transmitted

sample and SoP the slope of the signal in the last triggering
instant; however SoA and SoE accumulate the error signal
and its quadratic value respectively.
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FIGURE 7. Electronic architecture of IoT nodes for air quality monitoring in Smart City applications.

IV. IoT NODE CONFIGURATION FOR AIR QUALITY
MEASUREMENT
The goal of this paper is to quantify the effect of event-based
sensing strategies on IoT node power efficiency using air
quality monitoring in Smart Cities as a case study. Having
described the event-based sensing strategies, we now present
the IoT node electronic configuration that enabled us to eval-
uate power consumption and battery lifetime. As mentioned
previously, the main elements of an IoT node are the sensor,
digital processor and communication module.

In general, Smart City applications are insensitive to
latency because the data volume is moderate and delays in
message delivery are negligible, indicating that range and
consumption are priority challenges for selecting the commu-
nication module. Taking this and recently published studies
on LoRaWan [48], [49] into account, the LoRaWan was
selected for this study.

Unlike short-range technologies (Wifi or Zigbee), in which
consumption by commercial electronic devices is significant,
with LoRaWan, consumption by these same devices is not a
discriminating factor [50]–[52]. The Semtech 1272 module
was chosen for this study because it has been one of the most
widely used devices in previous research [53]–[57]. The con-
sumption of LoRaWan devices depends on several factors:
configuration of the physical layer parameters (Spreading
Factor [SF], Bandwidth [BW] and Code Rate [CR]), data
rates, transmission with or without acknowledgement, pay-
load size, bit error rate (BER), number of collisions and the
LoRaWan device class (class A, B or C) [49], [54]–[56], [58].
The combination of the parameters SF, BW and CR deter-
mines the range and transmission rate, as well as the overload

for data detection. Therefore, power consumption depends on
configuration and the device class. In the context of Smart
Cities and energy consumption, we selected a class A module
from the Semtech 1272 family, because class A devices have
the lowest power consumption. For Smart City applications,
its nominal consumption is about 30 mA [52]–[54], and each
transmission takes approximately 3 seconds [57]–[59].

With regard to the selection of sensors, it should be
noted that their consumption could have a significant impact
on total node consumption. This circumstance is accentu-
ated in the case of sensors used for air quality measure-
ment in IoT Smart City applications [60]. These sensors
are generally characterised by high consumption related to
the required pre-heating to provide stable measurements.
Depending on the manufacturer, consumption varies from
50 ÂţW to 180 mW. In addition, several hours are required
in some cases to reach the optimum operating temperature,
rendering such sensors unfeasible for IoT applications. For
our study, we analysed gas (SO2, NO2, O3) and particle
(PM10) sensors from Spec Sensors. These present the lowest
consumption of all similar commercial products (45 ÂţW
maximum), a lower pre-heating time (60 min recommended)
and a response time of less than 30 seconds [61].

The microcontroller decides when to take sensor mea-
surements and sends the information via SPI to the LoRa
radio communication module. The microcontroller selected
for this study was the ATmega328 [62], one of the most
popular digital processors in research on IoT applications
[53], [63], [64]. It takes 5 seconds to perform the measure-
ment, process it and send it to the LoRa RF module for
transmission.
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TABLE 2. Current consumption and timing parameters of the IoT node
electronic devices per measurement cycle.

How does the sampling strategy affect node consumption,
and therefore node battery lifetime? To answer this ques-
tion, we propose the electronic node configuration shown
in Figure 7, which quantifies the improvements of aperiodic
sampling strategies.

As can be seen, besides the three main components of an
IoT node (sensor, microcontroller and RF module), we also
used one 3.3 V voltage regulator TPS63060 [65], five ana-
logue switches TS5A3166 [66] and one nano-power system
timer TPL5110 [67]. The voltage regulator powers all IoT
node components. The five switches maintain those com-
ponents with the highest consumption (microcontroller and
LoRa transmissionmodule) deactivated (Off state) in the time
intervals without measurement, and activates them (On state)
every time of measurement (Tm = 15 min). The sensors
are always powered because, as indicated above, they require
about 60 min warm-up before providing stable measure-
ments [61].

