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ABSTRACT Generally, it is not easy to construct quantum maximal-distance-separable (MDS) codes with
theminimumdistance greater than q

2+1. Theminimumdistance of quantumMDS codes can achieve q
2 + 1 or

exceed q
2+1 by adopting pre-shared entanglement. In this work, some new families of entanglement-assisted

quantumMDS codes that satisfy the quantum Singleton bound are constructed and the number of maximally
entangled states required is determined to make the minimum distance of some constructed codes achieve
q
2 + 1 or exceed q

2 + 1 by utilizing the decomposition of the defining set and q2-cyclotomic cosets of

constacyclic codes with length q2+1
γ

, where γ = t2 + 1, t is a power of 2 and q = te > 4 with e ≡ 1 mod 4
or e ≡ 3 mod 4. Moreover, the parameters of these codes constructed in this paper are more general relative
to the ones in the literature and the minimum distance of some codes constructed in this paper is larger
than q

2 + 1.

INDEX TERMS Constacyclic codes, entanglement-assisted quantum codes, maximal-distance-separable
(MDS) codes.

I. INTRODUCTION
In the area of quantum information and quantum comput-
ing, after the work of Shor [37] and Stean [38], [39], much
research on quantum error-correcting codes (quantum codes
for short) has been done. Construction of good quantum
codes via classical codes is very important for quantum
information and quantum computing [3], [5], [7], [8], [16],
[19], [32], [33], [37], [40], [41], [46]. Let q be a prime
power, a q-ary [[n, k, d]]q quantum code of length n is a
qk -dimensional subspace of the qn-dimensional Hilbert space
which can detect up to d − 1 quantum errors and correct
up to b d−12 c quantum errors. The minimum distance of the
code is d . Quantum MDS codes that satisfy the quantum
Singleton bound, that is, 2d = n − k + 2, are constructed
from the Hermitian construction by most researchers. Some
researchers utilized constacyclic codes including negacyclic
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codes and cyclic codes to construct quantum MDS codes
based on the Hermitian construction. Constacyclic codes
have been applied to the construction of quantumMDS codes
such that the minimum distance of some codes exceeds q

2+1.
Kai et al. constructed two families of quantum MDS codes
by using negacyclic codes in [17]. Since then, some other
families of negacyclic codes or constacyclic codes have been
studied. More details could be consulted in [4], [18], [26],
[35], [42], [44], [45]. Although quantum stabilizer codes
can be constructed from dual-containing (or self-orthogonal)
classical codes, it is not an easy task to construct quantum
MDS codes with relatively large minimum distance. Except
for some special codes’ length, most of known q-ary quantum
MDS codes have minimum distance less than or equal to
q
2+1. However, the dual-containing condition forms a barrier
in the development of quantum coding theory [28].

Recently, the discovery of the theory of entanglement-
assisted quantum codes plays an important role in the
area of quantum information and quantum computation.
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Brun et al. proposed the entanglement-assisted stabilizer for-
malism in [2]. They showed that some entanglement-assisted
quantum codes could be constructed without dual-containing
classical quaternary codes if the sender and the receiver
shared a certain amount of pre-existing entanglement [2].
An entanglement-assisted quantum code can be denoted
as [[n, k, d; c]]q. With the help of c pairs of maxi-
mally entangled states, it encodes k information qubits
into n channel qubits. Some entanglement-assisted quan-
tum codes with good parameters have constructed in [1],
[14], [22], [23], [43]. In [27], Li et al. proposed the con-
cept about a decomposition of the defining set of cyclic
codes, and then they used this method to construct some
entanglement-assisted quantum codes having good param-
eters. In [34], Qian et al. constructed some families of
entanglement-assisted quantum codes by using arbitrary
binary linear codes and showed that the existence of asymp-
totically good entanglement-assisted quantum codes. In [2],
Brun et al. proposed the entanglement-assisted Singleton
bound for entanglement-assisted quantum codes, which
could be called entanglement-assisted quantum maximum-
distance-separable (MDS) codes. In [11], with the help of a
small amount of pre-shared maximally entanglement, a con-
struction of entanglement-assisted quantum MDS codes was
provided by Fan et al. Guenda et al. introduced the hull
of the classical codes and constructed some families of
entanglement-assisted quantum MDS codes in [13]. We pro-
posed the decomposition of the defining set of negacyclic
codes in [6] and then utilized this method to construct
some families of entanglement-assisted quantumMDS codes
with different lengths based on the results of [24], [27].
In [28], [29], the decomposition of the defining set of nega-
cyclic codes and constacyclic codes was utilized by Lü et al.
to construct some families of entanglement-assisted quantum
MDS codes respectively, and some of those constructed codes
have larger minimum distance with d ≥ q+ 1. In [25], con-
stacyclic codes of length n = q2−1

r were utilized by Liu et al.
to construct some new entanglement-assisted quantum MDS
codes, where r = 3, 5, 6, 7 and q ≡ −1 mod r . In fact,
pre-shared entanglement can improve the error-correcting
ability of quantum codes. Those quantum MDS codes with
the minimum distance not exceeding q

2 + 1 can exceed q
2 + 1

or even q + 1 by using the method of pre-shared entan-
glement. Therefore, it is necessary for us to consider the
construction of entanglement-assisted quantum MDS codes
with larger distance. Moreover, how to determine the number
of required shared pairs in the quantum coding theory to
make the minimum distance of quantum MDS codes larger
than q

2 + 1 or even q + 1 is worth discussing. Although
Luo et al. used the Euclidean construction to research some
families of entanglement-assisted MDS codes from general-
ized Reed-Solomon codes and the parameters of the codes
constructed in [30] are new and flexible compared with
the ones from [6], [13], [29], [36], the authors just consid-
ered the Euclidean construction not Hermitian construction.
Very recently, Fang et al. utilized the Hermitian hull of

generalized Reed-Solomon codes to present several families
of entanglement-assisted quantum MDS codes in [12], while
they did not consider the case of entanglement-assisted quan-

tum MDS codes with general length q2+1
γ

, where γ = t2 + 1
and t is a power of 2.Moreover, the q2-cyclotomic cosets used
in this paper to character the constacyclic codes with length
q2+1
γ

is different from the ones used in [9] and we obtain some
new families of entanglement-assisted quantumMDS that are
different from those constructed in [9].

In this paper, we utilize the decomposition of the defining
set of constacyclic codes with length q2+1

γ
to determine the

number of pre-shared entangled states and then to construct
some new families of entanglement-assisted quantum MDS
codes with length q2+1

γ
, which is different from the ones used

in [12], [30]. Additionally, other entanglement-assisted quan-
tum MDS codes with the number of entangled states that is
more than 5 can be obtained by using the same method of this
paper in the Hermitian construction. The higher the number
of pre-shared entangled states, the more likely it is that the
minimum distance of quantumMDS codes will exceed q

2+1,
but at the same time, entanglement technology needs to con-
sume additional entanglement resources. Therefore, from the
perspective of the consumption of entanglement resources,
it is not the case that the larger the number of entangled states
are the better. In conclusion, we think it is reasonable that the
number of pre-shared entangled states is sufficient to make
the minimum distance of MDS codes exceed q

2 + 1. Fur-
thermore, we can obtain more entanglement-assisted quan-
tum MDS codes with minimum distance that is more than
q
2 + 1 relative to the ones of [10], [20] where the length of
entanglement-assisted quantum codes is less general. Some
classes of entanglement-assisted quantum MDS codes con-
structed in this paper are listed as follows.

(1) [[ q
2
+1
γ
,
q2+1
γ
− 2d + 3, d; 1]]q, where γ = t2 + 1 with

t is a power of 2, q = te > 4 with e ≡ 1 mod 4 and 2 ≤ d ≤
2tq+2
γ

is even.

(2) [[ q
2
+1
γ
,
q2+1
γ
− 2d + 6, d; 4]]q, where γ = t2 + 1

with t is a power of 2, q = te > 4 with e ≡ 1 mod 4 and
(t+1)q−t+1+2γ

γ
≤ d ≤ (3t−1)q+t+3

γ
is odd.

(3) [[ q
2
+1
γ
,
q2+1
γ
−2d+7, d; 5]]q, where γ = t2+1 with t

is a power of 2, q = te > 4 with e ≡ 1 mod 4 and 2tq+2+2γ
γ

≤

d ≤ 2(t+1)q−2t+2
γ

is even.

(4) [[ q
2
+1
γ
,
q2+1
γ
−2d+3, d; 1]]q, where γ = t2+1 with t

is a power of 2, q = te with e ≡ 3 mod 4 and 2 ≤ d ≤ 2tq−2
γ

is even.
(5) [[ q

2
+1
γ
,
q2+1
γ
−2d+6, d; 4]]q, where γ = t2+1 with t

is a power of 2, q = te with e ≡ 3mod 4 and (t+1)q+2γ+t−1
γ

≤

d ≤ (3t−1)q−t−3
γ

is odd for t ≥ 4, or 3q+11
5 ≤ d ≤ 5q+5

5 is
odd for t = 2.
(6) [[ q

2
+1
γ
,
q2+1
γ
− 2d + 7, d; 5]]q, where γ = t2 + 1 with

t is a power of 2, q = te with e ≡ 3 mod 4 and 2tq+2γ−2
γ

≤

d ≤ 2(t+1)q+2t−2
γ

is even.
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The organization of this paper is as follows. In section 2,
we present some definitions and basic results of con-
stacyclic codes and entanglement-assisted quantum codes.
In Section 3, we give some families of entanglement-assisted
quantumMDS codes that are constructed by utilizing consta-
cyclic codes with length q2+1

γ
, in which some quantum MDS

codes have larger minimum distance exceeding q
2 + 1. The

conclusion is given in Section 4.

II. PREMILINARIES
In this section, we recall some basic results about constacyclic
codes in [4], [15], [17], [18], [21], [26], [31], [35], [42],
[44], [45] and some results of entanglement-assisted quantum
codes in [2], [6], [25], [27], [28].

