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ABSTRACT For large-scale distribution networks (DNs) with distributed generations (DGs), the conven-
tional centralizedVolt/Var optimization and control (VOC) have high demand for online computing resources
and efficiency. This paper proposes a new decision-making method for the distributed VOC (D-VOC) based
on a two-layer collaborative architecture. First, for a distributed equivalent load system with on-load tap
changer (OLTC), this paper studies how to minimize the active power loss and reach the target voltage of
load side for the equivalent load system. Second, a concept of virtual soft controller (VSC) is presented based
on the distributed equivalent load system, and the local optimal control strategies of VSCs are designed to
realize the D-VOC in DNs. On this basis, a two-layer collaborative architecture for the D-VOC is designed.
VSCs could be built in virtual or real deployment at nodes where reactive power sources or reactive power
compensation devices are equipped, and they are at the bottom layer of the architecture. VSCs upload their
distributed decision results to the local control center (LCC) which is at the top layer of the architecture. The
LCC systematically verifies and authorizes each VSC to execute its own operational instruction. Case study
on the modified PG & E 69-bus distribution grid shows that the method is feasible and has satisfactory
efficiency.

INDEX TERMS Distribution network, distributed optimization and control, reactive power, voltage, two-
layer architecture, virtual soft controller.

I. INTRODUCTION
The rapid growth of the national economy and the improve-
ment of people’s living standards have led to the increase
of electricity demand, resulting in series of problems such
as system stability, power quality and reactive power opti-
mization [1]. The fossil energy is exhausting and the environ-
ment problem is more serious. Renewable energy generation
(REG) has become an international research hotspot because
it is clean, environmentally friendly, and low-cost. Compared
with thermal or hydro power generation, however, REG is
intermittent and uncertain, and poses well-known technical
challenges for power network operation [2]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Liu.

The conventional distribution network (DN) is a radial
system with unidirectional power flow. Because of the high
proportion of distributed generation (DG), the characteris-
tic of reactive power and operation condition have changed
dramatically in DN [5]. In particular, voltage deviation and
overload will seriously affect the stability and reliability of
network [6]–[8]. It is difficult and expensive to tackle these
problems through upgrading lines and increasing Var equip-
ment. Therefore, it is necessary to study new method of
Volt/Var optimization and control (VOC) to solve series of
problems for high proportion integration of DGs [9], [10].

It is obvious that approaches to VOC can mainly be classi-
fied into two categories: centralized and distributed strategies.

The most widely used approach is centralized strategy.
For centralized strategy, some approaches are mostly based
on traditional algorithms such as linear programming [11],
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nonlinear programming [12] and interior-point method [13].
Others are based on the artificial intelligent algorithms,
such as genetic algorithm [14], simulated annealing algo-
rithm [15], and particle swarm algorithm [16]. In common,
optimization problem with centralized strategy is solved by
distribution management system (DMS) [17] in a control
center. The control center acquires measurement data of
nodes, the settings of on-load tap changer (OLTC), the set
number of capacitor banks, the reactive power output of
static var compensator (SVC) and so on. The optimization
algorithm is used to solve optimal reactive power flow prob-
lems, and the optimal decision results are sent to Var equip-
ment through remote terminal units [18]. It turns out that
the centralized strategies aim at system global optimization.
For small-scale DNs with unidirectional power flow, it is
theoretically possible to obtain the accurate optimal solutions.
However, there are various drawbacks that might impede the
use of centralized strategies in future [19]. First, the increase
of uncertainties (due to distributed REGs, electric vehicles,
and distributed energy storage system (DESS)) will make
the use of the centralized strategy difficult. The amount of
data that needs to be measured and collected increases the
burden on the communication system and the difficulty of
security defense. Second, the control center acquires a large
amount of data which relies on a perfect communication
network and consumes more storage space. The high demand
for online computing resources and efficiency must be met
when the algorithm is used for centralized strategy. If the
delay due to the data acquisition and transmission is taken
into account, the actual operating efficiency may be lower.
Third, all measurement data needs to be transmitted to the
central control system. Once the central control system is
out of order, the entire management system will collapse.
Consequently, for centralized strategies, it is difficult to fully
comply with the trends of DNs [20].

Decentralized control [21] is a distributed decision-making
strategy by controlling Var equipment (such as OLTC, shunt
capacitor bank, SVC, static var generator (SVG), and DG);
at the same time, through the interaction of a small amount
of key information between the various parts of the network,
the decentralized structures can accomplish the distributed
VOC (D-VOC).

Based on sensitivity analysis, an architecture for the dis-
tributed Volt/Var control is proposed that relies on controlling
reactive power injections provided by DG [22]–[24]. In [25],
a real-time voltage control scheme is proposed by using DGs
which combines a local and a centralized control of their
reactive powers. The local control provides fast response
after a disturbance enhancing voltage quality, and the cen-
tralized control uses measurements collected throughout the
network to keep voltages within specified limits and balance
the various DG contributions. Based on the model predic-
tive control, [26] proposed a centralized control scheme that
was solved in a distributed fashion through the Lagrangian
decomposition algorithm. In addition, the multi-agent sys-
tem (MAS) is one of the important methods of distributed

control [27]–[29]. In [27], the optimization objectives include
maintaining the system voltage within a specified range,
minimizing system loss, and reducing the switching of shunt
capacitors. To achieve these objectives, the shunt capacitor
agent and voltage regulator agent work collaboratively by
using forward/backward sweep method. In [28], a hierarchi-
cal approach is proposed based on distributed multi-agent
systems. The approach combines the primary voltage control
provided by the decentralized controllers of DGs and OLTCs
with a secondary voltage control layer that implements a gos-
sip algorithm in a MAS approach. In [29], the DN is divided
into multi-regions, and the DESS is used as the control agent.
The proposed partitioning algorithm decomposes the DN into
multi zones, and each one is under the control of a single
DESS.

