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ABSTRACT A volume integral equation (VIE) based on the mixed-potential representation is presented
to analyze the electromagnetic scattering from objects involving inhomogeneous bi-anisotropic materials.
By discretizing the objects using tetrahedrons on which the commonly used Schaubert-Wilton-Glisson
(SWG) basis functions are defined, the matrix equation is derived using the method of moments (MoM)
combined with the Galerkin’s testing. Further, adopting an integral strategy of tetrahedron-to-tetrahedron
scheme, the multilevel fast multipole algorithm (MLFMA) is proposed to accelerate the iterative solution,
which is further improved by using the spherical harmonics expansion with a faster implementation and low
memory requirement. The memory requirement of the radiation patterns of basis functions in the proposed
MLFMA is several times less than that in the conventional MLFMA.

INDEX TERMS Bi-anisotropy, method of moments (MoM), multilevel fast multipole algorithm (MLFMA),
spherical harmonics expansion, volume integral equation (VIE).

I. INTRODUCTION
With the rapid development of material science, the elec-
tromagnetic (EM) radiation or scattering properties of com-
plicated materials have aroused great interests in the field
of computational electromagnetics. Lots of researches focus
on the anisotropic or bi-anisotropic materials since their
wide applications, such as the applications in microwave
and millimeter-wave devices, radar absorbers, EM stealth,
and so on [1]–[4]. However, because the constitutive rela-
tions of the bi-anisotropic materials are enforced an addi-
tional coupling between the electric and magnetic fields with
generalized tensor parameters, to accurately and efficiently
analyze such objects is quite a challenge. Among numer-
ous numerical methods, the method of moments (MoM)
solution of the volume integral equation (VIE) [5], [6],
in which the object is replaced by the equivalent volume
currents according to the principle of volume equivalence,
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is one of top choices to analyze the general inhomogeneous
bi-anisotropic objects. In [7], an integral equation based
scheme was presented to analyze scattering from inhomo-
geneous bodies with anisotropic EM properties. An adap-
tive integral method was used to solve the EM scattering
of inhomogeneous bi-anisotropic objects [8]. A generalized
VIE method was formulated for arbitrarily shaped complex
objects with inhomogeneous bi-isotropy [9], where the three-
dimensional solenoidal functionwas incorporated as the basis
function defined on each tetrahedron. In [10], a stable VIE
formulation expanded with piecewise constant basis func-
tions for extremely anisotropic materials was reported. It was
concluded that when the scatterer is extremely anisotropic,
the behavior of the VIE formulation based on the equiv-
alent currents is more stable than that based on fluxes or
fields. However, this conclusion is tenable only for the
uniaxial anisotropic materials. Reference [11] proposed a
new generalized volume-surface integral equation to ana-
lyze the EM scattering from composite objects comprised of
both conductors and inhomogeneous bi-isotropic materials.
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There are also some other novel articles contributing to VIE
such as [12]–[14], about parallelization and preconditioner
techniques.

The emphasis of this paper is to apply the efficient multi-
level fast multipole algorithm (MLFMA) to the solution of
VIE for arbitrary inhomogeneous bi-anisotropic materials.
The classical MoM suffers from a large computational com-
plexity which is on the order of N 2 due to the fully popu-
lated system matrices, where N is the number of unknowns.
For a dielectric object computing by VIE, because of the
dense volumetric discretization, N is bulky, leading to a large
computational cost, even if for small electric size. Especially
for the object involving bi-anisotropic material, compared
with the common dielectric material for which the unknown
coefficients are only needed to express the equivalent electric
currents, the number of unknowns will be doubled since
the unknown coefficients are needed to express both the
electric and the magnetic currents simultaneously. It urgently
calls for fast solvers such as the MLFMA. Based on the
addition theorem of Green’s function and diagonalization
of the translation operator, the MLFMA drastically reduces
the overall computational complexity to O(N logN ) through
three processes: aggregation, translation, and disaggregation
accompanied with interpolation/anterpolation between lev-
els [6]. In addition, the conventional MLFMA can be further
improved by using the spherical harmonics expansion (SE).
This SE-based MLFMA (denoted by SE-MLFMA) was first
proposed in [15] to solve the surface integral equation (SIE)
with dyadic representations, and then improved by using the
mixed-potential representation of SIE [16]. The main idea of
SE-MLFMA is briefly stated as follows [20]: In the imple-
mentation of conventional MLFMA, to enhance the comput-
ing efficiency, the so-called radiation patterns (RPs) of the
basis functions which are the k-space samples over the Ewald
sphere, should be computed and stored in advance. Because
the quadrature sampling rate is determined by the bandwidth
of the diagonalized translation matrix at the finest level,
the RPs are oversampled, resulting in a significant amount
of redundant memory usage. Utilizing the orthonormality,
the RPs can be expanded as a series of the spherical harmon-
ics. The expansion coefficients (ECs) instead of the RPs can
be computed and stored, which will significantly reduce the
memory requirement.Moreover, in the SE-MLFMA, both the
aggregation of the outgoing waves and the disaggregation of
the incoming waves at the finest level can also be executed in
a faster way by summation of the spherical harmonics instead
of the integrations in k-space. Therefore, the SE-MLFMA is
even faster than the conventional one. However, due to the
presence of bi-anisotropy, it is really not easy to apply the
SE-MLFMA to such problems.

