
Received August 23, 2019, accepted September 7, 2019, date of publication September 13, 2019,
date of current version September 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941278

UAV-Aided Wireless Powered
Communication Networks: Trajectory
Optimization and Resource
Allocation for Minimum
Throughput Maximization
JUNHEE PARK 1, HOON LEE 2, (Member, IEEE), SUBIN EOM 1,
AND INKYU LEE 1, (Fellow, IEEE)
1School of Electrical Engineering, Korea University, Seoul 02841, South Korea
2Department of Information and Communications Engineering, Pukyong National University, Busan 48513, South Korea

Corresponding author: Inkyu Lee (inkyu@korea.ac.kr)

This work was supported by the National Research Foundation through the Ministry of Science, ICT, and Future Planning (MSIP), Korean
Government, under Grant 2017R1A2B3012316.

ABSTRACT This paper investigates wireless powered communication network (WPCN) systems aided by
unmanned aerial vehicle (UAV) where a UAV-mounted access point (AP) serves multiple energy-constrained
ground terminals (GTs). Specifically, the UAVs first transmit the wireless energy transfer (WET) signals
to charge the GTs in the downlink. Then, by utilizing the harvested energy, the GTs send their wireless
information transmission (WIT) signals to the UAVs in the uplink. In this paper, depending on the operations
of the UAVs, we consider two different scenarios, namely integrated and separated UAV WPCNs. First,
in the integrated system, a UAV acts as a hybrid AP in which both energy transfer and information reception
are performed at a single UAV. In contrast, for the separated UAV WPCN, we consider two UAVs each of
which behaves as an information AP and an energy AP independently, and thus the information decoding
and the energy transfer are separately processed at two different UAVs. In each system, we formulate two
optimization problems taking into account a linear energy harvesting (EH) model and a practical non-linear
model. To maximize the minimum throughput of the GTs, we jointly optimize the trajectories of the UAVs,
the uplink power control, and the time resource allocation for the WET and the WIT. Since the formulated
problems are non-convex, in the linear EH model-based system, we apply the concave-convex procedure
by deriving appropriate convex bounds for non-convex constraints and identify the suboptimal solution for
the problem by a proposed iterative algorithm. In the non-linear model-based system, we propose another
algorithm to obtain an efficient solution by adopting the successive convex approximation method with the
alternating optimization framework. Simulation results demonstrate the efficiency and the performance of
the proposed algorithms compared to conventional schemes.

INDEX TERMS UAV communication, wireless powered communication networks, trajectory optimization.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) have been
adopted in many applications such as cargo transport and
military operations [2], [3], and thus deploying the UAV has
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drawn huge attentions in the field of wireless communica-
tions [4]–[15]. Compared to traditional networks where APs
are fixed on the ground, wireless communication networks
employing a UAV-mounted access point (AP) exhibit deploy-
ment flexibility and cost-efficiency. Moreover, the mobility
of the UAV can provide an opportunity for the networks to
enhance the system capacity.

134978 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0558-4741
https://orcid.org/0000-0003-0753-8324
https://orcid.org/0000-0002-5533-3094
https://orcid.org/0000-0003-3701-4433


J. Park et al.: UAV-Aided WPCNs: Trajectory Optimization and Resource Allocation

In [4]–[6], UAV-enabled relaying channels were studied
where UAVs act as mobile relays which forward the infor-
mation from sources to destinations located on the ground.
For the UAV relay networks, deployment and direction con-
trol problems were investigated in [4], and the work in [5]
minimized the network outage probability when the UAV
trajectory is given as a circular path. The authors in [6]
solved the throughput maximization problem by optimizing
the relay and the source transmit power allocation along with
the trajectory of UAV relay. In addition, UAVs have been
employed as mobile base stations in various wireless net-
works [7]–[11]. The mobile base station placement problems
were investigated in [7] and [8] for maximizing the overall
wireless coverage. In [9], analytical expressions of the opti-
mal UAV height were derived to optimize the air-to-ground
links outage probability. The authors in [10] focused on the
mathematical energy consumption modeling for UAVs, and
proposed trajectory optimizationmethods for maximizing the
energy efficiency of a UAV. Also, the trajectories of multiple
UAVs were examined in [11] to maximize the minimum
throughput performance of multiple ground terminals (GTs).
Moreover, UAV-aided caching and mobile cloud computing
systems were researched in [12] and [13], respectively.

In the meantime, radio frequency (RF) signal-based
energy harvesting (EH) have been considered as promis-
ing techniques for prolonging the battery lifetime of wire-
less devices [16]–[25]. By utilizing wireless information
transmission (WIT) and wireless energy transfer (WET),
the RF-based EH techniques have been investigated for tra-
ditional wireless networks, and recent studies have exam-
ined wireless powered communication networks (WPCN)
protocols [22]–[25].

Particularly, in the downlink WET phase of the WPCN,
a hybrid access point (H-AP) transfers wireless energy via
the RF signals to battery-limited devices. In the succes-
sive uplink WIT phase, by exploiting the harvested energy,
the devices transmit information signals to the H-AP. In [22],
throughput maximization problems were introduced for the
WPCN by optimizing the time resource allocated to users
under the harvest-then-transmit protocol. The authors in [23]
proposed the multi-antenna energy beamforming and time
allocation algorithms to maximize the minimum throughput
performance. The sum-rate maximization problems with a
full-duplex H-AP were investigated in [24] for orthogonal
frequency division multiplexing, and the precoding methods
for the multiple-input multiple-output WPCN was provided
in [25]. Note that these works were limited to a fixed H-AP
setup, and thus it would cause the ‘doubly near-far’ prob-
lem [22], which is inherent to the downlink and uplink signal
attenuation dominated by the distance between the H-AP and
the devices. Recently, there have beenmanyworks combining
mobile vehicle techniques with the WET [26]–[34]. For the
magnetic resonant basedWET, [26]–[29] considered wireless
charging vehicles which travel the networks to supply power
to wireless sensors. However, due to short charging coverage
of the magnetic resonance technique, the vehicles should

stay quite a while to transfer energy to nearby sensors and
thus it would not be easy to transfer enough energy to sen-
sors distributed in a wide area. To overcome this limitation,
the authors in [30] adopted the RF-based WET methods to
UAV-aided WPCN where a UAV flies towards a GT to trans-
mit the RF energy signal and receive uplink data. However,
only a single GT case was considered in [30] where the UAV
trajectory is fixed to a line segment without optimizing the
traveling path. Although the UAV-enabled WET networks
were examined in [31]–[34], they did not take into account
the communication procedures among UAVs and GTs.

In this paper, we investigate the UAV-aided WPCN
where UAVs with arbitrary trajectories serve multiple
energy-constrained GTs which do not have embedded energy
sources. Such a scenario prevails in wireless sensor networks
and internet of things (IoT) environment. Depending on the
roles of the UAVs, we classify the UAV WPCN into two cat-
egories: integrated UAV and separated UAV WPCNs. First,
in the integrated UAV WPCN, a single UAV behaves as an
H-AP which broadcasts the RF energy signal to the GTs
in the downlink WET phase and decodes the information
from the GTs in the uplink WIT phase. In contrast, in the
separated UAV WPCN, the WET and WIT operations are
assigned to two different UAVs separately. To be specific,
we could employ a dedicated WET UAV without requiring
communication circuits for the uplink data decoding, which
results in a cost-effective UAV design. Also, by dividing
these two operations, the system performance can be further
improved.

