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ABSTRACT Stereo matching methods have achieved remarkable improvements by exploiting various
attempts. However, most stereomatching algorithms still suffer from problems such as ambiguous region and
inherent ambiguities. In particular, some problems affecting cost aggregation step have the greatest impact
on depth results. To resolve the above-mentioned problems, we propose a new cost aggregation method using
the modified total generalized variation with fusion tensor. First, two kinds of diffusion tensors are extracted
from the guidance color image and the guidance depth map. They are incorporated into an energy functional
to obtain the total generalized variation. After formulating the final energy functional, it is optimized via
a primal-dual energy minimization method. The performance of the proposed method is experimentally
verified by qualitatively and quantitatively comparing the results to those of other algorithms.

INDEX TERMS Stereo matching, cost aggregation, modified total generalized variation.

I. INTRODUCTION
Depth estimation has traditionally been one of the most
crucial tasks in the field of computer vision. It is highly
fundamental for various computer vision-based applications
including 3D object recognition [1], extraction of information
from aerial surveys [2], geometry extraction for 3D object
mapping [3], self-driving cars, and obstacle estimation [4].
In general, depth information can be acquired by several
methods such as active depth cameras and passive depth cam-
eras. Active depth sensor resolves depth information using a
physical sensor. It emits light onto the scene and derives depth
information based on the known speed of light, whereas
passive depth cameras measure the correlation of images
captured from two or more cameras. Active depth camera
ensures more accurate depth information than passive depth
camera, and it provides depth data much faster than passive
depth cameras. However, it is difficult to use it outdoors
during the daytime because of the presence of infrared ray
noise. In addition, active depth camera provides only a low-
resolution depth map due to hardware limitations. In contrast,
passive depth camera estimates depth information indirectly
from 2D images. These cameras can be used outdoors dur-
ing daytime and can generate a high-resolution depth map.

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Shao.

Therefore, passive camera-based methods have been studied
continuously. In this paper, we focus on the passive camera-
based method, i.e., the stereo matching method.

Stereo matching is inherently an ill-posed inverse prob-
lem as it reconstructs 3D information from the pair of 2D
plains, and stereo matching method has various difficulties
in whole or in each matching step [5]. An ill-posed problem
is the one that does not meet the three Hadamard criteria
for being well-posed. These criteria are: having a solution,
having a unique solution, and having a solution that contin-
uously depends on the parameters or input data. Conversely,
the ill-posed problem may have several incomplete solutions
and solutions that depend discontinuously on the parameters
or input data. Therefore, it is exceedingly difficult to tackle
the ill-posed problems. These problems are separated into
two groups, namely ambiguous region and inherent ambi-
guities [6] in corresponding method. Ambiguous pixels are
similar to other pixels near the point of interest in the refer-
ence image. Similarly, matching ambiguity occurs when their
pixel similar to the target pixel in the target image are present
along the scan line. The matching ambiguity problem also
arises when matching intrinsically symmetrical shapes. The
inherent ambiguity contains two special cases: ambiguous
pixel and matching ambiguity. The inherent ambiguities are
caused by the following reasons. When pixels are saturated in
the acquired image, there is a high probability that there are
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nonadjacent pixels.When the brightness is zero at a pixel, it is
likely to create adjacent pixels with non-zero brightness.

The depth data acquisition with the binocular cue suffers
from occlusion problem, which is an is a key challenge in
stereo matching. Occlusion means that an occluded pixel is
apparent in the source image, but there is no corresponding
pixel in the target image. Because an object is obscured by
the view of some objects or regions, occluded pixels are
only visible in the reference image, but in the target image.
Therefore, occlusions are a principal challenge for the accu-
rate computation of visual correspondence.

Generally, stereo matching methods perform the following
steps: 1) matching cost computation; 2) cost aggregation;
3) winner takes all (WTA)/ disparity optimization; 4) dispar-
ity refinement. There are several problems and difficulties
in the process of each step. In particular, the ambiguous
region problem affecting cost aggregation step has the great-
est impact on depth results. To tackle these difficulties, sev-
eral approaches have been addressed.