Let Fq2 be the finite field with q2 elements, where q is a
power of 2. An [n, k, d] linear code over finite field Fq2 of
length n is a linear subspace of the vector space Fn

q2
and its

minimum distance is d . Assume that n is a positive integer
relatively prime to q, i.e., gcd(n, q) = 1. Moreover, we have
the following result in [15], [31].
Proposition 1 (Singleton Bound [15], [31]): If an [n, k, d]

linear code C over Fq2 exists, then

k ≤ n− d + 1.

If k = n− d + 1, then C is called an MDS code.
For a nonzero element λ ∈ F∗

q2
, a linear code C

of length n over Fq2 is said to be λ-constacyclic if
(λcn−1, c0, c1, · · · , cn−2) ∈ C for every (c0, c1, · · · , cn−1) ∈
C.When λ = −1, C is a negacyclic code. When λ = 1, C is
a cyclic code.

From [17], [18], a q2-ary λ-constacyclic code C over Fq2 of
length n is precisely an ideal in Fq2 [x]/〈x

n
− λ〉 and C can be

generated by a monic polynomial g(x) which divides xn − λ.
Assume that λ ∈ F∗

q2
is a primitive r-th root of unity, and then

exists a primitive rn-th root of unity over some extension field
of Fq2 , denoted by η, such that η

n
= λ. Let ξ = ηr , then ξ is

a primitive n-th root of unity, which implies that the elements
ηξ i = η1+ri are the roots of xn − λ for 0 ≤ i ≤ n − 1.
We denote the set Orn = {1 + ri|0 ≤ i ≤ n − 1}. If C is
a λ-constacyclic code over Fq2 of length n with generator
polynomial g(x), then the defining set of the constacyclic
code C = 〈g(x)〉 is the set Z = {i ∈ Orn | η

i is a root of g(x)}.
For each i ∈ Orn, the q2-cyclotomic coset modulo rn con-
taining i is Ci = {i, iq2, iq4, · · · , iq2k−2} mod rn, where k
is the smallest positive integer such that iq2k ≡ i mod rn.
The defining set Z of constacyclic C is the union of some
q2-cyclomic cosets modulo rn. The following proposition
gives the BCH bound of constacyclic codes.
Proposition 2 (The BCH Bound for Constacyclic Codes

[18], [21] ):Let C be a q2-ary λ-constacyclic code of length n.
If the generator polynomial g(x) of C has the elements {η1+ri |
0 ≤ i ≤ d − 2} as the roots where η is a primitive
rn-th root of unity, then the minimum distance of C is at
least d .

Let aq = (aq0, a
q
1, · · · , a

q
n−1) denote the conjugation of the

vector a = (a0, a1, · · · , an−1). For u = (u0, u1, · · · , un−1)
and v = (v0, v1, · · · , vn−1) ∈ Fn

q2
, the Hermitian inner

product is defined as

〈u, v〉h = u0v
q
0 + u1v

q
1 + · · · + un−1v

q
n−1.

The Hermitian dual code of C can be defined as

C⊥h = {u ∈ Fnq2 | 〈u, v〉h = 0 for all v ∈ C}.

If C ⊆ C⊥h , then C is called Hermitian self-orthogonal
code. If C⊥h ⊆ C, then C is a Hermitian dual-containing
code. From [4], [18], we can see that the Hermitian dual
C⊥h of a λ-constacyclic code over Fq2 is a λ−q-constacyclic
code. If C is an [n, k, d] constacyclic code over Fq2 with
defining set Z , then the Hermitian dual C⊥h has a defining
set Z⊥h = {z ∈ Orn| − qz mod rn 6∈ Z }. Furthermore,
the following result gives us a sufficient and necessary condi-
tion for a constacyclic code to be a Hermitian dual-containing
code.
Lemma 1 ([4], [18]): Let C be a q2-ary λ-constacyclic

code of length n with defining set Z . Then C contains its
Hermitian dual code if and only if Z ∩ −qZ = ∅, where
−qZ = {−qz mod rn | z ∈ Z }.
In the following of this section, we recall some results of

entanglement-assisted quantum codes in [2], [6], [25], [27],
[28].
Theorem 1 ([2], [6], [25], [27], [28]): If C = [n, k, d]q2

is a classical code and H is its parity check matrix
over Fq2 , then there exist entanglement-assisted codes with
parameters

[[n, 2k − n+ c, d; c]]q,

where c = rank(HH†) is the number of maximally entangled
states required andH† is the conjugate transpose matrix ofH
over Fq2 .
Proposition 3 ([2], [6], [25], [27], [28]): If C is

an entanglement-assisted quantum code with parameters
[[n, k, d; c]]q, then C satisfies the entanglement-assisted Sin-
gleton bound n+ c− k ≤ 2(d − 1). If C satisfies the equality

n+ c− k = 2(d − 1),

then it is called an entanglement-assisted quantum MDS
code.

III. CONSTRUCTIONS OF ENTANGLEMENT-ASSISTED
QUANTUM MDS CODES
In [25], [28], the authors proposed the definition for the
decomposition of the defining set of constacyclic codes that
containing cyclic codes and negacyclic codes.
Definition 1 ([25], [28]): Let C be q2-ary λ-constacyclic

code of length n with defining set Z . Assume that Z1 = Z ∩
(−qZ ) and Z2 = Z \ Z1, where −qZ = {rn − qx|x ∈ Z }.
Then Z = Z1 ∪ Z2 is called a decomposition of the defining
set of C.
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Lemma 2 ([25], [28]): Let Z be a defining set of q2-ary
λ-constacyclic code C with length n, where gcd(n, q) = 1.
Suppose that Z = Z1 ∪ Z2 is a decomposition of Z . Then the
number of entangled states required is c = |Z1|.
Similar to Lemma 3.1 in [26], we can obtain Lemma 3 as

follows.
Lemma 3: Let n = q2+1

γ
and s = (q+γ+1)n

2 , where γ =
t2 + 1, t is a power of 2 and q = te > 4 with e ≡ 1 mod 4
or e ≡ 3 mod 4. Then Cs = {s}, and Cs−(q+1)i = {s − (q +
1)i, s+ (q+ 1)i} for 1 ≤ i ≤ n−1

2 .

Theorem 2: Let n = q2+1
γ

and s = (q+γ+1)n
2 , where γ =

t2+1, t is a power of 2 and q = te > 4 with e ≡ 1 mod 4. If C
is a q2-ary λ-constacyclic code whose defining set is given by
Z = ∪δi=1Cs−(q+1)i, where 1 ≤ δ ≤

tq−t2

γ
, then C⊥h ⊆ C.

Proof:We only need to consider that Z ∩−qZ = ∅ from
Lemma 1. If Z ∩ −qZ 6= ∅, then there exist two integers
i and j, where 1 ≤ i, j ≤ tq−t2

γ
, such that s − (q + 1)i ≡

−q(s− (q+ 1)j)q2k mod (q+ 1)n for k ∈ {0, 1}. We can seek
some contradictions as follows.

(1) If k = 0, then s− (q+1)i ≡ −q(s− (q+1)j) mod (q+
1)n, which is equivalent to 0 ≡ qj + i mod n. For 1 ≤ i, j ≤
tq−t2

γ
, we consider the following cases.

(i) When 1 ≤ j ≤ q−t
γ
, we have

q+ 1 ≤ qj+ i

≤ q
q− t
γ
+
tq− t2

γ

=
q2 − t2

γ

< n =
q2 + 1
γ

.

It is in contradiction with the congruence 0 ≡ qj+ i mod n.
(ii) When q+γ−t

γ
≤ j ≤ 2q−2t

γ
, let j′ = j − q−t

γ
for 1 ≤

j′ ≤ q−t
γ
. Then we have 0 ≡ q(j′ + q−t

γ
)+ i mod n, which is

equivalent to 0 ≡ qj′ − tq+1
γ
+ i mod n.Moreover,

0 <
(γ − t)q+ γ − 1

γ

= q+ 1−
tq+ 1
γ

≤ qj′ −
tq+ 1
γ
+ i

≤
q2 − tq− γ

γ
< n.

It is in contradiction with the congruence 0 ≡ qj′ − tq+1
γ
+

i mod n.
(iii) When (ϑ−1)q+γ−(ϑ−1)t

γ
≤ j ≤ ϑq−ϑ t

γ
, where 3 ≤ ϑ ≤

t (here, if there exists t ≥ 4), let j′ = j− (ϑ−1)q−(ϑ−1)t
γ

for 1 ≤

j′ ≤ q−t
γ
. Then we have 0 ≡ q(j′+ (ϑ−1)q−(ϑ−1)t

γ
)+ imod n,

which is equivalent to 0 ≡ qj′ − (ϑ−1)tq+(ϑ−1)
γ

+ i mod n.

Moreover,

0 <
(1+ t)q+ γ − (t − 1)

γ

≤
(γ − (ϑ − 1)t)q+ γ − (ϑ − 1)

γ

≤ qj′ −
(ϑ − 1)tq+ (ϑ − 1)

γ
+ i

≤
q2 − (ϑ − 1)tq− γ − ϑ + 2

γ

≤
q2 − 2tq− γ − 1

γ
< n.

It is in contradiction with the congruence 0 ≡ qj′ −
(ϑ−1)tq+(ϑ−1)

γ
+ i mod n.

(2) If k = 1, then s−(q+1)i ≡ −q(s−(q+1)j)q2 mod (q+
1)n, which is equivalent to qj ≡ i mod n. From 1 ≤ i, j ≤
tq−t2

γ
, we consider the following cases.

(i) When 1 ≤ j ≤ q−t
γ
, we have

0 <
(γ − t)q+ t2

γ

= q−
tq− t2

γ

≤ qj-i

≤
q2 − tq− γ

γ
< n.

It is in contradiction with 0 ≡ qj− i mod n.
(ii) When q+γ−t

γ
≤ j ≤ 2q−2t

γ
, let j′ = j− q−t

γ
for 1 ≤ j′ ≤

q−t
γ
. Then we have i ≡ q(j′+ q−t

γ
) mod n,which is equivalent

to i ≡ qj′ − tq+1
γ

mod n.Moreover,

0 <
(γ − t)q− 1

γ

= q−
tq+ 1
γ

≤ qj′ −
tq+ 1
γ

≤
q2 − 2tq− 1

γ
< n.