In both systems, we adopt a time division multiple
access (TDMA) based harvest-then-transmit protocol in [22]
where the WET of the UAVs and the WIT at the GTs are
processed over orthogonal time resources. Also, we consider
both linear and non-linear models for the RF EH circuits.
First, the UAV-aided WPCN is analyzed based on a linear
EH model where the harvested power of the EH circuit is
linearly related to the input RF power. Next, to deal with the
non-linear behavior of realistic rectifying circuits, a practical
EH model, which characterizes the saturation and sensitivity
effects of the rectifier, is additionally investigated. Although
the non-linear property of the practical EH circuit is important
in the UAV-aided WPCN, it has not yet been adequately
studied in the literature due to the nonconvexity of the UAV
movement features.

The UAV-aided WPCN has been investigated in recent lit-
eratures [1], [30]. In our previouswork [1], only the integrated
WPCN system was considered under the ideal linear EH
model assumption. In this scenario, the trajectory optimiza-
tion problem was solved by fixing the time resource alloca-
tion variable. On the contrary, in this paper, we will address a
joint optimization of the trajectory, the uplink power, and the
time durations both for the integrated and separated WPCN
systems. In addition, we take the practical non-linear EH
model into account. Hence, the system model and a solution
of [1] can be regarded as a special case of this work. Also,
compared to [30] where the trajectory of the UAV is restricted
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to a straight line, our systems consider a general travelling
path optimization problem without any constraints on the
UAV trajectory.

As the problems are non-convex, we propose iterative algo-
rithms to obtain a solution by applying various optimization
methods. In the linear EH model-based system, we employ
the concave-convex procedure (CCCP) method [35], [36]
which successively solves approximated convex problems
of the original problem to jointly optimize the trajectory
of the UAVs, the uplink power of the GTs, and the time
resource allocation solutions. In contrast, for the non-linear
EH model-based system, we first jointly optimize the tra-
jectory of the UAVs and the uplink power of the GTs with
given time allocation based on the successive convex approx-
imation (SCA) framework [37], and then update the time
resource allocation solution with linear programming (LP)
by fixing other variables. The convergence of the proposed
algorithms is then mathematically proved. From numerical
results, we demonstrate that the proposed algorithms sub-
stantially improve the performance of the UAV WPCN com-
pared to conventional schemes and can be implemented in
practical scenarios as an effective off-line scheduling scheme
as in [31].

The remainder of this paper is organized as follows:
Section II describes a systemmodel of the UAV-aidedWPCN
and formulates the minimum throughput optimization prob-
lems. In Sections III and IV, we present algorithms based on
the linear and non-linear EHmodels, respectively. Simulation
results for the proposed algorithms are described in Section V
to demonstrate the performance enhancement over conven-
tional baseline schemes. The paper concludes in Section VI.

In this paper, we employ normal and boldface lowercase
letters to represent scalars and column vectors, respectively.
For the transpose operation as (·)T , and Rn stands for the
Euclidean space of dimension n. Also, | · | and ‖ · ‖ represent
the magnitude and the Euclidean norm, respectively.

II. SYSTEM MODEL
As shown in Figure 1, we consider a UAV-aided WPCN
where UAVs collect the data of K GTs in the uplink. The
UAVs and GTs are equipped with a single antenna. It is
assumed that the UAVs have constant power sources [6], [8],
whereas no embedded energy supplies are available for

FIGURE 1. Schematic diagrams of UAV-aided WPCNs.

the GTs. The UAVs wirelessly charge the GTs through down-
link channels. By utilizing the harvested energy from the
UAV, the GTs transmit their information in the uplink. In this
work, a UAV network is considered where the UAVs support
the uplink communication of the GTs for a pre-determined
time period T [15], [38]. The time period T is regarded
as a design parameter which depends on the battery capac-
ity of the UAVs and the network delay-throughput perfor-
mance [15]. We assume that the flying altitude of the UAVs is
fixed toH and their speed is upper-bounded by vmax, whereas
all the GTs are fixed at given locations.

Depending on the operations of the UAVs, we classify the
UAV-aidedWPCN into two categories. First, in the integrated
UAV WPCN illustrated in Figure 1(a), a single UAV trans-
mits energy and collects data of the GTs. Thus, the UAV in
the integrated UAV WPCN acts as an H-AP in the conven-
tional WPCN [22]. Second, in the separated UAV WPCN
in Figure 1(b), the WET and the WIT are independently
performed at two different UAVs. Therefore, each UAV in the
separated system is dedicated to the energy transferring (ET)
or the information decoding (ID). In the following, we first
present the system models for both UAV WPCNs based on
the linear EH model.

A. LINEAR EH MODEL-BASED SYSTEM
1) INTEGRATED UAV WPCN
In the integrated UAV WPCN, let us define p(t) =
[xp(t), yp(t)]T as the UAV location at a certain time t ∈ [0,T ],
and it is assumed that the location of GT k ∈ K , {1, . . . ,K },
denoted as uk = [xk , yk ]T , is priorly informed to the UAV.
For convenience of analysis, we divide the total time period
T intoN equal-length time slots as in [11], whereN is chosen
to be large enough so that the distance between the UAV and
the GTs are unchanged within each time slot.

Therefore, a sequence of the UAV locations {p[n]} at each
time slot n ∈ N , {1, . . . ,N } is given as

p[n] , p(nδN ) = [xp(nδN ), yp(nδN )]T , (1)

where δN , T/N denotes the length of each slot. Since we
consider the discrete time trajectory {p[n]}, the maximum
speed constraint can be written as

‖p[n]−p[n− 1]‖≤δN vmax, for n ∈ N̂ , {2, . . . ,N }. (2)

For the air-to-ground channel between the UAV and the
GTs, we adopt the deterministic propagation model which
assumes the log-distance path-loss links without the Doppler
effect [6], [10], [13]. Note that this model can provide
reference performance for practical fading channels. Then,
the average channel gain Gk [n] between GT k ∈ K and the
UAV at time slot n ∈ N is given by

Gk [n] =
g0(

‖p[n]− uk‖2 + H2
)γ /2 , (3)

where g0 and γ ≥ 2 denote the reference channel gain at a
distance of 1 meter and the path-loss exponent, respectively.
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FIGURE 2. Protocol structure for UAV-aided WPCN.