In summary, the distributed decision-making strategy eases
the pressure in computation of the centralized strategy in
DMS for the VOC. Nevertheless, due to the intermittence
and uncertainty of DGs and loads, DMS faces difficul-
ties in some applications when global information may not
be available or accurate [30]. Under this condition, if a
local controller is allowed to perform actions independently,
it may affect the operation of other controllers, Var equip-
ment, or even the entire system. Accordingly, it is also
necessary to design an appropriate coordination strategy to
standardize the operation of each controller.

This paper proposes a new decision-making method for
the VOC in a two-layer collaborative architecture. The virtual
soft controllers (VSCs) at the bottom layer can autonomously
make distributed decisions which must be verified and be
authorized to execute their operational instructions by an
algorithm module of DMS in the local control center (LCC)
at the top layer. In the new collaborative architecture, the ‘‘top
layer’’ is responsible to supervise VSCs and inspect whether
the effect of distributed decision-making is positive, whether
system constraints are violated by VSCs, whether VSCs can
be allowed to execute their operational instructions respec-
tively and so on.

The distributed optimization results of VSCs are obtained
by the distributed optimization algorithm proposed in
this paper. Compared with the centralized optimization,
the distributed optimization algorithm proposed in this paper
occupies fewer computing resources and has a satisfactory
performance of fast computation speed. Moreover, in the
optimization process, several VSCs at the bottom layer can
accomplish optimization calculations in a parallel and inde-
pendent manner, and thus further improve the computing
speed. Therefore, the proposed method can generate dis-
tributed control strategies in a short time, thereby achieving
the aim of improving the voltage profile and reducing system
loss.

The major contributions of this paper are listed as follows:
1) A new two-layer collaborative architecture for the

D-VOC is designed. VSCs are deployed in virtual or real
mode at the bottom layer, which are primarily responsible for
local decision-making calculating and/or decision execution.
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FIGURE 1. Equivalent load system with OLTC.

The top layer is deployed in LCC which is primarily respon-
sible to verify and authorize decision results uploaded by
VSCs.

2) A distributed decision-making algorithm for VSC is
proposed. The algorithm can minimize the active power loss
and reach the target voltage at load node for a distributed
equivalent load system with OLTC.

3) Based on the two-layer collaborative architecture and
the distributed decision-making algorithm, the process of
interaction between the top layer and the bottom layer is
designed, and a new scheme for the multi-period decision-
making is proposed. The scheme can accomplish the rough
and fine optimization in two stages respectively for the long
and short periods, which can not only simplify calculation but
also obtain the results of loss reduction and voltage control.

The remainder of this paper is organized as follows.
Section II gives an equivalent load system with OLTC, and
Section III analyzes target voltage at load side and the min-
imization of active power loss of the equivalent system.
Section IV describes a concept of VSC, a local distributed
controller. The control scheme of VSC which involves
decision-making strategies and optimization algorithm is
designed for the D-VOC. Section V designs a two-layer
collaborative architecture for the VOC. Moreover, according
to the idea of distributed control, the virtual or actual deploy-
ment scheme of VSC is designed and the access to execute
its own operational instruction is set. Section VI describes a
case study on the modified PG & E 69-bus distribution grid.

II. EQUIVALENT LOAD SYSTEM WITH OLTC
In a radial DN, the equivalent load power at a node is the
sum of the local load power of the node and the equivalent
load power of its downstream subsystem. The equivalent
impedance and admittance of the equivalent load is Z2 =
R2 + jX2, and Y2 = G2 + jB2 = 1/Z2 respectively.

Without loss of generality, assume that the equivalent load
is connected to the secondary terminal of an ideal transformer
and the primary terminal is connected to the upstream equiv-
alent source. The equivalent circuit is shown in Fig. 1.

In Fig. 1, voltage and current phasor at the secondary
terminal of OLTC is U̇2 and İ2 respectively; voltage and
current phasor at the primary terminal is U̇1 and İ1 respec-
tively; transformation ratio is 1: n6 α, where n is related to tap
position of OLTC, and α, a constant, is related to connection
mode; voltage phasor of equivalent source is U̇s; the branch

impedance is Z1 = R1+ jX1, including the impedance of
feeder line and the primary winding of OLTC.

III. FUNDAMENTAL FORMULAS OF EQUIVALENT LOAD
SYSTEM
For an ideal transformer, voltage and current phasor satisfy
the following conditions:

U̇2 = nejαU̇1 (1)

İ2 = (1/n) ejα İ1 (2){
U̇2 = İ2Z2
U̇1 = İ1

(
Z2/n2

) (3)

Output current and apparent power of the equivalent source
can be calculated:

İ1 = U̇s/
(
Z1 + Z2/n2

)
(4)

S = U̇sÎ1 = U2
s /
(
Ẑ1 + Ẑ2/n2

)
(5)

With K = 1/n2, splitting real and imaginary parts of (5)
yields (6). P =

[
R/(R2 + X2)

]
U2
s

Q =
[
X/(R2 + X2)

]
U2
s

(6)

where R = R1 + KR2, and X = X1 + KX2.

A. MINIMIZATION OF ACTIVE POWER LOSS FOR THE
EQUIVALENT LOAD SYSTEM
For the equivalent load system, the minimization of
active power loss is equivalent to the minimization of P
in (6). Therefore, the following analysis only focuses on
minimum P.