The goal of this paper is to implement the SE-MLFMA
for general-purpose EM computation that can handle all
kinds of material objects such as arbitrarily inhomoge-
neous anisotropy, bi-anisotropy, chirality, ferromagnetism,
and isotropy. In Section II, it is shown in detail that how
to yield the mixed-potential VIE for the inhomogeneous

bi-anisotropy with general tensor parameters, while the clas-
sical MoM based on the Galerkin’s testing with Schaubert-
Wilton-Glisson (SWG) basis functions [17] is applied to
convert the VIE into a matrix equation. In Section III,
the MLFMA based on the integral strategy of tetrahedron-
to-tetrahedron scheme is applied to solve the matrix equation,
while how to use the SE to improve the conventionalMFLMA
to accelerate the iterative solution without sacrificing the
solution accuracy is described subsequently. Some typical
numerical results are shown in Section IV to demonstrate the
accuracy and efficiency of the proposed method.

II. THEORY AND FORMULATIONS
A. DERIVATION OF VIE FOR COMPOSITE
BI-ANISOTROPIC OBJECTS
Consider an object occupying a region V involving inho-
mogeneous materials which may be isotropic, bi-isotropic,
anisotropic, or bi-anisotropic. It is assumed that this object is
suspended in free space and illuminated by an incident plane
EM wave (EE

i
, EH i), and radiates the scattered field (EEs, EH s).

The coupled medium constitutive relationships for inhomo-
geneous bi-anisotropy between the electric flux density ED,
magnetic flux density EB and the electric field EE , magnetic
field EH are written as[

EE
EH

]
=

[
¯̄ε ¯̄ξ
¯̄ζ ¯̄µ

]−1 [
ED
EB

]
=

[
¯̄α11 ¯̄α12
¯̄α21 ¯̄α22

] [
ED
EB

]
(1)

where all of the parameters, permittivity ε, permeability µ,
and bi-anisotropic parameters ξ and ζ , are spatial tensors.

In the region V , the volume integral equation (VIE) is
written as (

EE, EH
)
−

(
EEs, EH s

)
=

(
EE i, EH i

)
(2)

Since the total EM field (EE, EH ) is a superposition of incident
and scattered fields, from the two curl equations ofMaxwell’s
equations, the following equations∇ × EE

s
= −jωµ0 EH s

− jω
(
¯̄µ− µ0

¯̄I
)
· EH − jω ¯̄ζ · EE

∇ × EH s
= jωε0 EEs + jω

(
¯̄ε − ε0

¯̄I
)
· EE + jω ¯̄ξ · EH

(3)

can be obtained, where j =
√
−1 with the time-harmonic

factor ejωt , ω is the angular frequency, ε0 and µ0 are the
permittivity and permeability of free space, I denotes the
identity tensor, respectively. According to the principle of
volume equivalence, (EEs, EH s) can be seen as production by
both the equivalent volume electric and magnetic currents EJ
and EM in free space. By comparing (3) with the Maxwell’s
equations and substituting (1), EJ and EM for bi-anisotropy are
derived by[