Table 2 presents the nominal consumption and active
time over each measurement cycle of the electronic devices
comprising the node architecture, for a measurement cycle
of 15 minutes (900 s). The sensors, voltage reference, timer
and switches are permanently powered; however the micro-
controller is only activated every 15 minutes to perform and
process measurements for 5 s, and the LoRa RF module is
only activated to perform data transmission to the IoT target
for 3 s. To calculate the average consumption we apply

Im = Cm_permanent + Cm_CPU + Cm_LoRa1272, (11)

where Cm_permanent is the consumption of the electronic ele-
ments that require permanent power: the TPL5110 timer,
TS5A3166 switches and TP63000 voltage reference; so that

Cm_permanent = CTPS6300 + 5 CTS5A3166
+ 4 CSensors + CTPL5110. (12)

The average consumption of the CPU (Cm_ATmega328) and
the LoRa RF module (Cm_LoRa1272) depends on the number
of measurements taken (one every 15 minutes, or 2,976 per
month) and the number of transmissions respectively:

Cm_ATmega328 =
Nmeas_month CATmega328 tATmega328

smonth
, (13)

TABLE 3. Effect on energy saving of event-based sampling alternatives
compared to periodic sampling by Santander Smart City tools [46].

Cm_LoRa1272 =
NTX_month CLoRa1272 tLoRa1272

smonth
. (14)

where smonth is the number of seconds per month, Nmeas_month
the number of measurements per month, NTX_month the num-
ber of transmissions per month, CATmega328 and CLoRa1272 the
nominal consumption of the CPU and RF module respec-
tively, finally tATmega328 and tLoRa1272 represent their active
times.

Working with the expressions from (11) to (14), average
consumption in the case of periodic transmissions is 77.5 µA
for the permanently powered elements, 100 µA for the CPU
connecting every 15 minutes to capture and process measure-
ments and 100µA for the LoRa RFmodule. The average total
consumption for periodic transmissions is 190 µA.

The consumption study was performed assuming the use
of a rechargeable lithium-ion battery (Li-Ion) of 6600 mA-
h with a 3.7 V nominal voltage, similar to that used by
Waspmote Libelium modules [68]. Battery lifetime (Blifetime)
depends on the nominal charge and on the average current
supplied to the electronic devices it supports. The following
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expression is used to quantify this lifetime:

Blifetime =
Chargebattery

Im
=

6, 600mAh
Im

. (15)

To evaluate sensor node performance according to the
different sampling strategies, several parameters are consid-
ered: number of transmissions per month, average consump-
tion, battery lifetime, percentage of transmission savings
compared to periodic sampling and tracking error. Table 3
summarises the comparative study applied to four pollutant
emissions registered by Smart City tools in the Santander
region in Spain (Santander and Reinosa cities): a) PM10, b)
SO2, c) NO2 and d) O3. Table 3 confirms that, independently
of the air pollutant, the less updates number on the wireless
channel the more energy saving at the sensor node. Besides,
for the designed electronic implementation the average con-
sumption saving achieves values between 37% and 51%,
what means an increase close to the 100% in the battery
lifetime.

V. DISCUSSION AND CONCLUSION
Numerical and graphical paper results focus on different
items to compare the effect of periodic and aperiodic (SoD,
SoA, SoE and SoP) sampling strategies to remotely monitor
changes over time in air pollutants in a Smart City. Air quality
guidelines [47] list four common air pollutants: inhalable
particles with diameters up to 10 micrometres (PM10), ozone
(O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2). For
this study we used the periodically sampled data available for
Santander and Reinosa cities [46]).

In the present study, the triggering threshold (1) was equal
to 10% of the critical values given by the World Health
Organisation [47]. Using the same threshold and comparing
the sampling techniques based on the difference between the
sensed signal and the last transmitted one (SoD, SoA and
SoE), Send-on-Delta yields the highest transmission savings
with respect to periodic sampling, but also the highest track-
ing error assessed by the MAE factor (see equation (10)).
SoA offers the best sampling accuracy but the price to pay
is a high number of transmissions. The designer can select
intermediate alternatives with SoE and SoP.

On top of that, the main contribution of the paper is to
quantify the triggering mechanisms effect on the saving con-
sumption of the sensor node proposed for this Smart City
application. From an electronic point of view, the perma-
nently powered devices (sensors, voltage reference, switch
and timer) only require a low current but their contribution to
total consumption can be significant for high inter-sampling
times. Of all the devices integrating the electronic design
shown in Figure 7, the key one to understand the global con-
sumption is the RF module. The evaluated hardware arqui-
tecture clearly illustrates the interest of aperiodic sampling
mechanisms, providing consumption saving rates up to 50%
and extra battery lifetimes that can even duplicate the current
ones with classical periodic sensing.

Summing-up, classical periodic sampling is not the best
alternative for measuring air quality in Smart Cities. As has
been analyzed, most of the asynchronous or aperiodic solu-
tions help reduce the number of transmissions and extend
sensor node battery lifetime.

In future work, we intend to apply predictive techniques
based on artificial intelligence as triggering mechanisms for
aperiodic sensing. The idea is to transfer the main computa-
tional load to a remote center instead of the current local pro-
cessing at themultiple sensor nodes, this waywewill try to go
on increasing the efficiency of battery-powered IoT networks.
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