Next, we describe the transmission protocol for the UAV
WPCN. As shown in Figure 2, we divide each time slot n into
K + 1 subslots, where the first subslot of duration τ0[n]δN is
allocated to the dedicated downlink WET and the remaining
k-th subslot of duration τk [n]δN for k ∈ K is assigned to the
uplink WIT of GT k . Here, τk [n], which is an optimization
variable to be determined, accounts for the time duration at
the k-th subslot in time slot n. Then, we have the follow-
ing constraints on the time resource allocation optimization
variable τk [n] as

0 ≤ τk [n] ≤ 1, for n ∈ N and k ∈ K̆, (4)
K∑
k=0

τk [n] ≤ 1, for n ∈ N , (5)

where K̆ , K ∪ {0}.
Now, the WIT and the WET process of the integrated UAV

WPCN is explained. During the first subslot of each time
slot n, i.e., τ0[n]δN , the energy signals are broadcasted by
the UAV with the transmission power PDL. Note that the
downlink power PDL is negligible compared to the mechani-
cal power consumption of commercial UAVs in general [39],
and does not affect the operation duration of the UAVs. Then,
in the linear EH model, the harvested energy ELk [n] of GT
k ∈ K at time slot n ∈ N can be expressed as

ELk [n],τ0[n]δN ζkGk [n]P
DL
=

τ0[n]δN ζkg0PDL(
‖p[n]− uk‖2+H2

)γ /2 , (6)

where ζk ∈ (0, 1] stands for the energy conversion efficiency
of GT k reflecting hardware impairment of practical RF
EH circuits. For simplicity, it is assumed that the energy
harvesting efficiency of all the GTs is identical, i.e., ζk = ζ
for k ∈ K. Due to the processing delay of the EH circuit,
the GTs may not be able to utilize the harvested energy ELk [n]
immediately at time slot n. Hence, GT k only can use ELk [n]
at the future time slots n+1, n+2, . . . ,N . Then, the available
energy of GT k at time slot n can be written as

Ẽk [n] =
n−1∑
i=1

ELk [i]−
n−1∑
i=1

τk [i]δNPULk [i], (7)

where PULk [n] represents the uplink transmit power of GT k at
time slot n. Note that the first summation in (7) indicates the
cumulative harvested energy while the second one accounts
for the consumed energy at GT k during the past time slots for
i = 1, 2, . . . , n − 1. As a result, the uplink power constraint

for GT k at time slot n is given as

τk [n]δNPULk [n] ≤ Ẽk [n], for n ∈ N̂ and k ∈ K. (8)

Without loss of the generality, it is assumed that the system
bandwidth is normalized to the unity. Then, the instantaneous
throughput Rk [n] [bps/Hz] of GT k at time slot n can be
obtained as

Rk [n] , log2

(
1+

ηkGk [n]PULk [n]

σ 2

)
= log2

(
1+

g0ηk
σ 2

PULk [n](
‖p[n]− uk‖2 + H2

)γ /2), (9)

where σ 2 is the noise variance and ηk ∈ (0, 1] denotes a
portion of the stored energy used for the uplink information
transmission at GT k . Note that the remaining (1 − ηk )
portion of the remaining energy is consumed for the on-board
processing such as data sensing, circuit operations, and infor-
mation collection. For simplicity, we assume that ηk = η for
k ∈ K. Then, for the time period T , the average throughput
Rk of GT k ∈ K can be written by

Rk ,
1
T
δN

N∑
n=2

τk [n]Rk [n]

=

N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
PULk [n](

‖p[n]− uk‖2 + H2
)γ /2). (10)

In this paper, we aim to maximize the minimum average
throughput among the GTs by jointly optimizing the tra-
jectory of the UAV {p[n]}, the uplink power of the GTs
{PULk [n]}, and the time resource allocation variables {τk [n]}.
We introduce an optimization variable Rmin for reflecting
the minimum throughput among the GTs, i.e., Rk ≥ Rmin.
By using the epigraph reformulation technique [40], the max-
imization task of the minimum throughput performance can
be formulated as

(P1) max
Rmin,{PULk [n]},{p[n]},{τk [n]}

Rmin

s.t. Rk ≥ Rmin, for k ∈ K, (11)
n∑
i=2

τk [i]PULk [i] ≤
1
δN

n−1∑
i=1

ELk [i],

for n ∈ N̂ and k ∈ K, (12)

‖p[n]−p[n− 1]‖≤δN vmax, for n∈N̂ , (13)

p[0] = p[N ], (14)

0 ≤ PULk [n]≤PULmax, for n ∈ N and k ∈ K,
(15)

(4) - (5),

where the energy for uplink transmission is constrained
by (12) which is derived from (8), and (14) represents the
periodicity of the trajectory so that the UAV has to return to
the starting place after a period of time T [11].1 The constraint

1Depending on the application, one may want to determine the initial
location and the final location of the UAV in advance. In this case, we can
simply add constraints on p[0] and p[N ] and discard the constraint in (14).
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in (15) indicates the maximum allowable uplink power at
each time slot. It can be checked that (P1) is a non-convex
problem due to the constraints (11) and (12), and therefore
it is not straightforward to determine the globally optimal
solution.
Remark 1: With the constraint in (14), the UAV is guaran-

teed to periodically drop by its starting position p[0] after the
time period T . The position p[0], or equivalently, p[N ], can
be considered as the location of the UAV control center which
is responsible for checking the conditions of the UAVs and the
overall network procedure [11]. Based on the UAV swapping
strategy [38]2, we can build continuous WPCN supports for
the GTs by deploying several backup UAVs.

2) SEPARATED UAV WPCN
In the separated UAV WPCN, we design the trajectories of
two different UAVs, i.e., ID UAV and ET UAV. Let us define
pI[n] ∈ R2 and pE[n] ∈ R2 as the position of the ET
UAV and the ID UAV at time slot n, respectively. Similar to
the integrated UAV WPCN, we adopt the TDMA protocol
in Figure 2. Then, the uplink energy constraint of GT k at
time slot n and the average throughput of GT k Rk,S can be
respectively expressed as

τk [n]PULk [n]

≤

n−1∑
i=1

(
τ0[i]ζkg0PDL(

‖pE[i]− uk‖2 + H2
E

)γ /2 − τk [i]PULk [i]
)
, (16)

Rk,S

,
N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
PULk [n](

‖pI[n]− uk‖2 + H2
I

)γ /2), (17)

where HI and HE stand for the flight altitude of the ID UAV
and the ET UAV, respectively.

Thus, the minimum throughput maximization problem for
the separated UAV WPCN is given

(P2) max
Rmin,{PULk [n]},{pI[n]},
{pE[n]},{τk [n]}

Rmin

s.t. Rk,S≥Rmin, for k ∈ K, (18)
n∑
i=2

τk [i]PULk [i] ≤
n−1∑
i=1

τ0[i]g0ζkPDL(
‖pE[i]−uk‖2 + H2

E

)γ /2 ,
for n ∈ N̂ and k ∈ K, (19)

|px[n]− px[n− 1]‖ ≤ δN vxmax,

for x ∈ {I,E} and n ∈ N̂ , (20)

px[0] = px[N ], for x ∈ {I,E}, (21)

(4) - (5), (15),

where vImax and vEmax represent the maximum speed of the
ID UAV and the ET UAV, respectively. This problem is also
non-convex due to the constraints (18) and (19).

2In this scenario, several backup UAVs can be prepared at the control
center so that UAVs with low batteries can be replaced by new ones with
fully-charged batteries [38]. Thus, we can handle the limited battery issue
of the UAVs since it is sufficient for the UAVs to operate within the time
duration.