EJ
EM

]
= jω

[
¯̄I − ε0 ¯̄α11 −ε0 ¯̄α12

−µ0 ¯̄α21
¯̄I − µ0 ¯̄α22

][
ED
EB

]

= jω

[
¯̄β11

¯̄β12
¯̄β21

¯̄β22

][
ED
EB

]
(4)
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Parenthetically, (EEs, EH s) can be carried out using the
mixed-potential form [7] or the dyadic form [9], while the
former one results in a brief representation and is convenient
to combine with the MLFMA. Therefore, in the implemen-
tation, (EEs, EH s) is cast in terms of mixed auxiliary potentials
as 

EEs = −jωEAJ −∇ϕJ −
1
ε0
∇ × EAM

EH s
= −jωEAM −∇ϕM +

1
µ0
∇ × EAJ

(5)

with 
EAJ = µ0

∫
V
EJ
(
Er ′
)
G
(
Er, Er ′

)
dV ′

ϕJ =
j
ωε0

∫
V
∇
′
· EJ
(
Er ′
)
G
(
Er, Er ′

)
dV ′

(6)

where Er and Er ′ are the observation and source points, respec-
tively, while EAM and ϕM can be found using the duality.
Besides, the Green’s function of free space is expressed as

G
(
Er, Er ′

)
=

e−jk|Er−Er
′|

4π |Er − Er ′|
(7)

with the wavenumber k = ω
√
µ0ε0.

B. MOM SOLUTION USING SWG BASIS FUNCTION
Using the MoM, the VIE is converted into a matrix equation.
In the implementation, the divergence conforming SWGbasis
function [17] is used to respectively disperse ED and EB in V as

ED =
1
jω

N∑
i=1

IDi Efi EB =
η0

jω

N∑
i=1

IBi Efi (8)

Dispersing ED and EB instead of EJ and EM can hold the continuity
of the normal components which are consistent with the
boundary condition for dielectric interfaces. In (8), N is the
number of SWG basis functions Efi, while the total number of
unknowns is 2N . IDi and IBi are the corresponding unknown

coefficients, respectively. It is assumed that ¯̄ε, ¯̄µ, ¯̄ξ and ζ
are approximately constant tensors within each tetrahedron,
which is a generalization of that presented in [17]. As a
consequence, the 6 × 6 matrices [ ¯̄α] and [ ¯̄β] defined in (1)
and (4) over a single tetrahedron are also considered as con-
stant matrices. Substituting (8) into (2)-(6) as well as using
Galerkin’s testing results in an impedance matrix equation of
the MoM, which can succinctly be represented as[

ZDD ZDB

ZBD ZBB

]{
ID

IB

}
=

{
bD

bB

}
(9)

where {bD} and {bB} are the excitation vectors. The matrix
entries are given by

ZDD = W
(
¯̄α11,
¯̄β11,
¯̄β21, ε0, µ0

)
ZDB = W

(
¯̄α12,
¯̄β12,
¯̄β21, ε0, µ0

)
ZBD = W

(
¯̄α21,
¯̄β21,−

¯̄β11, µ0, ε0

)
ZBB = W

(
¯̄α22,
¯̄β22,−

¯̄β12, µ0, ε0

) (10)

with the entry in the jth row and ith column

Wji

(
¯̄αx1y,

¯̄βx1y,
¯̄βx2y, χ, γ

)
=

1
jω

∫
Vj

Efj · ¯̄αx1y · EfidV + jωγ
∫
Vj

Efj ·
∫
Vi

¯̄βx1y

· EfiG
(
Er, Er ′

)
dV ′dV

+
j
ωχ

∫
Vj

Efj · ∇
∫
Vi
∇
′
·

(
¯̄βx1y ·
Efi
)
G
(
Er, Er ′

)
dV ′dV

+

∫
Vj

Efj · ∇ ×
∫
Vi

¯̄βx2y ·
EfiG

(
Er, Er ′

)
dV ′dV (11)

where the subscripts x1, x2, y = 1 or 2 and x1 + x2 ≡ 3.
The ith SWG basis function relative to the tetrahedron Tn

of volume vn is defined over a face of area ai shared by two
adjacent tetrahedrons as

Efi
(
Er ′
)
= sgn (ni)

ai
3vn

(
Er ′ − Er in

)
∀Er ′ ∈ Tn (12)

where sgn(ni) = 1 or −1 means that the current flowing
direction of the ith basis function is outward or inward relative
to Tn, and Er in is the free vertex of the ith basis function to
Tn [17]. Particularly, at the boundary of object, since the flux
density is not necessarily zero, a ‘‘half’’ SWG basis function
is defined over the interior tetrahedron.