From the first sub-formula of (6), we observe that the phys-
ical variables affecting P by means of compensation or regu-
lation are: 1) Us, the voltage of the equivalent source; 2) K ,
related to the ratio n of OLTC; 3) the Var compensation of
capacitor bank, SVG and SVC (mainly related to B2).

When other physical variables are fixed, P decreases
monotonously with the decrease of Us. However, Us can be
slightly decreased within voltage limit on the condition that
load distribution and voltage control are not impacted. There-
fore, in the following, the adjustment of Us is mainly used as
an auxiliary means of load voltage control when local Var
compensation and OLTC are limited. As for loss reduction,
controlling the voltage Us should be used moderately when
capability of voltage control is sufficient.

Based on the above analysis, the following will focus on
the other two factors to minimize P.

1) K-VALUE CONDITION FOR MINIMUM P
Based on the first sub-formula of (6) and the necessary con-
dition ∂P/∂K = 0 for minimum P, (7) can be deduced.

(R/X)2 + 2 (X2/R2) (R/X)− 1 = 0 (7)
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Furthermore,

R/X = −X2/R2 ±
√
(X2/R2)2 + 1 , C (8)

In (8), if R2 > 0 and X2 > 0, then the sign ‘‘±’’ is plus
sign ‘‘+’’; if R2 > 0 and X2 < 0, the sign ‘‘±’’ is minus sign
‘‘−’’. In the actual calculation,K is determined by (9) and the
positive value closest to 1.0 can be selected as the final result
of K .

K = −(R1 − CX1)/(R2 − CX2) (9)

2) B2-VALUE CONDITION FOR MINIMUM P
In addition to changing K , controlling Var equipment (i.e.,
changing B2) at the load side can minimize P.
Based on the first sub-formula of (6), the B2-value condi-

tion for minimum P is:
∂P
∂B2
=
∂P
∂R2

∂R2
∂B2
+
∂P
∂X2

∂X2
∂B2
= 0 (10)

From (6) and (10), (11) can be deduced.

B2 = (R/X)G2or B2 = − (X/R)G2 (11)

Because the right of the equal sign in (11) is a non-linear
implicit function, it is difficult to be solved directly. B2new can
be determined by the iterative formula (12), where the vari-
able q is the iteration number for computing B2. The deriva-
tion process of (12) is described in Appendix C, and the
reason for minimizing P by (9) and (12) in Appendix D.

B2,(q) =


R1(G2

2 + B
2
2,(q−1))+ KG2

X1(G2
2 + B

2
2,(q−1))− KB2,(q−1)

G2

−
X1(G2

2 + B
2
2,(q−1))− KB2,(q−1)

R1(G2
2 + B

2
2,(q−1))+ KG2

G2

(12)

If |B2,(q) − B2,(q−1)| ≤ εB (εB is convergence threshold.),
the convergence result B2nw is obtained by (12).

The final B2-value of (12) is determined according to the
following rules:

a) If R2 > 0 and X2 > 0, then B2nw > B2,(q=0);
b) If R2 > 0 and X2 < 0, then 0 < B2nw < B2,(q=0);
c) If R2 < 0 and X2 > 0, then B2nw > B2,(q=0).

3) K-VALUE AND B2-VALUE JOINT CONDITIONS FOR
MINIMUM P
We use (9) and (12) to calculate K and B2 iteratively.
The convergence condition is the same as the condition in
Section IIIA 2). The convergence solution corresponds to the
joint conditions for minimum P.

B. TARGET VOLTAGE CONTROL FOR THE EQUIVALENT
LOAD SYSTEM
We obtain (13) by substituting K = 1/n2 into (4):

İ1 = U̇s/(Z1 + KZ2) (13)

Then, substitute (13) into (2).

İ2 =
√
Kejα İ1 =

√
KU̇sejα/(Z1 + KZ2) (14)

The voltage at the secondary terminal of OLTC is:

U̇2 = İ2Z2 =
√
KU̇sejαZ2/(Z1 + KZ2) (15)

Its amplitude is:

U2 =
√
KUs/|K + Z1/Z2| (16)

(16) shows that:
1) U2, the voltage of load node, is mainly related to K , Us,

Z2 and so on.
2) Controlling Var equipment at the load side (including

shunt capacitor banks, SVC, SVG, and other dispersed Var
equipment), namely changing the B2-value, is a means of
local voltage control;

3) Changing the tap position of OLTC is a means of local
voltage control;

4) Controlling Var equipment at the power supply side
(including shunt capacitor banks, reactors, SVC, SVG, and
dispersed Var equipment which have an effect onUs), namely
changing the value of Us is a means of remote control of U2.

IV. LOCAL DECISION-MAKING SCHEME BASED ON THE
EQUIVALENT LOAD SYSTEM
A. D-VOC STRATEGIES
Section III has analyzed the minimization of active power
loss and the target voltage control for the equivalent load
system with OLTC. Considering both loss minimization and
voltage control, this section will continue to analyze the local
decision-making scheme for the D-VOC in DNs.

For the equivalent load system with Var equipment
in Fig. 1, assume that a VSC is deployed corresponding to the
equivalent load system with Var equipment and is assigned
with different functions such as ‘‘local measurement, local
decision-making, and local execution’’, ‘‘local measurement,
local decision-making, remote check, and remote regulation’’
or ‘‘local measurement, local decision-making, remote check,
and local execution’’. VSCs with this ability of distributed
decision-making can be incorporated into the two-layer col-
laborative architecture for the D-VOC in Section V. The
following will first describe the decision-making process
of VSC.