It is in contradiction with 1 ≤ i ≤ tq−t2

γ
.

(iii) When (ϑ−1)q+γ−(ϑ−1)t
γ

≤ j ≤ ϑq−ϑ t
γ

, where 3 ≤ ϑ ≤

t (here, if there exists t ≥ 4), let j′ = j − (ϑ−1)q−(ϑ−1)t
γ

for

1 ≤ j′ ≤ q−t
γ
. Then we have i ≡ q(j′+ (ϑ−1)q−(ϑ−1)t

γ
) mod n,

which is equivalent to i ≡ qj′ − (ϑ−1)tq+(ϑ−1)
γ

mod n.
Moreover,

0 <
(t + 1)q− t + 1

γ

≤
(γ − (ϑ − 1)t)q− (ϑ − 1)

γ
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≤ qj′ −
(ϑ − 1)tq+ (ϑ − 1)

γ

≤
q2 − ϑ tq− ϑ + 1

γ

≤
q2 − 3 tq− 2

γ
< n.

It is in contradiction with i ≡ qj′ − (ϑ−1)tq+(ϑ−1)
γ

mod n.
From the above discussion, the result follows. �
Theorem 3: Let n = q2+1

γ
and s = (q+γ+1)n

2 , where γ =
t2 + 1, t is a power of 2 and q = te > 4 with e ≡ 1 mod 4.
If C is a q2-ary λ-constacyclic code of length n with defining
set Z = ∪δi=0Cs−(q+1)i for 0 ≤ δ ≤

tq−t2

γ
, then there exist

entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
γ
,
q2+1
γ
−2d+3, d; 1]]q, where 2 ≤ d ≤

2tq+2
γ

is even.
Proof: From Lemma 3, we can assume that the defining

set of constacyclic code C is given by Z = ∪δi=0Cs−(q+1)i for

0 ≤ δ ≤ tq−t2

γ
, and then C is a constacyclic codewith parame-

ters [ q
2
+1
γ
,
q2+1
γ
−2δ−1, 2δ+2]q2 from Propositions 1 and 2.

If δ = 0, then−qZ ∩ Z = −qCs ∩Cs = Cs. From Lemma 2,
we have c = 1. Then there exist entanglement-assisted
quantum MDS codes with parameters [[ q

2
+1
γ
,
q2+1
γ
− 2d +

3, d; 1]]q from Theorem 1 and Proposition 3, where d = 2.

As for 1 ≤ δ ≤ tq−t2

γ
, we assume that the defining set of C

can be divided into two mutually disjoint subsets, i.e., Z =
Z0 ∪ Z1, where Z0 = Cs and Z1 = ∪δi=1Cs−(q+1)i and the
defining sets Z0 and Z1 can generate constacyclic codes C0
and C1 respectively. Let the parity check matrices of C, C0
and C1 over Fq2 be H , H0 and H1, respectively. Therefore,

H =
(
H0
H1

)
,

and

HH†
=

(
H0H

†
0 H0H

†
1

H1H
†
0 H1H

†
1

)
.

From Theorem 2, we have H1H
†
1 = 0.Moreover, we have

H0H
†
1 = 0, and H1H

†
0 = 0 from

Cs ∩ −q(∪δi=1Cs−(q+1)i) = −q(Cs ∩ (∪
δ
i=1Cs−(q+1)i)) = ∅.

Hence, we obtain that

HH†
=

(
H0H

†
0 0

0 0

)
.

It is easy to see that Z0 ∩ −qZ0 = {s}, and then
rank(H0H

†
0 ) = 1. From Lemma 2, c = 1. Therefore,

there exist entanglement-assisted quantum MDS codes with
parameters [[ q

2
+1
γ
,
q2+1
γ
−2d+3, d; 1]]q fromTheorem 1 and

Proposition 3. �
Example 1: If t = 4 and e = 5, then q = 1024 and n =

61681. Therefore, there exist entanglement-assisted quantum
MDS codes from Theorem 3 that are listed in Table 1.

TABLE 1. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 3.

Lemma 4: Let n = q2+1
γ

, where γ = t2 + 1, t is a power
of 2 and q = te > 4 with e ≡ 1 mod 4 or e ≡ 3(mod 4).
Assume that s = (q+γ+1)n

2 and β = q2+q
2 + 1, where β =

s − (q+1)(n−1)
2 . Then Cs = {s}, and Cβ+(q+1)i = {β + (q +

1)i, β − (q+ 1)(i+ 1)} for 0 ≤ i ≤ n−3
2 .

Proof: If j = q2+γ q−γ+1
2γ , then 1 + (q + 1)j = s. This

implies that smust be inOrn (see Sec.2). Since sq2 = s(q2+
1−1) ≡ smod (q+1)n, it follows that Cs = {s}. For 0 ≤ i ≤
n−3
2 , we have Cβ+(q+1)i = {β + (q+ 1)i, β − (q+ 1)(i+ 1)}

from

(β + (q+ 1)i)q2

= [s−
(q+ 1)(n− 1)

2
+ (q+ 1)i]q2

≡ s− (q+ 1)(
n− 1
2
− i)q2

≡ s− (q+ 1)[
n− 1
2

(q2 + 1)−
n− 1
2
− i(q2 + 1)+ i]

≡ s+ (q+ 1)(
n− 1
2
− i)

≡ β − (q+ 1)(i+ 1) mod (q+ 1)n

and

(β − (q+ 1)(i+ 1))q2

= [s−
(q+ 1)(n− 1)

2
− (q+ 1)(i+ 1)]q2

≡ s− (q+ 1)(
n− 1
2
+ i+ 1)q2

≡ s− (q+ 1)[
n− 1
2

(q2 + 1)−
n− 1
2

+ (i+ 1)(q2 + 1)− i− 1]

≡ s+ (q+ 1)(
n− 1
2
+ i+ 1)

≡ β + (q+ 1)i mod (q+ 1)n.

Moreover, we show that Cβ+(q+1)i = {β+ (q+1)i, β− (q+
1)(i+ 1)} is disjoint for 0 ≤ i ≤ n−3

2 . In fact, we assume that
there exist two integers i and j, 0 ≤ i 6= j ≤ n−3

2 such that
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Cβ+(q+1)i = Cβ+(q+1)j, and then we have β + (q + 1)i ≡
(β + (q+ 1)j)q2k mod (q+ 1)n for k ∈ {0, 1}.
If k = 0, we have β+ (q+1)i ≡ β+ (q+1)jmod (q+1)n,

which is equivalent to i = j. It is in contradiction with 0 ≤
i 6= j ≤ n−3

2 .
If k = 1, we have β+(q+1)i ≡ β−(q+1)(j+1) mod (q+

1)n, which is equivalent to i + j ≡ n − 1 mod n. It is in
contradiction with 0 ≤ i + j ≤ n − 3. Therefore, the result
follows. �
Theorem 4: Let n = q2+1

γ
, where γ = t2 + 1, t is a power

of 2 and q = te > 4 with e ≡ 1 mod 4. Assume that s =
(q+γ+1)n

2 and β = q2+q
2 + 1, where β = s − (q+1)(n−1)

2 . If C
is a q2-ary λ-constacyclic code whose defining set is given
by Z = ∪δi=0Cβ+(q+1)i, where 0 ≤ δ ≤

(t+1)q−3γ−t+1
2γ , then

C⊥h ⊆ C.
Proof:We only need to consider that Z ∩−qZ = ∅ from

Lemma 1. If Z ∩ −qZ 6= ∅, then there exist two integers i
and j, where 1 ≤ i, j ≤ (t+1)q−3γ−t+1

2γ , such that

β + (q+ 1)i ≡ −q(β + (q+ 1)j)q2k mod (q+ 1)n

for k ∈ {0, 1}. We can seek some contradictions as follows.
(1) If k = 0, then β+(q+1)i ≡ −q(β+(q+1)j) mod (q+

1)n, which is equivalent to qj + i ≡ n−q−1
2 mod n. For 0 ≤

i, j ≤ (t+1)q−3γ−t+1
2γ , we can consider the following cases.

(i) When 0 ≤ j ≤ q−2γ−t
2γ , we have

0 ≤ qj+ i

≤ q
q− 2γ − t

2γ
+

(t + 1)q− 3γ − t + 1
2γ

=
q2 − (2γ − 1)q− 3γ − t + 1

2γ

<
q2 + 1− γ q− γ

2γ

=
n− q− 1

2
.

It is in contradiction with the congruence qj + i ≡
n−q−1

2 mod n.
(ii) When q−t

2γ ≤ j ≤ 2q−2γ−2t
2γ , let j′ = j − q−2γ−t

2γ with

1 ≤ j′ ≤ q−t
2γ . Then we have q2+1−γ q−γ

2γ ≡ q(j′ + q−2γ−t
2γ )+

i mod n, which is equivalent to 0 ≡ qj′ + −qγ−tq+γ−12γ +

i mod n.Moreover,

0 <
q(γ − t)+ γ − 1

2γ

≤ qj′ +
−qγ − tq+ γ − 1

2γ
+ i

≤ q
q− t
2γ
+
−qγ − tq+ γ − 1

2γ
+

(t + 1)q− 3γ − t + 1
2γ

=
q2 − (γ + t − 1)q− 2γ − t

2γ
< n.

It is in contradiction with the congruence 0 ≡ qj′ +
−qγ−tq+γ−1

2γ + i mod n.

(iii) When (ϑ−1)q−(ϑ−1)t
γ

≤ j ≤ ϑq−ϑ t−2γ
2γ , where 3 ≤

ϑ ≤ t (if there exists t ≥ 4), let j′ = j − (ϑ−1)q−(ϑ−1)t−2γ
2γ

with 1 ≤ j′ ≤ q−t
2γ . Then we have q2+1−γ q−γ

2γ ≡ q(j′ +
(ϑ−1)q−2γ−(ϑ−1)t

2γ ) + i mod n, which is equivalent to 0 ≡

qj′ + (ϑ−2)q2−γ q−(ϑ−1)qt+γ−1
2γ + i mod n.