Local methods aggregate each slice of cost volume within
finite windows to make implicit smoothness assumptions.
In contrast, global approaches formulate an energy func-
tion with explicit smoothness constraints and optimize it
via global optimization techniques such as Expectation-
Maximum (EM) [7], dynamic programming [8], belief
propagation [9], graph cut [10] and semi-global matching
(SGM) [11]. Recently, a method of combining deep learn-
ing with the global optimization method has been studied.
One such typical method is SGM-NET [12], which trains
penalties of SGM. In practical applications, local approaches
are preferred to the global ones owing to the formers’
speed.

Most cost aggregation methods define a support window
for each pixel and sum/average matching cost over the win-
dows. Yoon et al. first proposed to filter the cost volume
with a joint bilateral filter, which is extremely effective for
preserving edges [14]. However, the bilateral filter is compu-
tationally expensive owing to its large kernel size. To speed
up the cost aggregation, He et al. proposed a guided image
filter [15], which has linear runtime along with the number
of image pixels. This filter shows leading speed and accuracy
performance [13]. Yang et al. presented a tree filter cost
aggregation method, which enlarges the window size to the
whole image [16]. The tree filter-based cost aggregation can
be performed exceedingly fast by making minimum spanning
tree derived from a graph. Recently, Zheng et al. proposed
a cross-scale cost aggregation, which estimates accurate dis-
parity values in homogeneous regions [17]. This method con-
structs a hierarchical structure to aggregate matching costs.
However, conventional methods do not deal with ambiguous
areas. Therefore, they generate low quality in the depth dis-
continuities and highly textured regions because of ambigu-
ous regions. In addition, the texture is copied from the color
image to the depth map [23]. To resolve the problem, we
present a new cost aggregation method by integrating fusion

FIGURE 1. Procedure of the proposed method. C is the matching cost, CG
is an aggregated matching cost using GF, dg is the guidance depth map,
TCc and TCd are the diffusion tensor for the color image and the
guidance depth map.

tensor and the total generalized variation (TGV) method [18],
which is used to measure image characteristics up to a certain
order of differentiation.

The rest of this paper is organized as follows: the cost
matching computation is described in Section 2, the proposed
cost aggregation is described in Section 3, and the experi-
mental results regarding quantitative and qualitative criteria
are presented in Section 4. Finally, this paper is concluded in
Section 5.

II. MATCHING COST COMPUTATION
In this section, we explain the matching cost computation
and guidance depth map generation. Figure 1 illustrates the
overall procedure of the proposed method. First, we generate
a guidance depth map using precomputed matching data
and calculate the weighted sum of tensors, which contains
the tensor of the guidance depth map and the color image.
We incorporate the weighted sum of tensors into a total
generalized variation method to formulate the proposed vari-
ation functional. After optimizing the variation functional,
we apply aWinner-Takes-All strategy (WTA) to obtain a final
depth map.

A. COST VOLUME GENERATION
In the matching cost computation step, the general stereo
algorithm begins by calculating the matching cost at each
position p for all disparities d under consideration. In other
words, a 3D cost volume is generated by measuring matching
costs for each pixel p at all possible disparity levels between
the reference image and the target image. The commonly
used method for computing the matching cost is the trunca-
ted absolute intensity differences and truncated absolute
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difference of gradients in x-direction as

C(p, d)=λ·min(Tc,CAD(d))+(1−λ)·min(Tg,CGD(p, d))

(1)

where C(p, d) is a per-pixel matching cost of a pixel p
for disparity value d . Tc and Tg are the truncation values,
respectively. λ is a weight which is a constant value between
0 and 1. CAD(d) and CGD(p,d) are the cost value of absolute
difference and the cost value of gradient difference in the x-
direction, respectively. CAD(d) and CGD(p,d) are represented
as

CAD (d) = |Ir (x, y)− It (x + d, y)|

CGD (d) = |Gr (x, y)− Gt (x + d, y)| (2)

where Ir and It are the reference and the target image, respec-
tively. The absolute difference of gradients is computed as

G(x, y, d) = |∇x(Ir (x, y))−∇x(It (x + d, y))| (3)

where ∇x(I (x, y)) denotes the gradient in x-direction com-
puted at pixel p.