B. NON-LINEAR EH MODEL-BASED SYSTEM
For the non-linear EH system, we adopt a sigmoid
function-based model [21], and the harvested energy ENLk [n]
is given by

ENLk [n],
τ0[n]δN
α

(
M (1+α)

1+α exp
(

−βg0PDL

(‖p[n]−uk‖2+H2)
γ
2

)−M), (22)

where M denotes a constant representing the maximum har-
vested power at a GT when the EH circuit is saturated, and
α and β are constants determined by the circuit specifications.
With this model, similar to (P1), we can formulate another
optimization problem for the integrated UAVWPCNwith the
non-linear EH model as

(P1-NL) max
Rmin,{PULk [n]},{p[n]},{τk [n]}

Rmin

s.t. Rk ≥ Rmin, for k ∈ K, (23)
n∑
i=2

τk [i]PULk [i] ≤
1
δN

n−1∑
i=1

ENLk [i],

for n ∈ N̂ and k ∈ K, (24)
(4) - (5), (13) - (15).

Note that (P1-NL) is also non-convex due to the constraints
in (23) and (24). Furthermore, since the practical non-linear
EH circuits involve the saturation issue of input-output power
represented by ENLk [n] in (24), (P1-NL) needs to be addressed
by a different approach compared to (P1). As a result,
the algorithm for (P1) cannot be applied to (P1-NL) directly.
In the following sections, we present efficient approaches for
solving (P1), (P1-NL), and (P2).3

III. PROPOSED SOLUTION FOR LINEAR EH MODEL
In this section, we propose iterative optimization algorithms
for the linear EH model problems (P1) and (P2). To this
end, we employ the CCCP framework which finds an effi-
cient solution for the UAV trajectories {p[n]}

(
or {pI[n]} and

{pE[n]}
)
, the uplink power {PULk [n]}, and the time resource

allocation {τk [n]} by iteratively addressing convex approxi-
mation problems of the original non-convex ones. We first
discuss the integrated UAV WPCN (P1), and then it is fol-
lowed by the solution approach for the separated system (P2).

A. INTEGRATED UAV WPCN
To make (P1) tractable, let us first apply a change of variable
{εk [n]} such that εk [n] ≥ 0 and εk [n]2 = τk [n]PULk [n] for
k ∈ K and n ∈ N . Then, (P1) can be recast to

max
Rmin,{εk [n]},{p[n]},{τk [n]}

Rmin (25)

s.t.
N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2

εk [n]2/τk [n](
‖p[n]−uk‖2+H2

)γ /2)
≥ Rmin, for k ∈ K, (26)

3Similar to (P1-NL), we can also formulate the non-linear EH
model-based optimization problem in the separated UAV WPCN but the
problem is omitted for brevity.
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n∑
i=2

εk [i]2 ≤
n−1∑
i=1

τ0[i]
g0ζkPDL(

‖p[i]− uk‖2 + H2
)γ /2 ,

for n ∈ N̂ and k ∈ K, (27)

εk [n]2 ≤ PULmaxτk [n], for n ∈ N and k ∈ K,
(28)

(4) - (5), (13) - (14).

Still, the problem in (25) is non-convex in general due
to the constraints in (26) and (27). To tackle this difficulty,
we introduce an auxiliary variable {zk [n]} such that

(
‖p[n]−

uk‖2 + H2
)γ /2
≤ zk [n] for k ∈ K and n ∈ N . Applying the

change of variables τ0[n] = ω[n]2 for n ∈ N , the left-hand-
side (LHS) of (26) and the right-hand-side (RHS) of (27) are
respectively lower-bounded by

N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
εk [n]2/τk [n](

‖p[n]− uk‖2 + H2
)γ /2)

≥

N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
εk [n]2

τk [n]zk [n]

)
, (29)

n−1∑
i=1

τ0[i]
g0ζPDL(

‖p[i]− uk‖2+H2
)γ /2 ≥ n−1∑

i=1

g0ζPDL
ω[i]2

zk [i]
. (30)

Based on (29) and (30), in the following proposition, we can
construct an equivalent problem for (25).
Proposition 1: The optimal solution for the problem

in (25) can be obtained by solving the following optimization
problem:

(P1.1) max
Rmin,{εk [n]},{p[n]},

{τk [n]},{zk [n]},{ω[n]}{Xk [n]}

Rmin

s.t.
1
N

N∑
n=2

τk [n] log2

(
1+

g0η
σ 2
Xk [n]

τk [n]

)
≥ Rmin,

for k ∈ K, (31)
n∑
i=2

εk [i]2 ≤
n−1∑
i=1

g0ζPDL
ω[i]2

zk [i]
,

for n ∈ N̂ and k ∈ K, (32)

Xk [n] ≤
εk [n]2

zk [n]
, for n ∈ N and k ∈ K,(33)

‖p[n]− uk‖2 + H2
≤ zk [n]

2
γ ,

for n ∈ N and k ∈ K,
(34)

(4) - (5), (13) - (14), (28).

Proof: First, let R∗min and R̃min denote the optimal value
of problem (25) and (P1.1), respectively. Then it can easily
be checked that R∗min ≥ R̃min, where the equality holds when

zk [n]
2
γ = ‖p[n]− uk‖2 +H2 and Xk [n] =

εk [n]2
zk [n]

, ∀n and ∀k .
Next, by contradiction, we will prove that the optimum of
(P1.1) can be attained when zk [n]

2
γ = ‖p[n]−uk‖2+H2 and

Xk [n] =
εk [n]2
zk [n]

. Suppose that there exists at least one Xk [n]
or zk [n] such that at the optimum of (P1.1), the equalities

in (33) or (34) does not hold and denote a set of such k
as K′ ⊂ K. If the equality holds in (31) for k ′ ∈ K′ in
this case, the minimum throughput R̃min can be improved by
reducing zk ′ [n] and increasing Xk ′ [n] so that constraints (33)
and (34) hold with equality. This contradicts the assump-
tion that there are Xk [n] or zk [n] such that the equalities
in (33) or (34) does not hold at the optimum of (P1.1). Even
if the equality does not hold in (31) for k ′ at the optimum,
increasing zk ′ [n] does not affect the minimum throughput
R̃min. Therefore, for all these cases, we can always find
the optimal zk [n] and Xk [n] for (P1.1) satisfying zk [n]

2
γ =

‖p[n] − uk‖2 + H2 and Xk [n] =
εk [n]2
zk [n]

. As a result,

by solving (P1.1), the optimal solution of (25) can be attained
equivalently.4

(P1.1) is still non-convex in general due to constraint
in (32) and (33). Thus, we provide the CCCP [35] approach to
address (P1.1). First, we consider the uplink available energy
constraint in (32). Since the RHS of (32) is a jointly convex
function over zk [n] and ω[n], by using a first-order Taylor
approximation at zk [n] = ẑk [n] and ω[n] = ω̂[n], we can
derive a lower bound of the RHS of (32) as

n−1∑
i=1

g0ζPDL
ω[i]2

zk [i]

≥

n−1∑
i=1

g0ζPDLω̂[i]
ẑk [i]

(
2ω[i]− ω̂[i]−

ω̂[i](zk [i]− ẑk [i])
ẑk [i]