If ϑ is an even, then we have 0 ≡ qj′ +
−ϑ−γ q−(ϑ−1)qt+γ+1

2γ + i mod n.Moreover,

0 <
(1+ t)q− t + γ + 1

2γ

≤ q+
−ϑ − γ q− (ϑ − 1)qt + γ + 1

2γ

≤ qj′ +
−ϑ − γ q− (ϑ − 1)qt + γ + 1

2γ
+ i

≤ q
q− t
2γ
+
−ϑ − γ q− (ϑ − 1)qt + γ + 1

2γ

+
(t + 1)q− 3γ − t + 1

2γ

≤
q2 − (γ + 3t − 1)q− 2γ − t − 2

2γ
< n.

It is in contradiction with the congruence 0 ≡ qj′ +
−ϑ−γ q−(ϑ−1)qt+γ+1

2γ + i mod n.

If ϑ is an odd, then we have q2+γ q+(ϑ−1)tq−γ+ϑ
2γ ≡ qj′ +

i mod n.Moreover,

0 < q

≤ qj′ + i

≤ q
q− t
2γ
+

(t + 1)q− 3γ − t + 1
2γ

≤
q2 + q− 3γ − t + 1

2γ
< n.

It is in contradiction with 0 <
q2+γ q+2tq−γ+3

2γ ≤

q2+γ q+(ϑ−1)tq−γ+ϑ
2γ ≤

q2+γ q+(t−2)tq−γ+t−1
2γ < n.

(v) When tq−t2

2γ ≤ j ≤ (t+1)q−3γ−t+1
2γ , let j′ =

j − tq−t2−2γ
2γ with 1 ≤ j′ ≤ q−t

2γ . Then we have
q2+1−γ q−γ

2γ ≡ q(j′+ tq−t2−2γ
2γ )+ imod n,which is equivalent

to q2+(2γ−1)q+t+1−γ
2γ ≡ qj′ + i mod n.Moreover,

0 < q

≤ qj′ + i

≤ q
q− t
2γ
+

(t + 1)q− 3γ − t + 1
2γ

≤
q2 + q− 3γ − t + 1

2γ
< n.

It is in contradiction with the congruence

q2 + (2γ − 1)q+ t + 1− γ
2γ

≡ qj′ + i mod n.

(2) If k = 1, then

β + (q+ 1)i ≡ −q(β − (q+ 1)(j+ 1)) mod (q+ 1)n,
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which is equivalent to i ≡ qj+ n+q−1
2 mod n. From 0 ≤ i, j ≤

(t+1)q−3γ−t+1
2γ , we can consider the following cases.

(i) When 0 ≤ j ≤ q−2γ−t
2γ , we have

0 <
q2 + γ q+ 1− γ

2γ

≤ qj+
q2 + γ q+ 1− γ

2γ

≤ q
q− 2γ−t

2γ
+
q2 + γ q+ 1− γ

2γ

=
2q2 − (γ + t)q+ 1− γ

2γ
< n.

It is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(ii) When q−t
2γ ≤ j ≤ 2q−2γ−2t

2γ , let j′ = j − q−2γ−t
2γ

with 1 ≤ j′ ≤ q−t
2γ . Then we have i ≡ q(j′ + q−2γ−t

2γ ) +
q2+γ q+1−γ

2γ mod n, which is equivalent to i ≡ qj′ +
−(γ+t)q−γ−1

2γ mod n.Moreover,

0 <
(γ − t)q− γ − 1

2γ

≤ q+
−(γ + t)q− γ − 1

2γ

≤ qj′ +
−(γ + t)q− γ − 1

2γ

≤ q
q− t
2γ
+
−qγ − tq− γ − 1

2γ

+
(t + 1)q− 3γ − t + 1

2γ

=
q2 − (γ + t − 1)q− 4γ − t

2γ
< n.

It is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(iii)When (ϑ−1)q−(ϑ−1)t
γ

≤ j ≤ ϑq−ϑ t−2γ
2γ , where 3 ≤ ϑ ≤

t (if there exists t ≥ 4), let j′ = j − (ϑ−1)q−(ϑ−1)t−2γ
2γ with

1 ≤ j′ ≤ q−t
2γ . Then we have i ≡ q(j′ + (ϑ−1)q−2γ−(ϑ−1)t

2γ )+
q2+γ q+1−γ

2γ mod n, which is equivalent to i ≡ qj′ +
ϑq2−γ q−(ϑ−1)qt−γ+1

2γ mod n.
If ϑ is an even, then we have i ≡ qj′ +

−(γ+(ϑ−1)t)q−γ−ϑ+1
2γ mod n.Moreover, we have

0 <
(t + 1)q− γ − t + 1

2γ

≤
(γ − (ϑ − 1)t)q− γ − ϑ + 1

2γ

≤ q+
−(γ + (ϑ − 1)t)q− γ − ϑ + 1

2γ

≤ qj′ +
−(γ + (ϑ − 1)t)q− γ − ϑ + 1

2γ

≤ q
q− t
2γ
+

(γ − (ϑ − 1)t)q− γ − ϑ + 1
2γ

=
q2 + (γ − ϑ t)q− γ − ϑ + 1

2γ

≤
q2 + (γ − 4 t)q− γ − 3

2γ
< n.

It is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

If ϑ is an odd, then we have i + q2+(γ+(ϑ−1)t)q+γ+ϑ
2γ ≡

qj′ mod n.Moreover,

0 <
q2 + (γ + 2t)q+ γ + 3

2γ

≤ i+
q2 + (γ + (ϑ − 1)t)q+ γ + ϑ

2γ

≤
(t + 1)q− 3γ − t + 1

2γ

+
q2 + (γ + (ϑ − 1)t)q+ γ + ϑ

2γ

≤
q2 + (2γ−t)q− 2γ

2γ
< n.

It is in contradiction with q ≤ qj′ ≤ q2−tq
2γ .

(v) When tq−t2

2γ ≤ j ≤ (t+1)q−3γ−t+1
2γ , let j′ = j −

tq−t2−2γ
2γ with 1 ≤ j′ ≤ q−t

2γ . Then we have i ≡ q(j′ +
tq−t2−2γ

2γ ) + q2+γ q+1−γ
2γ mod n, which is equivalent to i ≡

qj′ + q2−(2γ−1)q−γ−t+1
2γ mod n.Moreover,

0 <
q2 + q− γ − t + 1

2γ

≤ q+
q2 − (2γ − 1)q− γ − t + 1

2γ

≤ qj′ +
q2 − (2γ − 1)q− γ − t + 1

2γ

≤ q
q− t
2γ
+
q2 − (2γ − 1)q− γ − t + 1

2γ

≤
2q2 − (2γ + t − 1)q− γ − t + 1

2γ
< n.

It is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

From the above discussions of (1) and (2), the result
follows. �
Theorem 5: Let n = q2+1

γ
, where γ = t2 + 1, t is a

power of 2 and q = te > 4 with e ≡ 1 mod 4. Assume
that s = (q+γ+1)n

2 and β = q2+q
2 + 1, where β = s −

(q+1)(n−1)
2 . If C is a q2-ary λ-constacyclic of length n with

defining set Z = ∪
(t+1)q−3γ−t+1

2γ +ζ

i=0 Cβ+(q+1)i for 1 ≤ ζ ≤
(2t−2)q+2t+2

2γ , then there exist entanglement-assisted quantum

MDS codes with parameters [[ q
2
+1
γ
,
q2+1
γ
− 2d + 6, d; 4]]q,

where (t+1)q−t+1+2γ
γ

≤ d ≤ (3t−1)q+t+3
γ

is odd.
Proof: From Lemma 4, we can assume that the

defining set of constacyclic code C is given by Z =

∪

(t+1)q−3γ−t+1
2γ +ζ

i=0 Cβ+(q+1)i for 1 ≤ ζ ≤
(2t−2)q+2t+2

2γ , and then
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C is a constacyclic code with parameters [ q
2
+1
γ
,
q2+1
γ
−

(t+1)q−γ−t+1
γ

− 2ζ, (t+1)q−t+1
γ

+ 2ζ ]q2 from Proposi-

tions 1 and 2. If ζ = 1, then Z = ∪
(t+1)q−γ−t+1

2γ
i=0 Cβ+(q+1)i.

Since −qC
β+(q+1) (t+1)q−γ−t+12γ

= C
β+(q+1)( (t−1)(q+1)+2−γ2γ ),

it follows that

Z ∩ −qZ

= (∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i ∪ Cβ+(q+1) (t+1)q−γ−t+12γ

)

∩ − q(∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i ∪ Cβ+(q+1) (t+1)q−γ−t+12γ

)

= (∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i

∩(−q ∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i))

∪ (∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i ∩ (−qCβ+(q+1) (t+1)q−γ−t+12γ

))

∪ (C
β+(q+1) (t+1)q−γ−t+12γ

∩ (−q ∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i))

∪ (−qC
β+(q+1) (t+1)q−γ−t+12γ

∩ C
β+(q+1) (t+1)q−γ−t+12γ

)

= C
β+(q+1) (t+1)q−γ−t+12γ

∪ C
β+(q+1)( (t−1)(q+1)+2−γ2γ ).

From Lemma 2, we have c = 4. Therefore, there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
γ
,
q2+1
γ
− 2d + 6, d; 4]]q from Theorem 1 and Proposi-

tion 3, where d = (t+1)q−t+1+2γ
γ

. If 2 ≤ ζ ≤ (2t−2)q+2t+2
2γ ,

then the defining set of C can be divided into three mutually
disjoint subsets, i.e., Z = Z0 ∪ Z1 ∪ Z2, where Z0 =

∪

(t+1)q−3γ−t+1
2γ

i=0 Cβ+(q+1)i, Z1 = C
β+(q+1)( (t+1)q−γ−t+12γ ) and Z2 =

∪

(t+1)q−3γ−t+1
2γ +ζ

i= (t+1)q+γ−t+1
2γ

Cβ+(q+1)i. The defining sets Z0, Z1, Z2 can

generate constacyclic codes C0, C1 and C2 respectively. Let
the parity check matrices of C, C0, C1 and C2 over Fq2 be H ,
H0, H1 and H2, respectively. Therefore,

H =

H0
H1
H2

 ,
and

HH†
=

H0H
†
0 H0H

†
1 H0H

†
2

H1H
†
0 H1H

†
1 H1H

†
2

H2H
†
0 H2H

†
1 H2H

†
2

 .
From the proof of Theorem 4, we have H0H

†
0 = 0, and

then

HH†
=

 0 H0H
†
1 H0H

†
2

H1H
†
0 H1H

†
1 H1H

†
2

H2H
†
0 H2H

†
1 H2H

†
2

 .