B. GUIDANCE DEPTH MAP GENERATION
To obtain a fusion tensor, a guidance depth map should be
constructed in advance. Therefore, we generate a guidance
depth map by exploiting the guided image filter (GF) [13]
and WTA strategy. Given a guidance color image Ir , the GF
aggregates the cost volume. The GF is represented as

CG(p, d) = WG
p C(p, d) (4)

where CG (p, d) is an aggregated cost volume, and WG
p indi-

cates the kernel weight of a guided image filter. The guided
image filter depends on local optimization while performing
the WLS (weighted least square) filter. The filter weights are
defined as

Wi,j=
1

|w|2
∑

k : (i,j)∈wk

(1+(Ii−µk )(
∑

k
+εU )−1(Ij−µk ))

(5)

where |w| is the total number of pixels in a window wk
centered at pixel k , and ε is a smoothness parameter.

∑
k

and µk are the covariance and the mean of pixel intensities
withinwk .µk is 3×1 vectors, while

∑
k and the unary matrix

U are the size of 3×3. TheWinner-Takes-All strategy (WTA)
is applied for CG(p, d) to generate the guidance depth map Ig.

III. TGV-BASED COST AGGREGATION
The goal of cost aggregation is to eliminate artifacts in a cost
volume to obtain high-quality depth map. In the matching
cost computation step, several artifacts and erroneous cost
values occur due to matching ambiguities such as repetitive
texture regions, homogenous, or occluded areas. To address
this problem, we propose a new cost aggregation method
using modified TGVwith fusion tensor, which aggregates the
erroneous cost values while preserving the primary structure
in the cost volume.

FIGURE 2. Application of 1D total variation denoising. Black dotted line is
the original signal, red solid line is the denoised signal.

A. TOTAL VARIATION
The total variation-based energy functional directly deals
with finding the optimal functions. Typically, the varia-
tional energy functional is composed of two terms, a data-
driven energy term Ed , and a total variation regularizer TV
in (6). The energy function incorporating the two terms is
formulated by

E = Ed (u, I )+ λ · Es(u)

where Ed =
∑
p

(u− I )2,

TV =
∑
p

‖∇u‖22 (6)

where I is an original unobserved image, and u is a
reconstructed image. The total variation (TV) regularizer is
expressed as

TV = (∂u/∂x)2 + (∂u/∂y)2 (7)

The total variation of a signal measures the amount by
which a signal changes between signal values. In digital
image denoising, the use of the total variation functional
is common because the gradient strength can prevent the
smoothness in the edge region. Given an input signal, the goal
of total variation denoising is to find an approximation that
has smaller total variation than the input signal but is ‘‘close’’
to the input signal. Figure 2 shows the graph of 1D total
variation denoising where black dotted line is the original
signal while red solid line is the denoised signal. However,
it depicts the staircasing effects in case of smooth flows.
To resolve this problem, we designed our regularization term
as total generalized regularization (TGV) [18].

B. TOTAL GENERALIZED VARIATION
TV deals only with the first derivative, whereas TGV deals
with a higher-order derivative. In other words, the total gen-
eralized variation (TGV) method is a functional that has the
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ability to measure the image characteristics up to a certain
order of differentiation [18]. Considering the time complex-
ity of the algorithm, we utilized second-order derivatives
of the guidance color image as a regulator term. The total
generalized variation of the first and second-order can be
represented as

TGV = min
v

{
α1

∫
�

|wd (∇u− v)| dx + α0

∫
�

|∇v| dx
}
(8)

where u denotes the result, v represents all the complex vector
fields on�. This functional has weighting factors, α0 and α1,
which balance the first- and second-order derivatives of the
function. wd indicates an anisotropic diffusion tensor, which
is the weighted sum of the diffusion tensor.