According to Section III, the relationship of voltage control
at load side is coincided with (16), in whichUs, K , and B2 are
the key parameters not only affecting U2, but also affecting
the minimization of P. When VSC makes decisions locally,
it is necessary to coordinate the compensation or control
measures related to Us, K , and B2 to meet the demand for
VOC.

For the object voltage at load nodeU2obj ∈ [U2min,U2max],
the relationship among Us, K and B2 is:

U2 =
√
KUs/|K + Z1/Z2| = U2obj (17)

Based on the local balance principle of reactive power,
in view of operation cost and convenience, the VSC’s local
decision-making scheme is designed. The scheme is split into
two parts for different control objectives as follows:
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1) U2 must be strictly kept at the target voltage U2obj.
Assume that LCC gives a strict instruction of target

voltage control at load side (which can be issued by dis-
patcher or calculated by traditional centralized optimization
module), and then the decision-making process of VSC is
listed as following:

[a] Local Var compensation is used preferentially to make
U2 close to U2obj by changing B2.

Based on B2new calculated by (17) in the case of other vari-
ables fixed, control increment for Var equipment or control
mode can be determined as follow:

For the shunt capacitor banks, set number of switched
capacitors is selected according to1B2 = B2new−B2old. For
SVC or SVG in constant-reactive-power mode (Qconst mode),
control increment of Q2 is obtained according to 1Q2 =

B2newU2
2obj − B2oldU

2
2old (where U2old is the voltage after the

last iteration) with considering the reactive power limit. For
SVC or SVG in constant-voltage mode (Vconst mode), if1Q2
is within the limit 1Q2max (which is the maximum variation
of the output of SVC/SVG), the target value of U2 can be
directly set to U2obj; if 1Q2 exceeds the limit, the control
mode is converted into the constant-reactive-power mode,
and target value of1Q2 is set to its limit1Q2max. Meanwhile,
the information that control mode is converted and output is
out of reactive power’s limit is uploaded to LCC.

[b] If the deviation between U2obj and U2new (which is the
voltage after local Var compensation and calculated by power
flow calculation in LCC) still exceeds the set threshold U2ε,
then the tap setting of OLTC will be adjusted.

In this case, B2new is substituted into (17) to calculate the
Knew of K with other variables constant. According to the
Knew, the tap setting of OLTC is selected.

[c] If the deviation between U2obj and U2new after local
compensation and tap adjustment still exceeds , the incre-
ment of Us can be calculated by (17). Through the two-layer
collaborative architecture in Section V, the corresponding
VSC uploads this information to LCC. And it requests LCC
to issue the operation instructions that adjust the relevant Var
equipment at upstream or downstream of corresponding VSC
to make Us equal to the target value.

Fig. 2 mainly shows the decision-making process of dif-
ferent types of VSCs, which includes: some VSCs have the
functions of self-checking and self-decision; others only have
the function of distributed computing, and the results of VSCs
need to be verified by LCC. The process of check in LCC
is: after VSC sends result to LCC, LCC checks whether the
voltage reach the target value based on power flow calcula-
tion. The specific functions of VSC are determined by LCC,
which will be described in Section V.

2) U2 is not strictly kept at the target voltage U2obj.
In this case, VSC is allowed to minimize the active

power loss for the equivalent load system with U2 ∈

[U2min,U2max], or the corresponding VSC accepts other
nearby VSC’s request information from LCC. The decision-
making process of VSC is as following (shown in Fig. 3):

FIGURE 2. The VSC’s decision-making process of voltage target control.

FIGURE 3. The VSC’s decision-making process of minimizing the active
power loss.

[a] If U2 ∈ [U2min,U2max] and Var equipment has enough
capacity margin, then VSC can perform process of minimiza-
tion of active power loss.

For different types of Var equipment involving in the dis-
tributed optimization, VSC calculates the optimal solutions of
K and B2 for minimum P according to Section III, and LCC
verifies their feasibility:

Substitute the optimal solutions of K and B2 into (16)
to calculate U2. If U2 ∈ [U2min,U2max], then the optimal
solution is feasible. If U2 exceeds constraint, then it is set
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to the limit and is substituted into (16) to calculate the sub-
optimal solutions of K and B2.

LCC checks whether active power loss of system is min-
imum and voltage exceeds limit by power flow program.
If U2 ∈ [U2min,U2max] and P decreases in the iterative
process, VSCs continue to change the increment of variable
in the distributed computation. IfU2 ∈ [U2min,U2max] and P
increases in the iterative process, the distributed computation
ends temporarily.

[b] LCC sends other nearby VSC’s request information to
this VSC.

In this case, the requester may be the downstream
node or the upstream node of VSC. Regardless of
upstream or downstream, this VSC only needs to calculate
the corrected B2 or K and its relevant control increment
through (17) based on the request information (including
adjustment1U2req), voltage limit, and reactive power margin
of Var equipment (The related content is described in 1) of
Section IV-A.).

Generally, the priority of [b] is higher than [a] of 2) in
Section IV-A, so this VSC should preferentially respond to
the request from other VSCs (same as the process in [b]).
If there is no request for voltage regulation, then this VSC
makes decision [a] of 2) to minimize loss.

B. MULTI-PERIOD DECISION-MAKING SCHEME
Var equipment (such as DG, SVG and SVC) controlled by
power electronic devices can quickly respond to the con-
trol instructions. Moreover, the single-time cost of control
is negligible, for their controllable times is enough in total.
Consequently, when DG, SVG and SVC participate in multi-
period optimal decision-making, influence of time couple and
control cost can be neglected. However, OLTC and shunt
capacitor bank with mechanical switch have some shortcom-
ings such as slow response to control instructions, long execu-
tion time and wear life-span. Therefore, the daily action times
and the interval between two actions should be constrained.