Since −qC
β+(q+1) (t+1)q−γ−t+12γ

= C
β+(q+1)( (t−1)(q+1)+2−γ2γ ), then

rank(H1H
†
0 ) = rank(H0H

†
1 ) = 2 and

HH†
=

 0 H0H
†
1 H0H

†
2

H1H
†
0 0 0

H2H
†
0 0 H2H

†
2

 .
In order to obtain

HH†
=

 0 H0H
†
1 0

H1H
†
0 0 0

0 0 0

 ,
we only need to show that H0H

†
2 = 0 and H2H

†
2 = 0. we

disucss two cases as follows.
(1) We have H2H

†
2 = 0. In fact, from Lemma 1, it only

need to consider that Z2∩−qZ2 = ∅. If Z2∩−qZ2 6= ∅,where

Z2 = ∪
(t+1)q−3γ−t+1

2γ +ζ

i= (t+1)q+γ−t+1
2γ

Cβ+(q+1)i for 2 ≤ ζ ≤
(2t−2)q+2t+2

2γ ,

which is equivalent to Z2 = ∪
ζ
i=1Cβ+(q+1)( (t+1)q−γ−t+12γ +i) for

1 ≤ ζ ≤ (2t−2)q+2t+2−2γ
2γ , then there exist two integers i and j,

where 1 ≤ i, j ≤ (2t−2)q+2t+2−2γ
2γ , such that

β + (q+ 1)(
(t + 1)q− γ − t + 1

2γ
+ i)

≡ −q(β + (q+ 1)(
(t + 1)q− γ − t + 1

2γ
+ j))q2k

mod (q+ 1)n

for k ∈ {0, 1}, where 1 ≤ i, j ≤ (2t−2)q+2t+2−2γ
2γ .

If k = 0, then we have 0 ≡ q−t
γ
+ qj + i mod n, and

then from 1 ≤ i, j ≤ (2t−2)q+2t+2−2γ
2γ , we can seek some

contradictions by considering the following cases.
(i) When 1 ≤ j ≤ q−t

2γ , we have

0 < q+ 1+
q−t
γ

≤ qj+ i+
q−t
γ

≤ q
q− t
2γ

+
(2t − 2)q+ 2t + 2− 2γ

2γ
+
q−t
γ

=
q2 + tq− 2γ + 2

2γ
< n.

It is in contradiction with the congruence 0 ≡ q−t
γ
+ qj +

i mod n.
(ii) When q−t+2γ

2γ ≤ j ≤ 2q−2t
2γ , let j′ = j− q−t

2γ for 1 ≤ j′ ≤
q−t
2γ . Then we have 0 ≡ q−t

γ
+ q(j′ + q−t

2γ )+ i mod n, which

is equivalent to q2+(t−2)q+2t+2
2γ ≡ qj′ + i mod n. Moreover,

we have

0 < q+ 1

≤ qj′ + i
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≤ q(
q− t
2γ

)

+
(2t − 2)q+ 2t + 2− 2γ

2γ

=
q2 + (t − 2)q+ 2t + 2− 2γ

2γ
< n,

which is in contradiction with q2+(t−2)q+2t+2
2γ ≡ qj′+imod n.

(iii) When (ϑ−1)q−(ϑ−1)t+2γ
2γ ≤ j ≤ ϑq−ϑ t

2γ , where 3 ≤
ϑ ≤ 2t − 3 (here, if there exists the case of t ≥ 4). Let
j′ = j − (ϑ−1)q−(ϑ−1)t

2γ for 1 ≤ j′ ≤ q−t
2γ . Then we have

0 ≡ q−t
γ
+q(j′+ (ϑ−1)q−(ϑ−1)t

2γ )+imod n,which is equivalent

to 0 ≡ (ϑ−1)q2−((ϑ−1)t−2)q−2t
2γ + qj′ + i mod n.

If ϑ is an odd, then we have 0 ≡ −((ϑ−1)t−2)q−ϑ+1−2t2γ +

qj′ + i mod n.Moreover,

0 <
(4t + 4)q+ 2γ + 4− 4t

2γ

≤
(2γ − (ϑ − 1)t + 2)q+ 2γ − ϑ + 1− 2t

2γ

≤ q+ 1−
((ϑ − 1)t − 2)q+ ϑ − 1+ 2t

2γ

≤ qj′ + i−
((ϑ − 1)t − 2)q+ ϑ − 1+ 2t

2γ

≤ q
q− t
2γ
+

(2t − 2)q+ 2t + 2− 2γ
2γ

−
((ϑ − 1)t − 2)q+ ϑ − 1+ 2t

2γ

≤
q2 − tq− 2γ

2γ
< n,

which is in contradiction with 0 ≡ −((ϑ−1)t−2)q−ϑ+1−2t
2γ +

qj′ + i mod n.
If ϑ is an even, then we have 0 ≡ q2−((ϑ−1)t−2)q−ϑ+2−2t

2γ +

qj′ + i mod n.Moreover,

0 <
q2 + (5t + 4)q+ 2γ + 6− 4t

2γ

≤
q2 + (2γ − (ϑ − 1)t + 2)q+ 2γ − ϑ + 2− 2t

2γ

≤ q+ 1+
q2 − ((ϑ − 1)t − 2)q− ϑ + 2− 2t

2γ

≤ qj′ + i+
q2 − ((ϑ − 1)t − 2)q− ϑ + 2− 2t

2γ

≤ q
q− t
2γ
+

(2t − 2)q+ 2t + 2− 2γ
2γ

+
q2 − ((ϑ − 1)t − 2)q− ϑ + 2− 2t

2γ

≤
2q2 − 2tq− 2γ

2γ
< n,

which is in contradiction with 0 ≡ q2−((ϑ−1)t−2)q−ϑ+2−2t
2γ +

qj′ + i mod n.

(iv) When (2t−3)q−(2t−3)t+2γ
2γ ≤ j ≤ (2t−2)q+2t+2−2γ

2γ , let

−
(2t−3)q−(2t−3)t

2γ +j = j′ for 1 ≤ j′ ≤ q−t
2γ . Then we have

0 ≡ q−t
γ
+q(j′+ (2t−3)q−(2t−3)t

2γ )+imod n,which is equivalent

to 0 ≡ q2−(2t−3)tq+2q−4t+4
2γ +qj′+imod n.Moreover, we have

0 <
q2 + (3t + 4)q+ 2γ − 4t + 4

2γ

≤ q+ 1+
q2 − (2t − 3)tq+ 2q− 4t + 4

2γ

≤
q2 − (2t − 3)tq+ 2q− 4t + 4

2γ
+ qj′ + i

≤ q
q− t
2γ
+

(2t − 2)q+ 2t + 2− 2γ
2γ

+
q2 − (2t − 3)tq+ 2q− 4t + 4

2γ

=
2 q2 − (2t2 − 4t)q− 2t + 6− 2γ

2γ
< n,

which is in contradiction with then congruence 0 ≡
q2−(2t−3)tq+2q−4t+4

2γ + qj′ + i mod n.

If k = 1, then we have qj ≡ i+ tq+1
γ

mod n, and then from

1 ≤ i, j ≤ (2t−2)q+2t+2−2γ
2γ , we can seek some contradictions

by considering the following cases.
(i) When 1 ≤ j ≤ q−t

2γ , we have

0 <
tq+ γ + 1

γ

≤ i+
tq+ 1
γ

=
(2t − 2)q+ 2t + 2− 2γ

2γ

+
tq+ 1
γ

<
(4t − 2)q+ 2t + 4− 2γ

2γ
< q,

which is in contradiction with q ≤ qj ≤ q2−tq
2γ .

(ii) When q−t+2γ
2γ ≤ j ≤ 2q−2t

2γ , let j′ = j − q−t
2γ for 1 ≤

j′ ≤ q−t
2γ . Then we have tq+1

γ
+ i ≡ q(j′+ q−t

2γ ) mod n, which

is equivalent to i ≡ qj′ + q2−3tq−2
2γ mod n.Moreover,

0 <
q2 + (2γ − 3t)q− 2

2γ

≤ qj′ +
q2 − 3tq− 2

2γ

≤ q(
q− t
2γ

)+
q2 − 3tq− 2

2γ

=
2q2 − 4tq− 2

2γ
< n,

which is in contradiction with 1 ≤ i ≤ (2t−2)q+2t+2−2γ
2γ .
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(iii) When (ϑ−1)q−(ϑ−1)t+2γ
2γ ≤ j ≤ ϑq−ϑ t

2γ , where 3 ≤
ϑ ≤ 2t − 3 (here, if there exists the case of t ≥ 4), let j′ =
j − (ϑ−1)q−(ϑ−1)t

2γ for 1 ≤ j′ ≤ q−t
2γ . Then we have tq+1

γ
+

i ≡ q(j′ + (ϑ−1)q−(ϑ−1)t
2γ ) mod n, which is equivalent to i ≡

(ϑ−1)q2−(ϑ+1)tq−2
2γ + qj′ mod n.

If ϑ is an odd, then we have i ≡ −(ϑ+1)tq−ϑ−12γ +qj′ mod n.
Moreover,

0 <
(2t + 2)q− 2t + 2

2γ

≤
(2γ − (ϑ + 1)t)q− ϑ − 1

2γ

≤ q−
(ϑ + 1)tq+ ϑ + 1

2γ

≤ qj′ −
(ϑ + 1)tq+ ϑ + 1

2γ

≤ q
q− t
2γ
−

(ϑ + 1)tq+ ϑ + 1
2γ

=
q2 − (ϑ + 2)tq− 1− ϑ

2γ

≤
q2 − 5tq− 4

2γ
< n,

which is in contradiction with 1 ≤ i ≤ (2t−2)q+2t+2−2γ
2γ .