Because TGV is the norm of Banach space, it is consistent
with the mathematical theory of the convex optimization
problem. Each function of the bounded variation results in
a finite TGV value, thereby making the concept suitable for
image processing. Additionally, TGV is translation invariant
as well as rotationally invariant. Therefore, the images meet
the requirement of being measured independently from the
actual viewpoint.

C. FINAL ENERGY FUNCTIONAL
The proposed TGV-based energy model is composed of three
terms. The first term is responsible for maintaining a similar
solution at each cost level. The second and third terms are
the first and second-order regularization terms, responsible
for minimizing the first and second derivatives. Therefore,
the energy functional can preserve the important structure
while suppressing the texture or noise at the cost level.

The conventional TGV model uses the diffusion tensor of
the color to enhance the result. However, the direction of the
diffusion tensor of any pixel is similar to that of the surround-
ing pixels in general. Moreover, there exists a phenomenon
wherein the texture is copied a lot in the magnitude image
for the color tensor, but it seems to acquire the information
around the object precisely in the magnitude image for depth
tensor, as illustrated in Fig. 3.

To overcome these limitations, this study employs a fusion
tensor (or weighted sum of diffusion tensors), which com-
bines the diffusion tensors for the color image and the guid-
ance depth map. The weighted sum of the diffusion tensors is
represented as

wd = αT (z)TCc + (1− αT (z))TCd (9)

Here, TC c is the diffusion tensor for the color image and TC d
is the diffusion tensor for the guidance depth map, and αT (z)
is a weight function. z is calculated as follows:

z = normalization of |∇Ir |
∣∣∇Ig∣∣

where |∇Ir | =
√
∇xI2r +∇yI2r∣∣∇Ig∣∣ = √∇xI2g +∇yI2g (10)

FIGURE 3. Magnitudes of tensors. (a) is the diffusion tensor for the color
image and (b) is the diffusion tensor for the guidance depth map.

where |∇Ir | is themagnitude of the color gradient and |∇Ig| is
the magnitude of the guidance depth map. The normalization
method is rescaling the range of features to scale the range
of [0, 1]. z represents the amount of edge information con-
tained in each pixel.

The weight function needs to preserve the edge region at
higher weight values. A low weight of α significantly influ-
ences the diffusion tensor of the guidance depth map. The
main aim is to determine when the cost aggregation method
should depend on the color diffusion tensor and the depth
diffusion tensor, respectively. To deal with the irrelevant tex-
tures and depth discontinuities, we formulated a measure to
predict the color edges that are most likely to match the depth
discontinuities. The weight function αT (z) is represented as
follows:

αT (z) =
1

1+ e−ε(z−τ )
(11)

where ε controls the width of the transition area and τ deter-
mines a median value, as depicted in Fig. 4.
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TABLE 1. Performance comparison.

FIGURE 4. Graph of weight function.

TCc and TCd are represented as

TCc = exp(−β |∇Ir |γ )nnT + n⊥n⊥T

TCd = exp(−β
∣∣∇Ig∣∣γ )nnT + n⊥n⊥T (12)

where n is the normalized direction of the image gradient,
and β and γ are scalar values, which adjust themagnitude and
sharpness of the tensor, respectively. The weighted sum of the
diffusion tensors is combinedwith the final energy functional,
defined by

min
u,v

{ ∫
�

|u− C(p, d)| dx

+ α1

∫
�

|wd (∇u− v)| dx + α0

∫
�

|∇v| dx
}

(13)

where u denotes the aggregated result, v represents all the
complex vector fields of the given image Ir on �, and |∇v|
represents the symmetrized derivative of u.