The variability of load (including DG) is the main factor
affecting the regulation of OLTC and shunt capacitor banks.
If the operation ways are reduced moderately, (for instance,
96 or 48 short time periods are merged into a few long time
periods which may be unequal periods), then the daily action
times will shorten and the interval between two actions will
grow longer.

Generally, extend from a selected initial short period
(in Fig. 4) to the left or right along the net load (which
equals load minus DG) curve. If the absolute value of power
deviations of short periods relative to start short period is less
than or equal to the setting power span Pspan, all the short
periods will be merged into a long period. The ending of this
long period will become a new starting point of the next long
period to be merged. This process lasts until the daily load
cure is fully merged. The operation ways of the long period
after mergence can be reduced into one way, and its average

FIGURE 4. Reduction of operation ways and mergence of periods.

power is:

P̄k =
1
1Tk

Nk∑
i=1

(Pi1t) =
1

Nk1t

Nk∑
i=1

(Pi1t) =
1
Nk

Nk∑
i=1

Pi

(18)

whereNk is the number of short periods in the k th long period;
1t is the length of the short period; 1Tk is the length of the
k th long period, namely 1Tk = Nk1t; Pi is the load power
of the ith short period in the k th long period.

If the number of long periods after merging isM , then

N =
M∑
k=1

Nk (19)

where N is the number of short periods, and usually equal
to 96, 48 or 24 that correspond to 1t = 15, 30 or 60.

Thus, the original series {Pi| i = 1, 2, . . . ,N } with
equal interval (1t) are transformed into a new series{
P̄k
∣∣ k = 1, 2, . . . ,M

}
with unequal intervals.

The characteristics of the above method are:
1) For the same load curve, the larger Pspan is, the higher

the degree of operation way reduction is.
2) For the same Pspan, the larger the load rate (i.e., the ratio

of average load power to peak load) is, the higher the degree
of operation way reduction is.

Consequently, the load curve can be merged by changing
Pspan in consideration of the interval constraint between two
actions for the capacitor and OLTC.
Γoltc and Γcap are the minimum interval between two

actions respectively for OLTC and capacitor. The length of
long period should satisfy the constraint

min
k=1∼M

1Tk ≥ max{Γoltc, Γcap} (20)

If the period merging result dissatisfies (20), Pspan appro-
priately increases to correct the merging result until (20) is
satisfied. Reduction of operation ways could only be deter-
mined after the merging result is verified by (20).

Generally, Γoltc is larger than Γcap. Considering that (20)
may cause 1Tk too long and the optimization less elaborate,
(20) can be relaxed to

min
k=1∼M

1Tk ≥ Γcap (21)
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FIGURE 5. Decision-making process of multi-period problem.

The process in Fig. 5 is divided into three main parts:
1) The first part composed of the steps before the red

textbox describes the mergence of period and the reduction
of operation ways. This part provides calculation data for
distributed optimization.

Assume that we extend from the initial load (in Fig. 4)
to the right along the net load (which equals load minus
DG) curve. It may occur that only the last long period 1Tk
dissatisfies the constraint in (21). (21) can be relaxed to:

min
k=1∼M−1

1Tk ≥ Γcap (22)

For the last long period 1TM , if 1TM < 0.5Γcap, the M th

long time period 1TM can be merged into the net load cure
of the next day, and the number of long time periods is M -1;
if 1TM ≥ 0.5Γcap, it can be reserved as theM th long time.

2) The second part is the ‘‘rough optimization’’ carried
out by the red textbox. It mainly focuses on the M long
periods and the reduction of operation ways. For every long
period, all feasible solutions of Var equipment are obtained
by the decision-making method for single time period in
Section IV-A.

If the action times of OLTC and capacitor banks solved
are within the allowable limits (which are MOLTC ≤ 4 and

FIGURE 6. Two-layer hybrid control system architecture.

Mcap ≤ 6 in Fig. 5), the following steps in the blue textbox
can be execute; If MOLTC > 4 (or Mcap > 6), then re-select
Pspan and merge periods again.

3) The third part is the ‘‘fine optimization’’ in the blue
textbox. It mainly focuses on the N short periods, and the
decision-making method for single period in Section IV-A is
adopted. In the third part, the feasible solutions of OLTC and
capacitors obtained in 2) remain unchanged, i.e., the ‘‘fine
optimization’’ is only for DG, SVG and SVC.

In the ‘‘fine optimization’’, the priority of SVG/SVC par-
ticipating in optimization should be higher than DGs’ priority
in order to avoid affecting the active output of DG. If voltage
before the ‘‘fine optimization’’ at a node exceeds specified
limit with the feasible solutions of OLTC and capacitors
obtained in 2), the instruction of target voltage should be
executed by following the sequence of SVG/SVC, capaci-
tor, OLTC, and inverter of DG. After the node voltage is
corrected, the instruction of the ‘‘fine optimization’’ can be
executed.

The above process is mainly based on the following ideas:
The ‘‘rough optimization’’ for the reduction of opera-

tion ways can reduce the computational complexity and
efficiently obtain the feasible solutions of OLTC and capac-
itors which basically reduce loss. However, the optimiza-
tion results of this process are not fine enough. The ‘‘fine
optimization’’ in the third part can make up deficiencies of
‘‘rough optimization’’ by DG, SVG and SVC due to its fast
response.

In summary, the final decision-making results of OLTC
and capacitor banks are provided only by the ‘‘rough opti-
mization’’ for the long periods. The final results of DG, SVG
and SVC are obtained by the ‘‘fine optimization’’ for the
short periods. The final results of active power loss are also
determined by the third part.