If ϑ is an even, then we have i ≡ q2−(ϑ+1)tq−ϑ
2γ +qj′ mod n.

Moreover,

0 <
q2 + (3t + 2)q− 2t + 4

2γ

≤
q2 + (2γ − ϑ t − t)q− ϑ

2γ

≤ q+
q2 − (ϑ + 1)tq− ϑ

2γ

≤ qj′ +
q2 − (ϑ + 1)tq− ϑ

2γ

≤ q
q− t
2γ
+
q2 − (ϑ + 1)tq− ϑ

2γ

≤
2q2 − 6tq− 4

2γ
< n,

which is in contradiction with 1 ≤ i ≤ (2t−2)q+2t+2−2γ
2γ .

(iv) When (2t−3)q−(2t−3)t+2γ
2γ ≤ j ≤ (2t−2)q+2t+2−2γ

2γ , let

−
(2t−3)q−(2t−3)t

2γ +j = j′ for 1 ≤ j′ ≤ q−t
2γ . Then we have

tq+1
γ
+ i ≡ q(j′ + (2t−3)q−(2t−3)t

2γ ) mod n, which is equivalent

to i ≡ q2−(2t2−t)q−2t+2
2γ + qj′ mod n.Moreover, we have

0 <
q2 + (t + 2)q− 2t + 2

2γ

≤
q2 − (2t2 − t)q− 2t + 2

2γ
+ q

≤
q2 − (2t2 − t)q− 2t + 2

2γ
+ qj′

≤ q
q− t
2γ
+
q2 − (2t2 − t)q− 2t + 2

2γ

=
2q2 − 2t2q− 2t + 2

2γ
< n.

It is in contradiction with 1 ≤ i ≤ (2t−2)q+2t+2−2γ
2γ .

(2) We have H0H
†
2 = 0. In fact, from Lemma 1, it only

needs to show that

(∪
(t+1)q−3γ−t+1

2γ
i=0 Cβ+(q+1)i)

∩ −q(∪ζi=1Cβ+(q+1)( (t+1)q−γ−t+12γ +i)) = ∅,

where 1 ≤ ζ ≤ (2t−2)q+2t+2−2γ
2γ . Assume that there exist two

integers i, j, where 1 ≤ j ≤ (2t−2)q+2t+2−2γ
2γ and 0 ≤ i ≤

(t+1)q−3γ−t+1
2γ , such that β + (q+ 1)i ≡ −q(β + (q+ 1)(j+

(t+1)q−γ−t+1
2γ ))q2k mod (q+ 1)n.

If k = 0, then we have β + (q+ 1)i ≡ −q(β + (q+ 1)(j+
(t+1)q−γ−t+1

2γ )) mod (q+ 1)n, which is equivalent to qj+ i−
(t−1)q−γ+t+1

2γ ≡ 0 mod n, where 1 ≤ j ≤ (2t−2)q+2t+2−2γ
2γ

and 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(i) When 1 ≤ j ≤ q−t
2γ , we have

0 <
(2γ − t + 1)q+ γ − t − 1

2γ

= q−
(t − 1)q− γ + t + 1

2γ

≤ qj+ i−
(t − 1)q− γ + t + 1

2γ

=
q2 − tq
2γ

+
(t + 1)q− 3γ − t + 1

2γ

−
(t − 1)q− γ + t + 1

2γ

=
q2 − (t − 2)q− 2γ − 2t

2γ
< n,

which is in contradiction with the congruence qj + i −
(t−1)q−γ+t+1

2γ ≡ 0 mod n.

(ii) When q−t+2γ
2γ ≤ j ≤ 2q−2t

2γ , let j′ = j− q−t
2γ for 1 ≤ j′ ≤

q−t
2γ . Thenwe have 0 ≡ − (t−1)q−γ+t+1

2γ +q(j′+ q−t
2γ )+imod n,

which is equivalent to 0 ≡ q2−(2t−1)q+γ−t−1
2γ + qj′+ imod n.

Moreover,

0 <
q2 + (γ − 2t + 1)q+ γ − t − 1

2γ

≤ qj′ + i+
q2 − (2t − 1)q+ γ − t − 1

2γ

≤ q(
q− t
2γ

)+
(t + 1)q− 3γ − t + 1

2γ

+
q2 − (2t − 1)q+ γ − t − 1

2γ

=
2 q2 − (2t − 2)q− 2γ − 2t

2γ
< n.
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It is in contradiction with 0 ≡ q2−(2t−1)q+γ−t−1
2γ + qj′ +

i mod n.
(iii) When (ϑ−1)q−(ϑ−1)t+2γ

2γ ≤ j ≤ ϑq−ϑ t
2γ , where 3 ≤

ϑ ≤ 2t − 3 (here, if there exists the case of t ≥ 4), let
j′ = j − (ϑ−1)q−(ϑ−1)t

2γ for 1 ≤ j′ ≤ q−t
2γ . Then we have

0 ≡ − (t−1)q−γ+t+1
2γ +q(j′+ (ϑ−1)q−(ϑ−1)t

2γ )+ imod n,which

is equivalent to 0 ≡ (ϑ−1)q2−(ϑ t−1)q+γ−t−1
2γ + qj′ + i mod n.

Ifϑ is an odd, we have 0 ≡ −(ϑ t−1)q+γ−t−ϑ2γ +qj′+imod n.
Moreover,

0 <
(3t + 3)q+ γ − 3t + 3

2γ

≤
(2γ − ϑ t + 1)q+ γ − t − ϑ

2γ

≤
−(ϑ t − 1)q+ γ − t − ϑ

2γ
+ qj′ + i

≤ q(
q− t
2γ

)+
(t + 1)q− 3γ − t + 1

2γ

+
−(ϑ t − 1)q+ γ − t − ϑ

2γ

≤
q2 − (3 t − 2)q− 2γ − 2t − 2

2γ
< n,

which is in contradiction with the congruence 0 ≡
−(ϑ t−1)q+γ−t−1−ϑ

2γ + qj′ + i mod n.

If ϑ is an even, we have 0 ≡ q2−(ϑ t−1)q+γ−t+1−ϑ
2γ + qj′ +

i mod n.Moreover,

0 <
q2 + (4t + 3)q+ γ − 3t + 5

2γ

≤
q2 + (2γ − ϑ t + 1)q+ γ − t + 1− ϑ

2γ

=
q2 − (ϑ t − 1)q+ γ − t + 1− ϑ

2γ
+ q

≤
q2 − (ϑ t − 1)q+ γ − t + 1− ϑ

2γ
+ qj′ + i

≤ q(
q− t
2γ

)+
(t + 1)q− 3γ − t + 1

2γ

+
q2 − (ϑ t − 1)q+ γ − t + 1− ϑ

2γ

=
2 q2 − (ϑ t − 2)q− 2γ − 2t + 2− ϑ

2γ

≤
2 q2 − (4 t − 2)q− 2γ − 2t − 2

2γ
< n,

which is in contradiction with the congruence 0 ≡
q2−(ϑ t−1)q+γ−t+1−ϑ

2γ + qj′ + i mod n.

(iv) When (2t−3)q−(2t−3)t+2γ
2γ ≤ j ≤ (2t−2)q+2t+2−2γ

2γ , let

−
(2t−3)q−(2t−3)t

2γ +j = j′ for 1 ≤ j′ ≤ q−t
2γ . Then we have

0 ≡ − (t−1)q−γ+t+1
2γ +q(j′+ (2t−3)q−(2t−3)t

2γ )+ imod n,which

is equivalent to 0 ≡ q2−(2γ−2t−3)q+γ−3 t+3
2γ + qj′ + i mod n.

Moreover,

0 <
q2 + (2t + 3)q+ γ − 3 t + 3

2γ

≤
q2 − (2γ − 2t − 3)q+ γ − 3 t + 3

2γ
+ q

≤
q2 − (2γ − 2t − 3)q+ γ − 3 t + 3

2γ
+ qj′ + i

≤ q
q− t
2γ
+

(t + 1)q− 3γ − t + 1
2γ

+
q2 − (2γ − 2t − 3)q+ γ − 3 t + 3

2γ

=
2q2 − (2γ − 2t − 4)q− 2γ − 4 t + 4

2γ
< n,

which is in contradiction with the congruence 0 ≡
q2−(γ−2t−3)q+γ−3 t+3

2γ + qj′ + i mod n.
If k = 1, then we have β + (q + 1)i ≡ −q(β − (q +

1)(j+1+ (t+1)q−γ−t+1
2γ )) mod (q+1)n,which is equivalent to

qj ≡ i+ (t−1)q+γ+t+1
2γ mod n,where 1 ≤ j ≤ (2t−2)q+2t+2−2γ

2γ

and 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(i) When 1 ≤ j ≤ q−t
2γ , we have

0 <
(t − 1)q+ γ + t + 1

2γ

≤ i+
(t − 1)q+ γ + t + 1

2γ

=
(t + 1)q− 3γ − t + 1

2γ

+
(t − 1)q+ γ + t + 1

2γ

<
2tq− 2γ + 2

2γ
< q,

which is in contradiction with q ≤ qj ≤ q2−tq
2γ .

(ii) When q−t+2γ
2γ ≤ j ≤ 2q−2t

2γ , let j′ = j− q−t
2γ for 1 ≤ j′ ≤

q−t
2γ . Then we have (t−1)q+γ+t+1

2γ + i ≡ q(j′ + q−t
2γ ) mod n,

which is equivalent to i ≡ qj′ + q2−(2t−1)q−γ−t−1
2γ mod n.

Moreover,

0 <
q2 + (2γ − 2t + 1)q− γ − t − 1

2γ

≤ qj′ +
q2 − (2t − 1)q− γ − t − 1

2γ

≤ q(
q− t
2γ

)

+
q2 − (2t − 1)q− γ − t − 1

2γ

=
2q2 − (3t − 1)q− γ − t − 1

2γ
< n.