)

,
n−1∑
i=1

ELk,LB[i](ω[i], zk [i] | ω̂[i], ẑk [i]). (35)

Note that ELk,LB[n](ω[n], zk [n] | ω̂[n], ẑk [n]) is an affine
function with respect to ω[n] and zk [n], and gives a tight
lower bound in which equality holds at ω[n] = ω̂[n] and
ẑk [n] = zk [n]. In a similar manner, the RHS of the auxiliary
constraint in (33), which is a jointly convex function with
respect to εk [n] and zk [n], can be lower-bounded by

εk [n]2

zk [n]
≥
ε̂k [n]2

ẑk [n]
+

2ε̂k [n]
ẑk [n]

(εk [n]− ε̂k [n])

−
ε̂k [n]2

ẑk [n]2
(zk [n]− ẑk [n])

, Ak [n](εk [n], zk [n] | ε̂k [n], ẑk [n]). (36)

With (35) and (36) at hand, a convex approxima-
tion of (P1.1) with given ẑk [n], ε̂k [n], and ω̂[n] can be
formulated as

(P1.1A) max
Rmin,{εk [n]},{p[n]},

{τk [n]},{zk [n]},{ω[n]}{Xk [n]}

Rmin

s.t.
n∑
i=2

εk [i]2≤
n−1∑
i=1

ELk,LB[i](ω[i], zk [i] | ω̂[i], ẑk [i]),

for n ∈ N̂ and k ∈ K, (37)

4Based on Proposition 1, the quality-of-service (QoS) constraint can be
considered in a similar way to equation (31).
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Xk [n] ≤ Ak [n](εk [n], zk [n] | ε̂k [n], ẑk [n]),

for n ∈ N and k ∈ K,
(38)

(4) - (5), (13) - (14), (28) - (31), (34).

(P1.1A) can be solved by existing convex solvers,
e.g., CVX [41]. Since the feasible region of (P1.1A) is a
subset of that of the original problem (P1.1), we can always
obtain a lower bound solution for problem (P1.1) from its
approximation (P1.1A). As a result, a solution for (P1.1)
can be calculated by solving a series of the convex problem
(P1.1A) at each iteration. At the q-th iteration of the CCCP
algorithm, we compute the solution z(q)k [n], ε(q)k [n] andω(q)[n]
of (P1.1A) by setting ẑk [n] = z(q−1)k [n], ε̂k [n] = ε

(q−1)
k [n] and

ω̂[n] = ω(q−1)[n], where z(q)k [n], ε(q)k [n] and ω(q)[n] are the
solution determined at the q-th iteration. It has been proved
that this CCCP method converges to at least a stationary
point [35]. One algorithm for solving (P1) is summarized in
Algorithm 1 below.

Algorithm 1 Proposed Algorithm for (P1) With the Linear
EH Model

Initialize z(q)k [n], ε(q)k [n] and ω(q)[n], ∀n and ∀k ,
and set q = 0.

Repeat
Update q← q+ 1.
Set ẑk [n] = z(q−1)k [n], ε̂k [n] = ε

(q−1)
k [n]

and ω̂[n] = ω(q−1)[n], ∀n and ∀k .
Solve (P1.1A) by using the CVX.

Until convergence

Set p?[n] = p(q)[n], PUL?k [n] =
ε
(q)
k [n]2

τk [n]
,

τ ?0 [n] = ω
(q)[n]2, and τ ?k [n] = τ

(q)
k [n], ∀n and ∀k .

Once Algorithm 1 converges, we can retrieve the corre-
sponding solution of the original problem (P1) as

p?[n] = p(q)[n], for n ∈ N , (39)

τ ?0 [n] = ω
(q)[n]2 and τ ?k [n] = τ

(q)
k [n],

for n ∈ N and k ∈ K, (40)

PUL?k [n] =


ε
(q)
k [n]2

τk [n]
, for τk [n] 6= 0

0, for τk [n] = 0
,

for n ∈ N̂ and k ∈ K. (41)

With the location of the GTs at hand, Algorithm 1 is an
off-line procedure performed at the UAV control center
whose computing power is typically sufficient for execut-
ing iterative calculation processes. Then, a solution can be
informed to the UAVs and the GTs in advance, and the
optimized time durations are utilized for off-line scheduling
among the UAVs and the GTs. For more reliable communica-
tion between the UAVs and the GTs, control and non-payload
communication links can be established in addition to the data
communication links [2].

B. SEPARATED UAV WPCN
In this subsection, we present an efficient algorithm for (P2)
in the separated UAV WPCN. Similar to the integrated sys-
tem, an efficient solution for the trajectories {pI[n]} and
{pE[n]}, the uplink power {PULk [n]}, and time resource allo-
cation solution {τk [n]} can be obtained by iteratively solving
a approximated problem of (P2).

To solve the non-convex problem (P2), similar to (P1.1),
we introduce new auxiliary variables {zIk [n]} and {z

E
k [n]} such

that
(
‖pI[n]− uk‖2 +H2

I

)γ /2
≤ zIk [n] and

(
‖pE[n]− uk‖2 +

H2
E

)γ /2
≤ zEk [n] for k ∈ K and n ∈ N . Then, (P2) can be

reformulated as

(P2.1) max
Rmin,{εk [n]},{pI[n]},{pE[n]},
{τk [n]},{zk [n]},{ω[n]},{Yk [n]}

Rmin

s.t.
1
N

N∑
n=2

τk [n] log2

(
1+

g0η
σ 2
Yk [n]

τk [n]

)
≥ Rmin,

for k ∈ K, (42)
n∑
i=2

εk [i]2 ≤
n−1∑
i=1

g0ζPDL
ω[i]2

zEk [i]
,

for n ∈ N̂ and k ∈ K, (43)

Yk [n] ≤
εk [n]2

zIk [n]
, for n ∈ N and k ∈ K, (44)

‖pI[n]− uk‖2 ≤ zIk [n]
2
γ , for n∈N and k ∈ K,

(45)

‖pE[n]− uk‖2≤zEk [n]
2
γ , for n∈N and k ∈ K,

(46)
(4) - (5), (20) - (21),(28),

where {εk [n]} and {ω[n]} are auxiliary variables defined
in Section III-A. The equivalence between problem (P2)
and (P2.1) can be easily verified by a similar approach in
Proposition 1.

One can check that (P2.1) the non-convex constraints (43)
and (44), which are given by the difference of two convex
functions, can be handled by the CCCP method [35]. Thus,
at each iteration of the CCCP algorithm, we address the
following approximated convex problem as

(P2.1A) max
Rmin,{εk [n]},{pI[n]},{pE[n]},
{τk [n]},{zk [n]},{ω[n]},{Yk [n]}

Rmin

s.t.
n∑
i=2

εk [i]2≤
n−1∑
i=1

ELk,LB[i](ω[i], z
E
k [i] | ω̂[i],ẑ

E
k [i]),

for n ∈ N̂ and k ∈ K, (47)

Yk [n] ≤ Ak [n](εk [n], zIk [n] | ε̂k [n], ẑ
I
k [n]),

for n ∈ N and k ∈ K, (48)

(4) - (5), (20) - (21), (28), (42), (45) - (46),

where the approximations in (47) and (48) are obtained
from (35) and (36), respectively. Therefore, we can reach
a stationary point for (P2.1) by iteratively solving (P2.1A)
with ẑIk [n] = zI (q)k [n], ẑEk [n] = zE(q)k [n], ε̂k [n] = ε

(q)
k [n] and

ω̂[n] = ω(q)[n] for n ∈ N and k ∈ K, whose convergence
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has been shown in [35]. The overall procedure is similar to
that for (P1.1) and thus omitted here for brevity.