To optimize the performance, the algorithm should be
designed to maximally reduce the computational time. For
this purpose, in this paper, the interactions between testing
and basis functions are generally computed in a tetrahedron-
to-tetrahedron manner, rather than using the direct testing-
to-basis functions one. From the following analysis in
Section III, it can be found that this manner also causes a
lower memory requirement to store the RPs or ECs. Then
in any case, each double volume integral in (11) consists
of up to four sub-integrals of the same type, which repre-
sent the mutual interactions between tetrahedrons involved
in the testing and basis functions. The final result of (11)
can be efficiently obtained by adding the contributions of all
related tetrahedron-to-tetrahedron integrals to the testing-to-
basis entry. Therefore, in the following, only the sub-integral
between two ‘‘positive’’ tetrahedrons is considered, while
other three ones can be obtained by simply changing the
sign. For convenience, tetrahedrons Tm and Tn of volumes
vm and vn are assumed as the two ‘‘positive’’ tetrahedrons
involving the jth testing and ith basis functions, respectively.
Thus, the matrix entries in (11) rely on the evaluation of four
kinds of integrations as

I1 =
∫
Tm

Efj (Er) · ¯̄αx1y · Efi (Er) dV

I2 =
ajai
9vmvn

∫
Tm

(
Er − Er jm

)
·
¯̄βx1y

·

∫
Tn

(
Er ′ − Er in

)
G
(
Er, Er ′

)
dV ′dV
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I3 =
ajai
9vmvn

∫
Tm

(
Er − Er jm

)
· ∇

∫
Tn
∇
′
·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′dV

I4 =
ajai
9vmvn

∫
Tm

(
Er − Er jm

)
· ∇

×

∫
Tn

¯̄βx2y ·
(
Er ′ − Er in

)
G
(
Er, Er ′

)
dV ′dV (13)

Apparently, I1 can be evaluated analytically or numerically
without any singularity. I2 has singularity of order one when
Er → Er ′, which can be expediently handled using either the
singularity extraction method [18] or Duffy transform [19].
According to ∇ × Er ≡ 0 and the Gauss theorem, I4 can
be transformed into a surface-volume integration with also
singularity of order one during Er → Er ′. For the evaluation
of I3, it is divided into two parts as

I3 =
ajai
9vmvn

∫
Tm
∇ ·

{(
Er − Er jm

) ∫
Tn
∇
′

·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′

}
dV

−
ajai
9vmvn

∫
Tm
∇ ·

(
Er − Er jm

) ∫
Tn
∇
′

·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′dV (14)

The inner integration involving the divergence calculation in
(14) can be calculated as∫

Tn
∇
′
·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′

= Tr
(
¯̄βx1y

) ∫
Tn
G
(
Er, Er ′

)
dV ′

−

∮
∂Tn

n̂∂Tn ·
[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dS ′ (15)

where Trβx1y) denotes the trace of βx1y, ∂Tn denotes the four
triangular faces bounding the tetrahedron Tn, and n̂∂T n is
the outward normal vector to ∂Tn [7]. For the first item of
the right-hand side (RHS) in (14), according to the Gauss
theorem, the outer volume-integration can be transformed
into surface-integration as∫
Tm
∇ ·