V. TWO-LAYER COLLABORATIVE ARCHITECTURE
With the process of DG and distributed technology, the VOC
will improve from the centralized mode to the distributed
mode or the hybrid model of them. Based on the above ideas,
a hybrid mode is constructed shown in Fig. 6.

For DN operating in open loop, LCC is appointed as
the top management system in dispatching center or feeder
dispatching center of DN. In addition to acquiring data of
feeder terminal unit (FTU), transformer terminal unit (TTU),
line terminal unit (LTU), and Var terminal unit (VTU), LCC
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FIGURE 7. The architecture of distributed computation for the D-VOC.

acquires and picks out information from VSC including its
status, autonomous control, and assistance request. Based
on various data or information, LCC first verifies the dis-
tributed decision-making results of all VSCs and revises the
unqualified ones. Then LCC authorizes the VSCs whose
results are verified or revised to execute their own opera-
tional instructions. The hybrid system architecture no longer
requires centralized optimization computation with complex
nonlinear mixed integer optimization method or software for
large-scale DN.

VSC can be selectively deployed, which depends on the
specific demands:

A. DISTRIBUTED COMPUTATION FOR THE D-VOC
This demand only involves the distributed optimization com-
putation; however, the process of instruction execution is still
performed according to the existing centralized management
mode.

For this demand, VSC can be deployed in virtual or real
mode at the node with Var equipment allocating in Fig. 7.

If all hardware and software resources for distributed
computation are concentrated in LCC, VSCs are in virtual
deployment and a certain amount of computing resources are
allocated to VSCs. For virtual deployment, VSC is formally
located in the bottom layer of the architecture in Fig. 6.
However, the computing entities are actually in the LCC’s
computing center.

If TTU, LTU, and VTU have distributed computing
resources (primarily extended with the distributed computing
resources and algorithm), VSCs can be in real deployment
based on these units. In this case, all VSCs and their entities
are actually in the bottom layer.

B. DISTRIBUTED EXECUTION FOR THE VOC
Unlike A which is restricted to distributed computation,
VSC is selectively responsible for distributed execution,
in addition to the distributed computation (shown in Fig. 8).

FIGURE 8. The architecture of distributed execution for the VOC.

FIGURE 9. Sketch of VSC’s arrangement.

Some VSCs are entitled to self-decision and self-execution;
Other VSCs are entitled to self-execution. However, the self-
decision results must be verified in LCC. The verified deci-
sion can be executed by LCC through the remote control or be
self-executed by the corresponding VSC through local con-
trol. At this time, VSCs are all installed in a real deployment.

In the process of self-decision, VSCs’ self-checking
mainly includes three aspects according to the control objec-
tives (which described in detail in Section IV-A): VSCs
check whether the output of var equipment exceeds the limit,
whether the voltage exceeds the limit, and whether the active
power loss isminimum for distributed equivalent load system.

In the process of verification, LCC only uses ordinary
power flow program to screen out the nodes where the volt-
ages exceed the limits, and requires the corresponding VSCs
to revise their decisions (that means re-decision process).
If the re-decision is beyond the local control ability, the cor-
responding VSC will request assistance from nearby VSCs
through LCC.
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TABLE 1. Installation Information of WDGs.

The mapping relation between VSCs in virtual or real
deployment and the network is shown in Fig. 9. Typically,
VSC is deployed at node (or the equivalent load node) with
Var equipment as needed.

VI. CASE STUDY
A. MODIFIED PG & E 69-BUS DISTRIBUTION SYSTEM
The case study is based on the PG & E 69-bus distribution
system (shown in Fig. 15). OLTC between the nodes 0 and 1 is
a YNyn0 link three-phase double winding transformer rated
at 12.6± 4×2.5% kV. The primary terminal is fixed to 66 kV.
Three wind power DGs (WDGs) are connected to DN. The
connection buses and rated power are highlighted in Table 1.

Refer to [31], the tables in Appendix A describe the instal-
lation information of capacitor banks and SVG. The base
values of the system have been assumed as 12.66 kV and
10 MVA. The line power limit is omitted.

The initial states of Var equipment are set: the tap of OLTC
is ± 0×2.5%, the switching number of capacitor banks is 0,
and the output of SVG is 0 MVar. The daily maximum action
times of OLTC and shunt capacitor banks are 4 and 6 times
respectively. In addition, let Γoltc = 2h and Γcap = 1h.
Daily load power and daily DGs’ power forecasting curves
are shown in Appendix B.

The optimization targets are to keep voltage within ±7%
of 1 p.u. and tominimize active power loss of every equivalent
load system by distributed optimization.

B. SIMULATION RESULT
According to the multi-period decision-making scheme of
multi-period problem shown in Section IV-B, the short peri-
ods are merged and the operation ways decrease. Let Pspan =
0.1526 p.u. and the initial starting point be 0:00. 24h are
merged into 6 unequal long periods, and their corresponding
P̄k are calculated. For all long periods, the ‘‘rough opti-
mization’’ is executed by the decision-making method in
Section IV-A for single period. The calculated result of tap
is +2×2.5% in the whole day shown in Fig. 10.
The time division and results of capacitor switching are

shown in Fig. 11. It indicates that the switching times of
capacitor banks (at nodes 47, 18, 11, or 68) are within the
limits.

Keep the optimized results of capacitor and OLTC
unchanged. The ‘‘fine optimization’’ is executed for all
short periods. The results of SVG’s reactive power (shown
in Fig. 12) are calculated to control voltage and reduce active
power loss more precisely. The process of iteration for com-
puting B2 or K is shown in detail in Appendix E.