IV. PROPOSED SOLUTION FOR NON-LINEAR EH MODEL
So far, we have investigated efficient optimization proce-
dures under the ideal assumption with the linear EH model.
Although the linear EHmodel is analytically simple, it cannot
capture the non-linear property of real-world EH circuits at
the GTs. This is important for the UAV-aidedWPCN systems
since the input power to the rectifier may change fast due
to the mobility of the UAVs. In this section, we propose a
solution for the practical non-linear EHmodel [42], [43]. Due
to the non-linear nature of the input-output EH relationship,
it is not trivial to tackle (P1-NL) via the algorithms developed
for the linear EHmodel. Therefore, we employ the alternating
optimization method which first obtains a solution for the
trajectory {p[n]} and the uplink power {PULk [n]} with given
time resource allocation {τk [n]}, and then computes {τk [n]}
by fixing {p[n]} and {PULk [n]}.

A. JOINT TRAJECTORY AND UPLINK
POWER OPTIMIZATION
For a given time resource allocation {τk [n]}, (P1-NL) can be
recast to

max
Rmin,{PULk [n]},{p[n]}

Rmin (49)

s.t. (13) - (15), (23) - (24).
Problem (49) is again non-convex due to the constraints
in (23) and (24). To tackle this difficulty, by using the aux-
iliary variables {zk [n]} introduced in Section III-A, we can
respectively lower-bound the LHS of (23) and the RHS
of (24) as

N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
PULk [n](

‖p[n]− uk‖2 + H2
)γ /2)

≥

N∑
n=2

τk [n]
N

log2

(
1+

g0η
σ 2
PULk [n]

zk [n]

)
, (50)

τ0[n]
M
α

(
1+ α

1+ α exp(− βg0PDL

(‖p[n]−uk‖2+H2)γ /2
)
− 1

)
≥ τ0[n]

M
α

(
1+ α

1+ α exp(−βg0P
DL

zk [n]
)
− 1

)
, (51)

where equalities hold when ‖p[n] − uk‖2 + H2
= zk [n]

2
γ .

For these bounds, an equivalent problem of (49) can be
constructed from the following proposition.
Proposition 2: The optimal solution for the problem (49)

can be obtained by solving the following optimization
problem:

(P1.2) max
Rmin,{PULk [n]},{p[n]},{zk [n]}

Rmin

s.t.
1
N

N∑
n=2

τk [n] log2

(
1+

g0η
σ 2

PULk [n]

zk [n]

)
≥ Rmin,

for k ∈ K, (52)

n∑
i=2

τk [i]PULk [i]

≤

n−1∑
i=1

τ0[n]M
α

(
1+ α

1+ α exp(−βg0P
DL

zk [n]
)
− 1

)
,

for n ∈ N̂ and k ∈ K,
(53)

(13) - (15), (34).

Proof: The proof is similar to that of Proposition 1 and
thus omitted for brevity.

We provide the SCA approach [37] to address the
non-convexity of (P1.2) by reformulating the non-convex
constraints into the approximated convex ones, which had
not been investigated in the existing literature related to the
linear EH model-based UAV-aided WET system [31]–[34]
yet. First, we consider the minimum throughput constraint
in (52). By applying a first-order Taylor expansion at zk [n] =
ẑk [n], a concave surrogate function for the LHS of (52) can
be derived as

log2

(
1+

g0η
σ 2

PULk [n]

zk [n]

)
≥ log2

(
1+

zk [n]+
g0η
σ 2
PULk [n]

ẑk [n]

)
−
zk [n]− ẑk [n]
ẑk [n] ln 2

, Rk,LB[n](zk [n],PULk [n] | ẑk [n]). (54)

Note that Rk,LB[n](zk [n],PULk [n] | ẑk [n]) is jointly concave
for zk [n] and PULk [n], and provides a tight lower bound where
the inequality in (54) reduces to equality when ẑk [n] = zk [n].
Next, for the RHS of constraint (53), which is neither convex
nor concave on zk [n], we construct another concave surrogate
function ENLk,LB[n](zk [n]|ẑk [n]) by the following proposition.
Proposition 3: For given zk [n] = ẑk [n], a concave surro-

gate function of the RHS of (53) can be constructed as

ENLk,LB[n](zk [n]|ẑk [n])

= τ0[n]M
(

1− exp(−Ẑk [n])

1+ α exp(−Ẑk [n])

+
(1+ α)Ẑk [n]2 exp(−Ẑk [n])(zk [n]− ẑk [n])

βg0PDL(1+ α exp(−Ẑk [n]))2

)
+
Um
2

(zk [n]− ẑk [n])2, (55)

where Ẑk [n] ,
βg0PDL

ẑk [n]
and Um , minzk [n]∈R U (zk [n]).

Proof: Please refer to Appendix A.
Using (54) and (55), we can approximate (P1.2) into a

convex problem for given ẑk [n] as

(P1.2A) max
Rmin,{PULk [n]},{p[n]},{zk [n]}

Rmin

s.t.
1
N

N∑
n=2

τk [n]Rk,LB[n](zk [n],PULk [n]| ẑk [n])≥Rmin,

for k ∈ K, (56)
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n∑
i=2

τk [i]PULk [i]≤
1
δN

n−1∑
i=1

ENLk,LB[i](zk [i] | ẑk [i]),

for n ∈ N̂ and k ∈ K, (57)

(13) - (15), (34).

Thanks to the convexity of (P1.2A), it can be efficiently
solved by existing convex solvers. As a result, a solution
for (P1.2) can be calculated by iteratively solving (P1.2A)
based on the SCA procedure. At the i-th iteration of the SCA
algorithm, (P1.2A) is computed by setting ẑk [n] = z(i−1)k [n],
where z(i)k [n] is the solution determined at the i-th iteration.

B. TIME RESOURCE ALLOCATION
Now, we identify a solution for the time resource alloca-
tion {τk [n]} for given {p[n]} and {PULk [n]}. The problem is
written as

(P1.3) max
Rmin,{τk [n]}

Rmin

s.t. (4) - (5), (23) - (24).

It can be shown that (P1.3) is a convex LP, which can be
optimally solved by the standard LP optimization tools.

Algorithm 2 Proposed Algorithm for (P1-NL) with the
Non-Linear EH Model

Initialize τ
(q)
k [n] and p(q)[n], ∀n and ∀k , and set q = 0.

Repeat
Update q← q+ 1, i← 0.
Set z(q,i)k [n] = ‖p(q−1)[n]− uk‖2, ∀n and ∀k .
Repeat

Set ẑk [n] = z(q,i)k [n], ∀n and ∀k .
Solve (P1.2A) for given {τ (q−1)k [n]}.
Update i← i+ 1.