D. PRIMAL-DUAL OPTIMIZATION
This study utilizes the primal-dual energy minimization
method to optimize the energy functional for each slice of
a cost volume [19] because our optimization problem is
convex but non-smooth. To apply the primal-dual energy

minimization method, we first apply the Legendre-Fenchel
transform to reformulate the convex and non-differentiable
problem into a convex-concave saddle-point problem. The
Legendre-Fenchel transform is a transformmathematical pro-
cedure that involves transforming convex and non-convex
functions defined in a vectorial space, V , into convex func-
tions defined in the dual vectorial space, V∗. The Legendre-
Fenchel transform retransforms the original functional into a
so-called primal-dual problem. The primal-dual energy func-
tional involves the 2D vector field, p, and 4D vector field, q.
q and p are the dual variables, which help in converting the
two regularization terms into differentiable expressions. With
the aid of p, the absolute value |w| of a 2D vector w can be
rewritten as

|w| = sup
|p|≤1
〈w,p〉 (14)

where <, > denotes the inner product. Utilizing (14), the
total generalized variation can be rewritten as

max
|p|≤1, |q|≤1

α0 < wd (∇u− v) , p > +α1 < ∇v, q >

(15)

By substituting (15) into (9), the energy functional can be
expressed as

min
u,v

max
|p|≤1, |q|≤1

{ ∫
�

|u− C(p, d)| dx

+ α0 < wd (∇u− v) , p > +α1 < ∇v, q >} (16)

We seek the minimum point of the energy in the u, v
directions as well as the maximum in the p, q directions. The
functional (16) is convex and differentiable in u, v, p, and q;
it iteratively performs a gradient ascend in the p, q direc-
tions, followed by a gradient descent in the u, v directions,
until convergence. The first optimization part of the iteration
deals with the gradient ascent for p, q. The derivative of the
final functional Efinal on p, q is ∂Efinal/∂p and ∂Efinal/∂q.
Therefore, we iteratively update pt+1 = pt + λ(∂Efinal/∂p)
and qt+1 = qt + λ(∂Efinal/∂q), with the learning size λ.
However, pt+1 and qt+1 have to be back-projected onto the
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FIGURE 5. Experimental results on the Middlebury dataset. The first row images are the
results of the box filter, second row images are the results of the bilateral filter, third row
images are the results of the non-local aggregation, fourth row images are the results of the
segmented tree aggregation, fifth row images are the results of the guided filter
aggregation, sixth row images are the results of the proposed aggregation, and last row
images are the ground truth.

unit circle to ensure that |p| ≤ 1 and |q| ≤ 1. Therefore,
the final gradient ascent step can be defined as

pt+1 =
pt + λ(∂Efinal/∂p)

max(1, pt + λ(∂Efinal/∂p))

qt+1 =
qt + λ(∂Efinal/∂q)

max(1, qt + λ(∂Efinal/∂q))
(17)

u and v can also be iteratively updated using the gradient
descent method. After convergence for each slide, the winner-
takes-all strategy (WTA) is exploited to generate the final
result.

IV. EXPERIMENTAL RESULTS
In this study, we performed an exhaustive evaluation regard-
ing the quantitative and qualitative comparison using the
Middlebury dataset [20]. In the per-pixel cost computation
step, the parameters were fixed as follows: λ = 0.11, Tc =
0.02745, andTg = 0.00784. In the aggregation usingGF step,
a 19× 19 local window was used, the smoothness parameter,
ε, was set to 0.0001. In the optimization step, the parameters
of the diffusion tensors β, γ were set to 9, 0.85 for all the
scaling factors and images, weighting factors α0 and α1 were
set to 5, 1, respectively, and τ was set to 0.0001.
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FIGURE 6. Results of the proposed stereo matching method. First column images are the color images, second
column images are the ground truth images, third column images are the results of the bilateral cost aggregation,
fourth column images are the results of the guided cost aggregation, and final column images are the results of the
proposed method.