{(
Er − Er jm

) ∫
Tn
∇
′

·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′

}
dV

=

∮
∂Tm

n̂∂Tm ·
(
Er − Er jm

) ∫
Tn
∇
′

·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′dS

=
3vm
aj
δj

∫
S jm

∫
Tn
∇
′
·

[
¯̄βx1y ·

(
Er ′ − Er in

)]
G
(
Er, Er ′

)
dV ′dS

(16)

where δj = 0 or 1 when the jth testing function is ‘‘full’’
or ‘‘half’’. The above derivation is based on this fact: only

when Er locates in the opposite face (denoted by S jm) of the
free vertex Er jm, does n̂∂Tm · (Er − Er

j
m) not equal to 0. Further,

if the jth testing function is ‘‘full’’ which is defined on two
adjacent tetrahedrons, the two integrations over these two
tetrahedrons will have the same value while opposite sign,
i.e., δj = 0. On the contrary, for the jth ‘‘half’’ testing function
associated with a single tetrahedron, δj = 1. With (14)-(16),
the singularity of I3 is reduced to order one, which can be
evaluated numerically.

III. MLFMA IMPLIMENTATION
During the implementation of MLFMA, the MoM matrix
is decomposed into two parts as Znear + Zfar, where Znear
and Zfar are the impedance matrices representing the inter-
actions between the testing and basis functions in the near
and far groups, respectively. Only Znear is computed using the
classical MoM and stored explicitly, while the computation
of matrix-vector product (MVP) involving Zfar is implicit.
Besides, since Zfar denotes the far-group interaction, I2, I3
and I4 in (13) will be included in Zfar, while I1 representing
the ‘‘self’’ term contribution is eliminated.

A. DERIVATION OF THE CONVENTIONAL MLFMA
In the setup of MLFMA, the basis functions need to be
grouped according to the octree. In this paper, since the
interactions between SWG testing and basis functions are
computed in a tetrahedron-to-tetrahedron manner, the group-
ing scheme is based on the tetrahedrons, rather than the com-
monly used face-based one [6]. That is to say, the index of the
leaf box to which a given tetrahedron belongs is determined
by comparing the center coordinate of the leaf box with that
of the barycenter of tetrahedron. If Tm and Tn are grouped
into the m′th and n′th leaf boxes of the center coordinates Erm′
and Ern′ , respectively, via the addition theorem, the Green’s
function will be rewritten as

G
(
Er, Er ′

)
=

∮
e−jEk·(Er−Erm′)TLe−j

Ek·(Ern′−Er
′)d2k̂ (17)

with the translation operator TL[6].
For convenience, beforehand, we define

S̃ψ
(
Ek
)
=

∫
Tψ
e
−jEk·

(
Erψ ′−Er

′

)
dV ′

ẼVψ
(
Ek
)
=

∫
Tψ
Er ′e
−jEk·

(
Erψ ′−Er

′

)
dV ′

F̃oψ
(
Ek
)
=

∫
Soψ

e
−jEk·

(
Erψ ′−Er

′

)
dS ′

ẼQon
(
Ek
)
=

∫
Son

Er ′e−jEk·(Ern′−Er
′)dS ′

ψ = m, n (18)

and

ẼG3ψ
(
Ek
)
=

a3
3vψ

[
ẼVψ
(
Ek
)
− Er3ψ S̃ψ

(
Ek
)]

3 = i, j (19)

With (17)-(19), I2 and I3 respectively become

I2 =
∮ [
ẼGjm
(
Ek
)]∗
· TL ¯̄βx1y · ẼG

i
n

(
Ek
)
d2k̂ (20)

VOLUME 7, 2019 135783



J. Liu et al.: Efficient MLFMA to Solve VIE for Arbitrary Inhomogeneous Bi-Anisotropic Objects

and

I3

=

∮


[
δjF̃

j
m

(
Ek
)
−
aj
vm
S̃m
(
Ek
)]∗

TL

ai
3vn


Tr
(
¯̄βx1y

)
S̃n
(
Ek
)
−

4∑
o=1

{(
¯̄βTx1y · n̂Son

)
·

[
ẼQon
(
Ek
)
−Erni F̃

o
n

(
Ek
)]}




× d2k̂ (21)

where ‘‘∗’’ denotes the complex conjugate, β
T

x1y means the

transpose of βx1y, S
o
n (o = 1, 2, 3, 4) denotes the set of

four faces belonging to the tetrahedron Tn, respectively. For
I4, because the singularity problem is nonexistent in the far-
group interaction, we can safely choose the expression form
of (13). According to ∇ ×