FIGURE 10. Tap changer operations of OLTC.

FIGURE 11. Time division and capacitor switching.

FIGURE 12. Reactive power output of SVG.

The load curve in Fig. 16 shows that the peak mainly
occurs in 3 periods, including 10:00-11:30, 13:30-14:00, and
18:30-21:00. Fig. 11 and Fig. 12 illustrate that the outputs
of capacitor banks and SVG increase in the peak hours and
decrease in the off-peak hours. It can preliminarily demon-
strate that the distributed decision-making method in this
paper can reasonably dispatch Var equipment in the system.
The next part will provide a detailed analysis of the optimiza-
tion results.

C. RESULT ANALYSIS
From the perspective of active power loss, it indicates that
the Var equipment is reasonably scheduled, and the loss is
significantly reduced. In Fig. 13, the variation of loss is
emphasized.
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FIGURE 13. Change of active power loss before and after optimization.

FIGURE 14. Variation of voltage: (a) Before distributed optimization.
(b) After distributed optimization.

The loss before optimization in Fig. 13 is gained in the
initial state given in Section IV-A. It shows that the loss
decreases more obviously in the peak hours.

From the variation of voltage, the profile of maximum and
minimum voltage before optimization is shown in Fig. 14(a).
From 7:00 to 24:00, the voltage is out-of-limit severely, which
will harm the operation of system.

Fig. 14(b) shows the profile of maximum and minimum
voltage after optimization. The original problem of voltage
is completely eliminated. In addition, the outputs of the Var
equipment do not reach the maximum capacity. Moreover,
there is a certain margin between voltage profile and the
upper/lower limit, which ensures the safety of the system
operation.

In addition to the excellent effects of active power loss
and voltage control, the method has the advantage of com-
puting performance. Compared with traditional mathematical

programming and artificial intelligence algorithms which
rely on large-scale mathematical models and complex calcu-
lations, the distributed decision-making method in this paper
is only for the very simple VSC, a subsystem, in which
variables to be optimized are only B2 and K , and the basic
formulas for this work only include (9), (11) and (16). More-
over, the check in LCC is only based on power flow program.
Therefore, the new method requires very low computational
resources, which are the basis to ensure higher computing
performance. The main reasons are:

The optimization process of all existing algorithms is to
find a right search direction and determine an appropriate
control increment along that direction in each iteration. First,
in the process of distributed optimization, each VSC can
quickly obtain the right search direction from the perspective
of physics (based on local information) rather thanmathemat-
ical gradient or probability. Second, the step-size of control
increment determined by distributed optimization is more
efficient than the one determined by mathematical program-
ming or artificial intelligence algorithms. The distributed
optimization of VSC can eliminate the unfavorable interfer-
ence of various non-primary factors in the mathematical gra-
dient or the uncertainty of the probability information in the
process of intelligent search. Consequently, VSCs can realize
optimization efficiently according to the main or the most
important factors relevant to physics. These features make the
distributed optimization in this paper more advantageous in
computing performance.

VII. CONCLUSION
This paper proposed a distributed decision-making method
for VOC in a two-layer collaborative architecture. The case
study for the modified PG & E 69-bus distribution grid is
accomplished. The conclusion can be drawn:

1) The local decision-makings of VSCs play an important
role in making the optimization algorithm effective in the
bottom layer. Under the supervision of LCC, the coordination
of VSCs can develop full ability of Var equipment.

2) The multi-period decision-making scheme can accom-
plish the rough and fine optimizations in two stages respec-
tively for the long and short periods. The scheme can not
only simplify calculation but also obtain the results of loss
reduction and voltage control. Moreover, the action times of
OLTC and capacitor banks are within the allowable range,
which improves the service life of them.

3) The proposed method based on two-layer collaborative
architecture occupies fewer computing resources and has a
satisfactory performance of fast computation speed.

This paper has demonstrated that the two-layer collabora-
tive architecture is suitable to D-VOC in DN. The follow-up
study will extend this architecture to transmission networks.

APPENDIX
A. INSTALLATION INFORMATION
See Tables 2 and 3.
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FIGURE 15. Modified PG & E 69-bus distribution grid.

FIGURE 16. Daily load power forecasting curve.

TABLE 2. Installation information of capacitor banks.

TABLE 3. Installation information of SVG.

B. DISTRIBUTION SYSTEM FOR CASE STUDY AND
FORECASTING CURVES
See Figures 15–17.

C. DERIVATION PROCESS OF (12)
In the equivalent load system with OLTC (in Fig. 1), the
equivalent impedance and admittance of the equivalent load
are Z2 and Y2 respectively, which both satisfy:

R2 =
G2

G2
2 + B

2
2

X2 =
−B2

G2
2 + B

2
2

(C1)

According to the definition of Section III, R = R1+ KR2,
and X = X1+KX2, so the following formulas can be obtained

by using (C1)

R
X
=

R1 + K
G2

G2
2+B

2
2

X1 + K
−B2
G2
2+B

2
2

=
R1(G2

2 + B
2
2)+ KG2

X1(G2
2 + B

2
2)− KB2

X
R
=

X1 + K
−B2
G2
2+B

2
2

R1 + K
G2

G2
2+B

2
2

=
X1(G2

2 + B
2
2)− KB2

R1(G2
2 + B

2
2)+ KG2

(C2)

Substituting (C2) into (11) can obtain the following
formulas

B2 =


R1(G2

2 + B
2
2)+ KG2

X1(G2
2 + B

2
2)− KB2

G2

−
X1(G2

2 + B
2
2)− KB2

R1(G2
2 + B

2
2)+ KG2

G2

(C3)

Then (12) can be obtained by introducing the iteration
number q.