Until convergence
Update p(q)[n] = p(q,i)[n] and PUL(q)k [n] = PUL(q,i)k [n].
Compute R(q)min and {τ

(q)
k [n]} from (P1.3).

Until R(q)min converges

Finally, the solution of (P1-NL) can be obtained by
employing the alternating optimization framework and the
overall process is given in Algorithm 2. In this algorithm,
(P1.2) and (P1.3) are iteratively solved by fixing {τk [n]} and
{p[n], PULk [n]}, respectively. To be specific, at the q-th itera-
tion, we first successively solve (P1.2A) for given {τ (q−1)k [n]}
based on the SCA until the objective value converges.
Note that we denote the solution obtained at the i-th iter-
ation of the SCA method as {p(q,i)[n],PUL(q,i)k [n], z(q,i)k [n]}.
Then, the solution of (P1.37 ) is computed for given
{p(q)[n],PUL(q)k [n]}, and this procedure is repeated until
convergence.

Now, we verify the convergence of Algorithm 2. Let
us define R̃(q)min and R(q)min as the objective value from the
SCA procedure for (P1.2) and the optimal value of (P1.3)
at the q-th iteration, respectively. Then, it is obvious that

R(q)min ≤ R̃(q+1)min since the SCA algorithm monotonically
increases the objective value of (P1.2A) with respect to the
iteration index i. Also, due to the fact that R(q+1)min is the
global optimal value of (P1.3) for given {p(q+1)[n]} and
{PUL(q+1)k [n]}, it follows R̃(q+1)min ≤ R(q+1)min . As a result,
we have

R(q)min ≤ R̃
(q+1)
min ≤ R

(q+1)
min ,

which implies that R(q)min is non-decreasing with respect to
the iteration index q. Because the minimum throughput Rmin
is upper-bounded by a certain value, Algorithm 2 is guar-
anteed to converge. Similar to Algorithm 1, a solution of
Algorithm 2 computed by the control center can also be
informed to the UAVs before the operation. Also, since the
approximated problems (P1.1A) and (P1.2A) are convex,
Algorithms 1 and 2 have polynomial time computational
complexity and take at most O(1/ε) iterations to converge
where ε represents the error tolerance [37], [41]. Thus,
the proposed algorithms can be efficiently applied to the UAV
WPCNs in practice.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the pro-
posed algorithms by numerical results which are imple-
mented with the convex solver CVX [41]. Unless stated
otherwise, the downlink transmission power at the UAVs and
the maximum allowable uplink power at the GTs are equal to
PDL = 40 dBm and PULmax = −20 dBm, respectively. Also,
ζ and η are fixed as ζ = 0.2 and η = 0.9, respectively.
We set the reference channel gain g0 to g0 = −30 dB, and the
path-loss exponent and the noise variance are given by γ = 2
and σ 2

= −90 dBm, respectively. The allowable speed of the
UAVs is set to vmax = 5 m/s, and the operation altitude of the
UAVs is fixed as H = HI = HE = 8 m.

A. LINEAR EH MODEL
We first focus on the UAV WPCN with the ideal linear EH
model configuration. Unless otherwise stated, we adopt a
snapshot of uniformly and randomly distributed GTs (K = 7)
in the area of 120 m× 120 m, whose locations are marked by
squares in Figure 3. We illustrate the optimized trajectories
of the UAVs in Figure 3 both for the integrated UAV and the
separated UAVWPCNs for T = 50 and 110 sec. The circular,
triangular, and plus sign markers stand for the positions of
UAVs sampled at every 10 sec. First, in Figure 3(a), we can
see that the UAV in the integrated UAVWPCN tries to cover
all GTs by travelling a path whose center is close to the
centroid of the GTs. In contrast, in the separated system, two
UAVs mainly cover two different areas so that the ID UAV
flies over the upper-right side of the area, while the ET UAV
gets around the lower-left side. This is because when T = 50
sec, the time period is not enough for two UAVs to visit all
the GTs. Therefore, by sectorizing the area, the separated
UAV WPCN can transfer energy and receive information
more efficiently compared to the integratedWPCN. Note that
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FIGURE 3. Trajectories of UAVs optimized by Algorithm 1.

the minimum throughput performance of the separated UAV
WPCN is 28% larger than that of the integrated UAVWPCN
for T = 50 sec.

From Figure 3(b), it can be seen that the optimized trajec-
tory for the integrated UAV WPCN becomes line segments
which connect the locations of the GTs for a large T as
in [11]. Nevertheless, the separated UAVWPCN still exhibits
non-trivial trajectories where the trajectories of the ID and the
ET UAVs are not the same due to the decoupled WET and
WIT operations. For T = 110 sec, the minimum throughput
performance of the separated UAV WPCN is about 16%
larger than that of the integrated UAV WPCN.

Figure 4 shows the histogram of the optimized
time resource allocation solution of the integrated UAV
WPCN for T = 50 and 110 sec, which corresponds to
Figures 3(a) and 3(b), respectively. We can check that the
optimized solution tends to support only a small number
of GTs at the same time, which are closely located to the
UAV, for efficient uplinkWIT. Furthermore, the time fraction
assigned for the downlink WET phase decreases as the time

FIGURE 4. Histogram of time resource allocation optimized by
Algorithm 1.

period T grows, since there are enough time resources for the
UAV to get closer to each GT for decoding the information
signal. On the other hands, for a small T , the UAV allocates
more time for theWET to charge the GTs to improve the min-
imum rate performance. As a result, the rate fairness among
the GT is well achieved by the optimized UAV trajectories
and the time resource allocation solution.

FIGURE 5. Minimum throughput with respect to time interval T for
various systems.

Figure 5 illustrates the minimum throughput performance
of the proposed algorithms by changing the time period T
where the time slot length is set to δN = 1 sec. To compare
the performance, we also simulate the following baseline
schemes.
• Static AP: As the conventional staticWPCN [22], a fixed
H-AP is located at the center of GTs with an altitude of
H = 8 m. Then the time resource is optimized by the
algorithm presented in [22].

• Circular trajectory: The UAV trajectory is set to the
circular path in [1]. Then, the joint optimization of the
uplink power and the time resource in problem (25)
is performed for fixed {p[n]}. Note that with the
circular trajectory, both the integrated UAV and the
separated UAV WPCNs achieve the same minimum
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rate performance. The circular trajectory is used as an
initialization scheme for the proposed algorithms and
other baseline schemes.

• Fixed time resource (FTR): With the fixed time resource
{τk [n]} obtained from the circular scheme, the uplink
power and the UAV trajectory are computed by
Algorithm 1.

• Naive power control (NPC): With the trajectory and
the time resource allocation optimizations based on the
proposed algorithms, each GT uses all of the energy
harvested at the previous time slot for WIT. If the stored
energy at the GT exceeds the uplink power constraint,
i.e., Ek [n − 1] > δN τk [n]PULmax, the GT transmits the
information signal with PULmax at the n-th time slot.