(
βx2y · Er

′

)
≡ 0 and the addition

theorem, I4 is transformed to

I4 = −
ajai
9vmvn

∫
Tm

(
Er − Er jm

)
·

∫
Tn

[
¯̄βx2y ·

(
Er ′vecr in

)]
×∇G

(
Er, Er ′

)
dV ′dV

= j
∮ [
ẼGjm
(
Ek
)]∗
· TL

{[
¯̄βx2y ·

ẼGin
(
Ek
)]
× Ek

}
d2k̂ (22)

Following by a series of elaborate transformations, the
‘‘positive-to-positive’’ part of the Zfar entry is written as
In (23), as shown at the top of the next page, the first
and the second parts of RHS are the vector and the scalar
corresponding computations, respectively. It is seen that the
scalar S̃9 and vector ẼV9 involving the volume integration,
as well as the scalar F̃9 and vector ẼQn involving the surface
integration, contain all information needed by the aggre-
gation process in the conventional MLFMA, which means
that they can be regarded as the RPs defined for a given
tetrahedron but not for a SWG basis function as shown
in [7]. Besides, contribute to the symmetry of the tetra-
hedrons RPs, complex conjugates of S̃9 , ẼV9 and F̃9 are
also reused as the receiving patterns in the disaggregation
process.

In addition, during the implementation, because the param-
eters χ and γ involving in the evaluation of [ZDD] and [ZDB]
in (10) are different from that of [ZBD] and [ZBB], the sin-
gle MVP has to be accomplished through two individual
MLFMA processes. In other words, one MVP in (9) should
be divided into two individual MLFMA implementations:[
ZDD

] {
ID
}
+
[
ZDB

] {
IB
}
and

[
ZBD

] {
ID
}
+
[
ZBB

] {
IB
}
.

Since these two processes are irrelevant, they can be inde-
pendently carried out. If we elaborately merge χ and γ into
the aggregation process as shown in (23), the two individual
MLFMA processes will share an identical disaggregation
process, which can greatly simplify the work of program-
matic implementation.

B. IMPROVING CONVENTIONAL MLFMA USING SE
In the conventional MLFMA, during the precomputation and
storage of the tetrahedrons RPs (18), the number of quadra-
ture points is 2(L + 1)2, where L is the order of multipole
expansion [6]. In the SE-MLFMA, these RPs are expressed
as a series of the spherical harmonics as

S̃ψ
(
k̂
)
=

P∑
p=0

p∑
q=−p

SψpqYpq
(
k̂
)

ẼVψ
(
k̂
)
=

P∑
p=0

p∑
q=−p

EVψpqYpq
(
k̂
)

F̃ψ
(
k̂
)
=

P∑
p=0

p∑
q=−p

FψpqYpq
(
k̂
)

ẼQn
(
k̂
)
=

P∑
p=0

p∑
q=−p

EQnpqYpq
(
k̂
)

×



Sψpq =
∮
S̃ψ
(
k̂
)
Y ∗pq

(
k̂
)
d2k̂

EVψpq =
∮
ẼVψ
(
k̂
)
Y ∗pq

(
k̂
)
d2k̂

Fψpq =
∮
F̃oψ

(
k̂
)
Y ∗pq

(
k̂
)
d2k̂

EQnpq =
∮
ẼQon
(
k̂
)
Y ∗pq

(
k̂
)
d2k̂

(24)

where Ypq is the orthornomalized spherical harmonics [20],
and P is the degree of SE. The ECs, instead of RPs, are com-
puted and stored in the setup of the SE-MLFMA. The error
from the introduced SE is controllable with the choose of P,
which is typically dependent on the spectral content of the
tetrahedrons RPs as given by (18). For the purpose of saving
memory, the number of coefficients must be considerably
smaller than that of quadrature points used to numerically
compute the integrations in (18). In other words, P is must
smaller than L. In [21], it is found that under the spherical
coordinate, the spherical harmonics representing the outgoing
waves of a leaf box are rapidly decaying when P ≥ L/2 in
an appropriately designed MLFMA. Moreover, P can be one
less if the SE is performed in the Cartesian coordinate instead
of in the spherical one [15], leading to a much lower memory
requirement for a relatively small P. Actually, under the gen-
eral size of leaf box in a sophisticated MLFMA, L is usually
fixed from 5 to 7 accompanied with P from 2 to 3. Since
the expression of RPs in (18) is under Cartesian coordinate,
we may choose P = L/2 − 1 in our implementation, while
P = 1 is not recommended in practice. The detail analysis
about the value of P to the calculation error can be found
in [21].