D. PRINCIPLE OF OPTIMALITY
The distributed optimization proposed in this paper is a kind
of dynamic programming (DP) technique. It complies with
Principle of Optimality.

DP technique rests on principle of optimality. Roughly,
it states the following rather obvious fact [32].
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FIGURE 17. Daily DGs’ power forecasting curve.

Theorem 1 Principle of Optimality
Let π∗ ={µ∗0, µ

∗

1, . . . , µ
∗

N−1} be an optimal strategy for
the basic problem, and assume that when using π∗, a given
state xi occurs at time i with positive probability. Consider
the subproblem whereby we are at xi at time i and wish to
minimize the ‘‘cost-to-go’’ from time i to time N

E

{
gN (xN )+

N−1∑
k=i

gk (xk , µk (xk) , ωk)

}
(D1)

Then the truncated strategy {µ∗i , µ
∗

i+1, . . . , µ
∗

N−1} is
optimal for this subproblem.

The principle of optimality suggests that an optimal strat-
egy can be constructed in piecemeal fashion, first construct-
ing an optimal strategy for the ‘‘tail subproblem’’ involving
the last two stages, and continuing in this manner until an
optimal strategy for the entire problem is constructed. DP
algorithm is based on this idea: it proceeds sequentially,
by solving all the tail subproblems of a given time length.

It is noticeable that the problem can be solved by starting
with the subprocess (or the subsystem). Under the condition
that the state variables of the input are different, we start from
the last subsystem, and analyze the value of control variables
for optimizing subprocess (or subsystem). Then, according to
the input variables of the whole system and the analysis result
of the subsystem, the optimal decision of control variables in
each process or each system is finally determined.

Extend from subsystem (or subprocess) to entire system (or
the whole process). A large-scale system (or a big problem)
can be decomposed into several subsystems (or subprob-
lems), which can simplify calculation.

VSCs are the subsystems of the whole system to be opti-
mized in this paper. We can easily obtain the optimal control
variables B2 and K of VSCs, subsystems, by using Kuhn-
Tucker condition. Then, according to the input parameters
(including the results of power flow) of DN and the opti-
mized results of all VSCs, the optimal decision of control
variables in each process for the whole system is finally
determined. After iterations for minimum power loss in each

TABLE 4. Initial values of variables.

TABLE 5. Values of variables after the adjustment of OLTC.

VSC, subsystem, loss of the whole distribution system can
quickly decrease and converge to the final optimal solution.

E. PROCESS OF ITERATION
In Section VI, ‘‘rough optimization’’ aims to keep voltage
in [0.93, 1.07] p.u. and minimize the active power loss for
every equivalent load system. Take one period as an example.
The influence of variables on the optimization results will be
described in detail below.

For 0:00-5:00, the initial values of voltage corresponding
to eachVSC and active power loss are shown in Table 4where
U2(i) is the voltage of node i and Ploss is the active power loss.

By formula (9), calculate and select the value closest to 1.0
as the result of K . After the adjustment of OLTC, the voltage
corresponding to each VSC and active power loss are shown
in Table 5.

Based on the state in Table 5, further distributed opti-
mization is accomplished by controlling other VSCs in the
grid. The VSCs corresponding to capacitor banks and SVG
accomplish distributed optimization at the same time. In each
VSC, subsystem (mentioned in Appendix D), LCC checks
results by power flow calculation, observes the variation of
voltage and active power loss, and selects the optimal solution
which satisfies the optimization objectives.
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FIGURE 18. Variation of variables in iterative process: (a) Equivalent
susceptance B2 at load side. (b) Variation of equivalent susceptance 1B2.
(c) Variation of reactive power 1Q2 at load side.

In the process of optimization, the values of variables
are shown in Fig. 18. In Fig. 18(a), (b) and (c), the values
corresponding to each initial number constitute the first set
of VSCs’ results, and so on. In Fig. 18(a) and (b), B2(i) is
equivalent susceptance at load side of node i; 1B2(i) is the
variation of B2(i). The switching of the capacitor bank at node
i can be calculated by 1B2(i). Fig. 18(c) shows the values of
the variables of node 52 during iterative process. In Fig. 18(c),
1Q2 is the variation of Q2(i), and Q2(i) is the reactive power
of the equivalent system at load side of node i. The output of
SVG at node 52 can be calculated by 1Q2.
In iterative process, the active power loss, maximum volt-

age, and minimum voltage are shown in Table 6. According
to the results in Fig. 18, the target variables are obtained
by power flow calculation. In Table 6, the 2nd row is

TABLE 6. Values of target variables.

corresponding to the first set of VSCs results and so on. The
initial system state corresponding to the 2nd row of Table 6 is
that OLTC tap is set at ±2×2.5%, the switching number of
capacitor banks is 0, and the output of SVG is 0 MVar. The
initial system state corresponding to the 7th row of Table 6 is
the system state after optimization corresponding to the first
set of results. After one iteration, the value of Ploss may not be
a local optimal solution. The increment of variables (includ-
ing1B2 and1Q2) may appropriately decrease or increase to
calculate the new value ofPloss (shown from the 3rd to 6th row,
and from the 8th to 9th row in Table 6). LCC selects the small-
est Ploss, and finally determines the local optimal solution.
For the rest of the periods, the ‘‘rough optimization’’ can

be accomplished according to the process mentioned above.
The ‘‘fine optimization’’ can be accomplished according to
the optimization of SVG.
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