To evaluate the performance of the proposedmethod objec-
tively, the percentage of mismatching pixels (BPR) was
exploited, which can be defined as follows:

BPR[%] = (
∑n

i=1
δ(i)/n)× 100

where δ(i) =

{
1, if |xgnd (i)− xresult (i) > 1
0, otherwise

(18)

where xgnd (i) and xresult (i) are the ith pixels in the ground truth
and the result, respectively. BPR is the total number of pixels
in a depth map. Furthermore, no disparity refinement tech-
niquewas employed to compare the different cost aggregation
methods fairly.

Fig. 5 depicts the experimental results. The box filter
results have many artifacts in the texture and homoge-
neous regions. Moreover, errors may occur in the depth dis-
continuous regions. The bilateral filter generates accurate
depth information in the homogeneous and discontinuity
regions; however, there are many artifacts in the repeti-
tive texture regions. The segmented tree aggregation and
non-local aggregation methods reduce the number of arti-
facts; however, the results contain noise in the homogeneous
regions. Nevertheless, the proposed method performs better
in the texture and homogeneous regions than the conventional
algorithms.

Table 1 presents the percentage of the bad matching pix-
els for the proposed method and conventional aggregation
methods, such as the bilateral filtering [14], guided image
filtering approach [15], non-local approach [16], and seg-
mented tree aggregation [21]. The proposed method out-
performs the conventional cost aggregation methods with
respect to bad pixel rate. For comparison purposes, additional
experiments of stereo matching were conducted using the
Middlebury dataset. To qualitatively verify the performance
of the proposed method, we conducted the experiments on
other stereo images. Fig. 6 depicts the results of the proposed
stereo matching method. The proposed method generates
more accurate depth maps in the texture regions than the
conventional methods.

Next, we examined the performance comparison of the
fusion tensor and basic tensor at the optimization stage.
To demonstrate that the fusion tensor is more accurate than
the conventional methods, we calculated the t-value. The
t-value is a test statistic, which is a result of a statistical test to
measure how far apart the two means are. The t-test formula
can be defined as

t =
x̄1 − x̄2√
s21
n1
+

s22
n2

(19)
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TABLE 2. T-values.

FIGURE 7. Enlarged stereo matching results.

where x̄1 and x̄2 are the sample means, s21 and s22 are the
standard deviations, and n1 and n2 are the sample sizes.
Table 2 lists the t-values between the tensor of ground truth
and the tensor of color, TCC , and between the tensor of
ground truth and the fusion tensor, wd . The proposed fusion
tensor has a lower t-value for Tsukuba, Venus, Cones, and
Teddy. A low t-value indicates that the two distributions are
closer. As expected, using the proposed method was more
advantageous for obtaining good results.

Fig. 7 illustrates some parts of the stereo matching
results of Tsukuba, Venus, Books, and Cones. The con-
ventional methods are not concerned with the ambiguous
areas [13], [15], [16]. Therefore, the conventional cost aggre-
gation methods cause the texture copying problem. However,
enlarged depth maps demonstrate that the proposed method
can solve the texture copying problem of the conventional
cost aggregation methods.

V. CONCLUSION
In this study, a new cost aggregationmethod for the depth esti-
mation method was proposed. The proposed method aggre-
gated the slice of the cost volume by optimizing the energy
functional. Because the direction of the diffusion tensor of

any pixel is similar to that of the surrounding pixels, this
study employed the fusion tensor to increase the correlations
between the neighboring pixels and to reduce the texture cop-
ing from the color image. The experimental results verified
that the combination of the two different techniques, TGV
and image-guided cost volume filtering, can be an effective
solution for acquiring accurate disparity maps. Moreover,
the proposed method produces more accurate disparity maps
compared to the conventional aggregation methods with
respect to the bad pixel rate.
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