The following will show how to elaborately use the
orthonormality of spherical harmonics to execute the aggre-
gation and disaggregation processes at the finest level in a
faster way. If we assume that ẼVn′ and S̃n′ are respectively
the summation of the vector and scalar outgoing waves for
all tetrahedrons belonging to the n′th leaf box, they will be
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W++ji
(
¯̄βx1y,
¯̄βx2y, χ, γ

)

= j
∮

[
ẼGjm
(
Ek
)]∗

︸ ︷︷ ︸
disaggregation

·TL

ωγ
¯̄βx1y ·

ẼGin
(
Ek
)

+

[
¯̄βx2y ·

ẼGin
(
Ek
)]
× Ek

︸ ︷︷ ︸
aggregation


d2k̂

+ j
∮


[
δjF̃ jm

(
Ek
)
−

aj
vm
S̃m
(
Ek
)]∗

︸ ︷︷ ︸
disaggregation

TL

ai
3ωχvn


Tr
(
¯̄βx1y

)
S̃n
(
Ek
)

−

4∑
o=1

{(
¯̄βTx1y · n̂Son

)
·

[
ẼQon
(
Ek
)
− Erni F̃

o
n

(
Ek
)]}

︸ ︷︷ ︸
aggregation


d2k̂ (23)

carried out according to

ẼVn′
(
Ek
)
= jωγ

P∑
p=0

p∑
q=−p

EVn′pq
(
¯̄βx1y

)
Ypq

(
k̂
)

+ j
P∑
p=0

p∑
q=−p

EVn
′

pq

(
¯̄βx2y

)
Ypq

(
k̂
)
× Ek

S̃n′
(
Ek
)
=

j
ωχ

P∑
p=0

p∑
q=−p
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′

pqYpq
(
k̂
)

(25)

with

EVn′pq
(
¯̄β
)
=

N ′∑
n

¯̄β ·

Xn∑
i

sgn (ni)
ai
3vn

(
ẼV n
pq − Er

i
nS̃

n
pq

)
Ii

Sn′pq =
N ′∑
n

Xn∑
i

sgn (ni)
ai
3vn

×


Tr
(
¯̄βx1y

)
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4∑
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(
¯̄βTx1y · n̂Son

)
·

(
ẼQnpq − Er

n
i F̃

n
pq

)
 Ii

(26)

where N ′ denotes the set of all the tetrahedrons belonging
to the n′th leaf box, and Xn stands for the four indexes of
SWG basis functions involving in the tetrahedron Tn. The
translations from outgoing to incoming waves as well as the
aggregations and disaggregations between levels accompa-
nied with interpolation and anterpolation are performed in
the same manner as those in the conventional MLFMA [6].
However, when all incoming waves are collected in a certain
group at the finest level, the orthonormality of spherical
harmonics can also be utilized. If ẼQm′ and P̃m′ are assumed
the vector and scalar total incoming waves collected into the
center of m′th leaf box respectively, the vector and the scalar

expansion coefficients for this box will be
EQm′
pq =

∮
ẼQm′

(
Ek
)
Y ∗pq

(
k̂
)
d2k̂

Qm′
pq =

∮
P̃m′

(
Ek
)
Y ∗pq

(
k̂
)
d2k̂

(27)

The disaggregation process in the m′th leaf box is executed
according to

bj =
m+,m−∑
m

sgn
(
mj
)

×

P∑
p=0

p∑
q=−p


aj
3vm

(
ẼVm
pq − Er

j
mS̃mpq

)∗
· EQm′

pq

+

[
δj

(
F̃mpq

)∗
−
aj
vm

(
S̃mpq
)∗]