From Figure 5, we can check that even when the trajec-
tory is configured as a simple circular path, the minimum
throughput performance can be enhanced in comparison with
the conventional static WPCN. Also, the FTR case shows a
performance enhancement by optimizing the trajectory of the
UAV with a simple time resource allocation. These infer that
themobility of the UAVwell compensates the doubly near-far
problem of the static WPCN. Although the NPC scheme
naively controls the uplink power, the minimum throughput
is further improved compared to other baseline schemes by
jointly optimizing the UAV trajectories and the time resource
allocation. The minimum throughput performance of the pro-
posed algorithms increases as the time period T grows, and
the performance gap between the proposed algorithm and
the asymptotic upper bound of the algorithm with T → ∞
becomes smaller for a large T . In addition, the performance
gap between the proposed schemes and the conventional
methods grows with T . Note that this indicates that the
optimization of the UAV trajectories and the time resource
allocation can bring a huge gain on system performance, and
thus these are critical design factors. Moreover, the separated
UAVWPCN always performs better than the integrated UAV
WPCN in the proposed scheme, while the baseline schemes
do not exhibit such advantages. This can be attributed to a
fact that in the NPC and the FTR schemes, both the ID and
the ET UAV trajectories in the separated system converge
to the same trajectory, due to the limited energy causal-
ity and time resource allocation. Therefore, we can con-
clude that jointly optimization of trajectories, uplink power
control and time resource allocation is important for the
UAV WPCNs.

Figure 6 exhibits the convergence behavior of Algorithm 1
both for the integrated and the separated systems. It is shown
that regardless of the time periods T , the proposed algorithm
converges to an efficient point within 15 iterations.

B. NON-LINEAR EH MODEL
Now, we investigate the effect of the non-linearity in the EH
circuits by evaluating the performance of the proposed algo-
rithm for the non-linear EH model case, i.e., Algorithm 2 in
Section IV.We focus on the deployment scenario withK = 3

FIGURE 6. Convergence of the proposed Algorithm 1.

FIGURE 7. Harvested power of the non-linear and the linear EH model
with respect to input RF power.

FIGURE 8. Comparison of optimized trajectory between the linear and
non-linear EH model systems.

GTs shown in Figure 8 presenting the optimized trajectory for
the non-linear EH model with a = 47083, b = 2.9 × 10−6,
and M = 9.079 µW [21] for the time period of T = 40 sec.
For comparison, we also depict the trajectory optimized via
Algorithm 1 for the linear EH model with ζ = 0.2 which is
well-fitted for the non-linear model on the unsaturated region
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FIGURE 9. Throughput gap between the linear and the non-linear EH
model optimization.

as depicted in Figure 7. From Figure 8, we can see that in
the integrated UAV systems, the optimized trajectories for
the linear and non-linear EH models are almost identical,
whereas those in the separated UAV systems are different.
To be specific, the ID and the ET UAVs with the linear EH
model cover the north and the south parts, respectively. On the
contrary, in the practical non-linear EH model scenario, both
UAVs try to focus on the central area more compared to
the linear model case. This is because the difference of the
input-output power characteristic between the non-linear and
the linear model illustrated in Figure 7 affects the harvested
energy of GTs.

In Figure 9, we illustrate the throughput performance
obtained from Algorithm 2. To see the impact of the opti-
mization solution for the non-linear EH model, we also
plot the performance of the linear EH model solution of
Algorithm 1 applied to the non-linear EH model with
ζ = {0.12, 0.15, 0.2, 0.3}. It can be shown that in the
integrated UAV WPCN, the solution in the linear EH
model-based system optimized by Algorithm 1 is close to
that of the non-linear EH system. In contrast, in the separated
UAVWPCN, Algorithm 2 exhibits better performance for the
practical non-linear EH system over Algorithm 1.

VI. CONCLUSION
This paper has studied the UAV-aided WPCN where UAVs
perform the WET for the WET of multiple GTs. For both
the integrated UAV and the separated UAV WPCNs, the tra-
jectories of the UAVs, the uplink power at the GTs, and
the time resource allocation strategies have been jointly
optimized for maximizing the minimum throughput among
the GTs with the linear and the non-linear EH model.
To solve these non-convex problems, we have applied the
CCCP for the linear EH system, while the alternating opti-
mization framework and the SCA have been employed for
the non-linear EH system. As a result, the efficient solu-
tions of the original non-convex problems has been obtained
by the proposed algorithms whose convergence has been
mathematically proved. Through the numerical simulations,
the efficiency of the proposed algorithms in comparison with
the conventional schemes has been demonstrated. As future
works, the proposed systems can be further extended to gen-
eral multi-UAV networks with the association problems of

the GTs and guaranteeing the individual QoS requirement for
each GT.

APPENDIX A
PROOF OF PROPOSITION 3
Let us first denote Zk [n] = βg0PDL/zk [n] and Sk [n] =
τ0[n]M
α

(
1+α

1+α exp(−Zk [n])
− 1

)
. Then, the first and the second

derivative of Sk [n] with respect to zk [n] are respectively
written as

∇Sk [n](zk [n]) =−τ0[n]
M (1+ α)Zk [n]2 exp(−Zk [n])
βg0PDL(1+α exp(−Zk [n]))2

, (58)

∇
2Sk [n](zk [n]) = τ0[n]

M (1+ α)Zk [n]4 exp(−Zk [n])
(βg0PDL)2(1+ α exp(−Zk [n]))2

·

(
2

Zk [n]
−

1− α exp(−Zk [n])
1+ α exp(−Zk [n])

)
. (59)

For given zk [n] = ẑk [n], a functionENLk,LB[n](z|ẑk [n]) which
is the surrogate function of Sk [n](zk [n]) must satisfy these
three conditions [36]

Sk [n](ẑk [n]) = ENLk,LB[n](ẑk [n]|ẑk [n]),

∇Sk [n](ẑk [n]) = ∇ENLk,LB[n](ẑk [n]|ẑk [n]),

Sk [n](zk [n]) ≥ ENLk,LB[n](z|ẑk [n]), ∀z ∈ R.

To meet the conditions, defining ENLk,LB[n](z|ẑk [n]) as

ENLk,LB[n](z|ẑk [n]) = Sk [n](ẑk [n])+∇
(
Sk [n](ẑk [n])

)
×(z− ẑk [n])+

Um
2

(z− ẑk [n])2, (60)

where U (zk [n]) = −
τ0[n]M (1+α)Zk [n]4 exp(−Zk [n])
(βg0PDL)2(1+α exp(−Zk [n]))3

and Um ,

minzk [n]∈R U (zk [n]). It can be easily shown that ENLk,LB[n]
(z|ẑk [n]) in (60) is concave with respect to z and satisfies the
first two conditions for the surrogate function. Furthermore,
the third condition is also satisfied since ∇2Sk [n](zk [n]) ≥
U (zk [n]) and thus Um fulfills the Taylor’s inequality. Note
that thanks to the unimodality of U (zk [n]), Um can be easily
obtained by one-dimensional search algorithms such as the
golden-section search method [44]. Finally, by substituting
z = zk [n] in (60) and Ẑk [n] = βg0PDL/ẑk [n], Proposition 3
is proved.
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