It is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(iii) When (ϑ−1)q−(ϑ−1)t+2γ
2γ ≤ j ≤ ϑq−ϑ t

2γ , where
3 ≤ ϑ ≤ 2t − 3 (if there exists the case of t ≥ 4),
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let j′ = j− (ϑ−1)q−(ϑ−1)t
2γ for 1 ≤ j′ ≤ q−t

2γ . Then we have
(t−1)q+γ+t+1

2γ + i ≡ q(j′ + (ϑ−1)q−(ϑ−1)t
2γ ) mod n, which is

equivalent to i ≡ (ϑ−1)q2−(ϑ t−1)q−γ−t−1
2γ + qj′ mod n.

If ϑ is an odd, then we have i ≡ −(ϑ t−1)q−ϑ−γ−t
2γ +

qj′ mod n.Moreover,

0 <
(3t + 3)q− 3t − γ + 3

2γ

≤
(2γ − ϑ t + 1)q− ϑ − γ − t

2γ

≤ q−
(ϑ t − 1)q+ ϑ + γ + t

2γ

≤ qj′ −
(ϑ t − 1)q+ ϑ + γ + t

2γ

≤ q
q− t
2γ
−

(ϑ t − 1)q+ ϑ + γ + t
2γ

≤
q2 − (4t − 1)q− 3− γ − t

2γ
< n,

which is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

If ϑ is an even, then we have i ≡ q2−ϑ+1−(ϑ t−1)q−γ−t
2γ +

qj′ mod n.Moreover,

0 <
q2 + (4t + 3)q− 3t + 5− γ

2γ

≤
q2 + (2γ − ϑ t + 1)q− ϑ + 1− γ − t

2γ

≤ q+
q2 − ϑ + 1− (ϑ t − 1)q− γ − t

2γ

≤ qj′ +
q2 − ϑ + 1− (ϑ t − 1)q− γ − t

2γ

≤ q
q− t
2γ
+
q2 − ϑ + 1− (ϑ t − 1)q− γ − t

2γ

=
2 q2 − ϑ + 1− (ϑ t + t − 1)q− γ − t

2γ

≤
2q2 − 3− (5t − 1)q− γ−t

2γ
< n,

which is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

(iv) When (2t−3)q−t(2t−3)+2γ
2γ ≤ j ≤ (2t−2)q+2t+2−2γ

2γ , let

−
(2t−3)q−t(2t−3)

2γ +j = j′ for 1 ≤ j′ ≤ q−t
2γ . Then we have

(t−1)q+γ+t+1
2γ + i ≡ q(j′ + (2t−3)q−t(2t−3)

2γ ) mod n, which

is equivalent to i ≡ q2−(2t2−2t−1)q−γ−3 t+3
2γ + qj′ mod n.

Moreover, we have

0 <
q2 + (2t + 3)q− γ − 3 t + 3

2γ

≤
q2 − (2t2 − 2t − 1)q− γ − 3 t + 3

2γ
+ qj′

TABLE 2. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 5.

≤ q
q− t
2γ
+
q2 − (2t2 − 2t − 1)q− γ − 3 t + 3

2γ

=
2q2 − (2t2 − t − 1)q− γ − 3 t + 3

2γ
< n,

which is in contradiction with 0 ≤ i ≤ (t+1)q−3γ−t+1
2γ .

Therefore, we have

HH†
=

 0 H0H
†
1 0

H1H
†
0 0 0

0 0 0

 .
From −qC

β+(q+1) (t+1)q−γ−t+12γ
= C

β+(q+1)( (t−1)(q+1)+2−γ2γ ),

we have rank(H0H
†
1 ) = 2 and rank(HH†) = 4. Addi-

tionally, we have c = 4 from Lemma 2. Then there exist
entanglement-assisted quantum MDS codes with parame-
ters [[ q

2
+1
γ
,
q2+1
γ
− 2d + 6, d; 4]]q from Theorem 1 and

Proposition 3, where (t+1)q−t+1+2γ
γ

≤ d ≤ (3t−1)q+t+3
γ

is
odd. �
Example 2: If t = 4 and e = 5, then q = 1024 and

n = 61681. Therefore, there exist entanglement-assisted
quantum MDS codes from Theorem 5 that are listed in
Table 2.
Theorem 6: Let n = q2+1

γ
and s = (q+γ+1)n

2 , where γ =
t2+1, t is a power of 2 and q = te > 4 with e ≡ 1 mod 4. If C
is a q2-ary λ-constacyclic code of length n with defining set
Z = ∪δi=0Cs−(q+1)i for

2tq+2
2γ ≤ δ ≤

2(t+1)q−2γ−2t+2
2γ , then

there exist entanglement-assisted quantum MDS codes with
parameters [[ q

2
+1
γ
,
q2+1
γ
−2d+7, d; 5]]q, where

2tq+2+2γ
γ

≤

d ≤ 2(t+1)q−2t+2
γ

is even.
Proof: From Lemma 3, we can assume that the defining

set of constacyclic code C is given by Z = ∪δi=0Cs−(q+1)i for
2tq+2
2γ ≤ δ ≤

2(t+1)q−2γ−2t+2
2γ , and then C is a constacyclic

code with parameters [ q
2
+1
γ
,
q2+1
γ
− 2δ − 1, 2δ + 2]q2 from

Propositions 1 and 2. If δ = 2tq+2
2γ , then Z = ∪

2tq+2
2γ

i=0 Cs−(q+1)i.
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Since −qCs−(q+1) 2tq+22γ
= Cs−(q+1) 2q−2t2γ

, it follows that

Z ∩ −qZ = (∪
2tq+2
2γ

i=0 Cs−(q+1)i) ∩ −q(∪
2tq+2
2γ

i=0 Cs−(q+1)i)

= (∪
2tq−2t2

2γ
i=0 Cs−(q+1)i ∩ (−q ∪

2tq−2t2
2γ

i=0 Cs−(q+1)i))

∪ (∪
2tq−2t2

2γ
i=0 Cs−(q+1)i ∩ (−qCs−(q+1) 2tq+22γ

))

∪ (Cs−(q+1) 2tq+22γ
∩ −q(∪

2tq−2t2
2γ

i=0 Cs−(q+1)i))

∪ (−qCs−(q+1) 2tq+22γ
∩ Cs−(q+1) 2tq+22γ

)

= Cs−(q+1) 2tq+22γ
∪ Cs−(q+1)( 2q−2t2γ ) ∪ Cs.

From Lemma 2, c = 5. Therefore, there exist
entanglement-assisted quantum MDS codes with parame-
ters [[ q

2
+1
γ
,
q2+1
γ
− 2d + 7, d; 5]]q from Theorem 1 and

Proposition 3, where d = 2tq+2+2γ
γ

. If 2tq+2+2γ
2γ ≤ δ ≤

2(t+1)q−2γ−2t+2
2γ , then the defining set of C can be divided into

four mutually disjoint subsets, i.e., Z = Z0 ∪ Z1 ∪ Z2 ∪ Z3,

where Z0 = Cs, Z1 = ∪
2tq−2t2

2γ
i=1 Cs−(q+1)i, Z2 = Cs−(q+1) 2tq+22γ

and Z3 = ∪δ
i= 2tq+2+2γ

2γ
Cs−(q+1)i. The defining sets Z0, Z1, Z2

and Z3 can generate constacyclic codes C0, C1, C2 and C3
respectively. Let the parity check matrices of C, C0, C1, C2 and
C3 over Fq2 beH ,H0,H1,H2 andH3, respectively. Therefore,

H =


H0
H1
H2
H3

 ,
and

HH†
=


H0H

†
0 H0H

†
1 H0H

†
2 H0H

†
3

H1H
†
0 H1H

†
1 H1H

†
2 H1H

†
3

H2H
†
0 H2H

†
1 H2H

†
2 H2H

†
3

H3H
†
0 H3H

†
1 H3H

†
2 H3H

†
3

 .
Since −qCs = Cs, it follows that rank(H0H

†
0 ) = 1 and

HH†
=


H0H

†
0 0 0 0

0 H1H
†
1 H1H

†
2 H1H

†
3

0 H2H
†
1 H2H

†
2 H2H

†
3

0 H3H
†
1 H3H

†
2 H3H

†
3

 .
From Theorem 2 and −qCs−(q+1) 2tq+22γ

= Cs−(q+1) 2q−2t2γ
,

it follwos that rank(H2H
†
1 ) = rank(H1H

†
2 ) = 2 and

HH†
=


H0H

†
0 0 0 0

0 0 H1H
†
2 H1H

†
3

0 H2H
†
1 0 0

0 H3H
†
1 0 H3H

†
3

 .
Now, in order to determine the number of entangled states,
we have to discuss two cases as follows.

(1) We have H3H
†
3 = 0. In fact, from Lemma 1, we only

need to consider that Z3∩−qZ3 = ∅. If Z3∩−qZ3 6= ∅,where
Z3 = ∪δi=0Cs−(q+1)( 2tq+2+2γ2γ +i) with 0 ≤ δ ≤ 2q−4γ−2t

2γ , then

there exist two integers i and j, where 0 ≤ i, j ≤ 2q−4γ−2t
2γ ,

such that s−(q+1)( 2tq+2+2γ2γ +i) ≡ −q(s−(q+1)( 2tq+2+2γ2γ +

j))q2k mod (q+ 1)n for k ∈ {0, 1}.
If k = 0, then we have 0 ≡ (2t+2γ+2)q+2γ−2t+2

2γ + qj +
i mod n.Moreover,

0 <
(2t + 2γ + 2)q+ 2γ − 2t + 2

2γ

≤
(2t + 2γ + 2)q+ 2γ − 2t + 2

2γ
+ qj+ i

≤
(2t + 2γ + 2)q+ 2γ − 2t + 2

2γ

+ q
2q− 4γ − 2t

2γ
+

2q− 4γ − 2t
2γ

=
2q2 − (2γ − 4)q− 2γ − 4t + 2

2γ
< n,

which is in contradiction with 0 ≡ (2t+2γ+2)q+2γ−2t+2
2γ +qj+

i mod n.
If k = 1, then we have i ≡ qj+ (2γ−2t+2)q−2γ−2t−2

2γ mod n.
Moreover, we have

0 <
(2γ − 2t + 2)q− 2γ − 2t − 2

2γ

≤ qj+
(2γ − 2t + 2)q− 2γ − 2t − 2

2γ

≤ q
2q− 4γ − 2t

2γ

+
(2γ − 2t + 2)q− 2γ − 2t − 2

2γ

=
2q2 − (2γ + 4t − 2)q− 2γ − 2t − 2

2γ
< n,

which is in contradiction with 0 ≤ i ≤ 2q−4γ−2t
2γ .

(2) We have H1H
†
3 = H3H

†
1 = 0. In fact, we only

need to show that Z1 ∩ −qZ3 = ∪

2tq−2t2
2γ

i=1 Cs−(q+1)i ∩
−q(∪δi=0Cs−(q+1)( 2tq+2+2γ2γ +i)) = ∅ with 0 ≤ δ ≤

2q−4γ−2t
2γ . Assume that ∪

2tq−2t2
2γ

i=1 Cs−(q+1)i ∩ −q(∪δi=0
Cs−(q+1)( 2tq+2+2γ2γ +i)) 6= ∅, then there exist two integers i, j,

1 ≤ i ≤ 2tq−2t2

2γ and 0 ≤ j ≤ 2q−4γ−2t
2γ , such that

s− (q+ 1)i

≡ −q(s− (q+ 1)(
2tq+ 2+ 2γ

2γ
+ j))q2k mod (q+ 1)n.
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If k = 0, we have 0 ≡ i + 2γ q+2q−2t
2γ + qj mod n, where

1 ≤ i ≤ 2tq−2t2

2γ and 0 ≤ j ≤ 2q−4γ−2t
2γ . Moreover,

0 <
2γ q+ 2q+ 2γ − 2t

2γ

= 1+
2γ q+ 2q− 2t

2γ

≤ i+
2γ q+ 2q− 2t

2γ
+ qj

≤
2tq− 2t2

2γ

+
2γ q+ 2q− 2t

2γ
+ q

2q− 4γ − 2t
2γ

=
2q2 − (2γ − 2)q− 2t2 − 2t

2γ
< n,

which is in contradiction with 0 ≡ i+ 2γ q+2q−2t
2γ + qjmod n.

If k = 1, we have i ≡ 2q+2γ q−2t
2γ + qj mod n, where 1 ≤

i ≤ 2tq−2t2

2γ and 0 ≤ j ≤ 2q−4γ−2t
2γ . Moreover, we have

0 <
2q+ 2γ q− 2t

2γ

≤
2q+ 2γ q− 2t

2γ
+ qj

≤
2q+ 2γ q− 2t

2γ
+ q

2q− 4γ − 2t
2γ

=
2q2 − 2γ q− 2tq+ 2q− 2t

2γ
< n,

which is in contradiction with 1 ≤ i ≤ 2tq−2t2

2γ .
Therefore, we have

HH†
=


H0H

†
0 0 0 0

0 0 H1H
†
2 0

0 H2H
†
1 0 0

0 0 0 0

 ,
and rank(HH†) = 5 from Lemma 2. Then there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
γ
,
q2+1
γ
− 2d + 7, d; 5]]q from Theorem 1 and Proposi-

tion 3, where 2tq+2+2γ
γ

≤ d ≤ 2(t+1)q−2t+2
γ

is even. �
Example 3: If t = 4 and e = 5, then q = 1024 and n =

61681. Therefore, there exist entanglement-assisted quantum
MDS codes from Theorem 6 that are listed in Table 3.

Follows the method of Theorems 2 and 4, we can obtain
the Theorems 7 and 8. We can also get Theorem 9 by using
the same method of Theorem 3, 5 and 6.
Theorem 7: Let n = q2+1

γ
and s = (q+γ+1)n

2 , where γ =
t2 + 1, t is a power of 2 and q = te with e ≡ 3 mod 4. If C is
a q2-ary λ-constacyclic code whose defining set is given by
Z = ∪δi=1Cs−(q+1)i, where 1 ≤ δ ≤

tq−γ−1
γ

, then C⊥h ⊆ C.
Theorem 8: Let n = q2+1

γ
, where γ = t2 + 1, t is a

power of 2 and q = te with e ≡ 3 mod 4. Assume that

TABLE 3. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 6.

TABLE 4. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 9.

s = (q+γ+1)n
2 and β = q2+q

2 + 1, where β = s − (q+1)(n−1)
2 .

If C is a q2-ary λ-constacyclic whose defining set is given by
Z = ∪δi=0Cβ+(q+1)i, where 0 ≤ δ ≤

(t+1)q−3γ+t−1
2γ , then

C⊥h ⊆ C.
Remark 1: In Lemma 11 of [20], the author studied

Hermitian dual-containing case of constacyclic codes with
q ≡ 13 mod 17 when 0 ≤ λ ≤ 3q+8

10 , in which q = 2e, while
we can obtain Hermitian dual case of constacyclic codes with
length n = q2+1

17 when 0 ≤ δ ≤
5q−48
34 from Theorem 8,

which implies that if δ exceeds the range of 0 ≤ δ ≤ 5q−48
34 ,

the Hermitian dual-containing case does not hold. We can
obtain 0 ≤ λ ≤

5q−48
34 by recalculating the rang of λ in

Lemma 11 of [20].
Theorem 9: Let n = q2+1

γ
, where γ = t2 + 1, t

is a power of 2 and q = te with e ≡ 3 mod 4.
Assume that s =

(q+γ+1)n
2 and β =

q2+q
2 + 1,

where β = s − (q+1)(n−1)
2 . Then we have the following

results.
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TABLE 5. Codes comparison.

(1) If C is a q2-ary λ-constacyclic of length n with defining
set Z = ∪δi=0Cs−(q+1)i for 0 ≤ δ ≤

tq−γ−1
γ

, then there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
γ
,
q2+1
γ
−2d+3, d; 1]]q, where 2 ≤ d ≤

2tq−2
γ

is even.
(2) If C is a q2-ary λ-constacyclic of length n with

defining set Z = ∪
ζ
i=0Cβ+(q+1)i for (t+1)q−γ+t−1

2γ ≤

ζ ≤
(3t−1)q−3γ−t−3

2γ with t ≥ 4, then there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
γ
,
q2+1
γ
− 2d + 6, d; 4]]q, where

(t+1)q+2γ+t−1
γ

≤ d ≤
(3t−1)q−t−3

γ
is odd. When t = 2, we have 3q+11

5 ≤ d ≤ 5q+5
5

is odd.
(3) If C is a q2-ary λ-constacyclic of length n with defining

set Z = ∪δi=0Cs−(q+1)i for
2tq−2
2γ ≤ δ ≤

2(t+1)q−2γ+2t−2
2γ ,

then there exist entanglement-assisted quantum MDS codes
with parameters [[ q

2
+1
γ
,
q2+1
γ
− 2d + 7, d; 5]]q, where

2tq+2γ−2
γ

≤ d ≤ 2(t+1)q+2t−2
γ

is even.
Remark 2: From Remark 1, Theorem 9 in [20] can be

rewritten as follows.
Let q ≡ 13 mod 17. If C is an q2-ary λ-constacyclic consta-

cyclic code of length n with defining set Z = ∪
5q−48
34 +λ

j=0 Cs−rj,

then there exist entanglement-assisted quantum MDS codes
with parameters [[n, n− 10q−96

17 −4λ, 5q+317 +2λ; 4]]q, where

n = q2+1
17 and 1 ≤ λ ≤ 3q−5

17 .
Example 4: If e = 7 and t = 2, then q = 128 and n =

3277. Therefore, there exist entanglement-assisted quantum
MDS codes from Theorem 9 that are listed in Table 4. Some
codes from Theorem 9 have the same parameters as the ones
in [10], [20].

IV. CONCLUSION AND DISCUSSION
In this work, we utilize constacyclic codes with length q2+1

γ
to construct some families of entanglement-assisted quantum
MDS codes, where γ = t2 + 1, t is a power of 2 and q is
a prime power of the form q = te > 4 with e ≡ 1 mod 4
or e ≡ 3 mod 4. Some classes of entanglement-assisted
quantum MDS codes available in [10], [20] as well as the
new families of entanglement-assisted quantum MDS codes
constructed in this paper that are listed in Table 5, with
the parameters [[n, k, d; c]]q of entanglement-assisted quan-
tum MDS codes in the first column, the range of parame-
ters in the second column, the minimum distance d of the
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corresponding entanglement-assisted quantumMDS codes in
the third column, and the corresponding references in the
third column. We can see that entanglement-assisted codes
constructed in this paper are more general in the sense that
their parameters are not covered by the codes available in the
literature. Additionally, it is more and more difficult to get
the minimum distance d of entanglement-assisted quantum
MDS codes that is greater than q

2 + 1 with the increase
of γ .

In Table 5, entanglement-assisted quantum MDS codes
with parameters [[ q

2
+1
5 ,

q2−6q+33
5 − 4t, 3q−15 + 2t; 4]]q are

constructed from Theorem 4.4 in [10], where 3q+9
5 ≤ d ≤

q + 1 is odd. Moreover, entanglement-assisted quantum
MDS codes with parameters [[ q

2
+1
5 ,

q2−6q+29
5 − 4t, 3q+15 +

2t; 4]]q are also constructed from Theorem 4.5 in [10], where
3q+11

5 ≤ d ≤ q + 1 is odd. These two families of
entanglement-assisted quantum MDS from [10] are included
in Theorem 5 and the part (2) of Theorem 9, which imply that
entanglement-assisted quantumMDS codes constructed from
this paper are more general. Additionally, those codes con-
structed from Theorems 6 and 7 from [20] are also included
in Theorem 5 and the part (2) of Theorem 9. From Remark 2,
we can see that entanglement-assisted quantum codes con-
structed from Theorem 9 in [20] are included in the part
(2) of Theorem 9. Although the authors studied some fam-
ilies of entanglement-assisted quantum MDS with flexible
entangled states in [12], [30], we discuss the different cases
of entanglement-assisted quantum MDS codes with general
length q2+1

γ
. In order to get more entanglement-assistedMDS

codes with the number of entangled states that is more than 5,
we can use the same method of this paper to achieve this
goal. In the future work, we look forward to using some
other constacyclic codes with different lengths to construct
some new entanglement-assisted quantum MDS codes with
flexible entangled states.
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