Pm′
pq

 (28)

while m+ and m− denote the two indexes of adjacent tetrahe-
drons on which the jth testing function is defined.
The proposed SE-MLFMA to solve the bi-anisotropic

problems exhibits two advantages as follows. Firstly, it has
a low memory requirement. In the conventional MLFMA,
according to (18), we need to store a scalar and a vector com-
ponents for each tetrahedron (S̃9 and ẼV9 ) and each triangular
face (F̃9 and ẼQn), respectively. If the integrations in (18) are
evaluated using Gauss Legendre rule, with the symmetry of
the k-space, the memory requirement in bytes to store the RPs
of tetrahedrons is

MemRP = 4 (Nt + N ) (L + 1)2 c2 (29)

where Nt and N are the numbers of tetrahedrons and triangu-
lar faces, respectively, and the constant c2 is either 8 or 16 for
a single precision or double precision. By contrast, in the SE-
MLFMA, the ECs of spherical harmonics in (24) are stored
instead of the RPs. Similar with the above description about
storing RPs, S9pq and EV

9
pq for each tetrahedron as well as F9pq

and EQ9pq for each triangular face are stored, while the memory
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requirement in bytes is

MemSE = 2 (Nt + N ) (P+ 1) (P+ 2) c2 (30)

As stated above, in Cartesian coordinate, the SE degreeP is
usually selected as max(2,L/2 − 1). Therefore, compared
with (29), (30) shows a significant decrease in the memory
requirement. Besides, we define a ratio RM as

RM =
MemRP

MemSE
=

2 (L + 1)2

(P+ 1) (P+ 2)
(31)

which depends on L and Ponly. Thus, (31) is suitable for
all kinds of numerical experiments. For instance, when the
leaf box size is 0.2λ (λ is the wavelength in free space),
then L = 5 with P = 2 according to a moderate trunca-
tion order [6]. In this case, RM is 6, which means that the
memory requirement of storing RPs is 6 times of storing
ECs. On the other hand, (29) and (30) are derived basing on
the tetrahedron-to-tetrahedron scheme of integrations. If the
commonly used face-to-face integral scheme is adopted dur-
ing the implementation of conventional MLFMA [7]–[10],
the memory requirement to store the components of RPs (S̃9
and ẼV9 ) or ECs (S9pq and EV

9
pq) involving volume integrations

will also be proportional to N rather than Nt . Since N is
much larger than Nt , the memory requirement for the face-
to-face scheme is much bigger than that for the tetrahedron-
to-tetrahedron one.

Secondly, the proposed method is easy to be imple-
mented without repeat transformations between differ-
ent coordinates. In this paper, the VIE is expressed by
the mixed-potential representation in Cartesian coordinate,
which is solved using the SE-MLFMA under the same coor-
dinate. However, if the VIE is expressed by the commonly
used dyadic representation in spherical coordinate, additional
operations will be required. Because P can be one less if the
SE is performed for the Cartesian components instead of the
spherical ones, storing the ECs obtained in Cartesian coordi-
nate shows a lowermemory requirement than that in spherical
coordinate. Moreover, due to the truncations of the spherical
components, the Gibb’s phenomenon will arise if the inte-
grations of the spherical harmonics are evaluated in spherical
coordinate, while the Cartesian components are continuous
without the above problem. Thus, executing the process of
SE in Cartesian coordinate is essential. Consequently, if the
dyadic representation of VIE is adopted in the spherical coor-
dinate, in order to use a relatively small SE degreeP as well as
to avoid the Gibb’s phenomenon, the spherical components
of the RPs need to be first transformed to Cartesian ones
for the SE procedure, which should be transformed back
to the spherical coordinate for upward aggregation. Similar
operation needs to be performed one more time during the
disaggregation process at the finest level. These repeated
transformations between different coordinates will increase
the computation time. On the contrary, in our implementation,
due to the mixed-potential representation of VIE, not only
the SE procedure, but also the aggregation, translation, and
disaggregation processes are all operated in the Cartesian

coordinate, which totally eliminates the repeated transfor-
mations between different coordinates, leading to a faster
implementation.

IV. NUMERICAL RESULTS
The radar cross section (RCS) results of several objects with
anisotropic, bi-isotropic or bi-anisotropic material are calcu-
lated. The target relative residual error in the iterative solver
is 0.001. Since VIE is a second-kind Fredholm integral equa-
tion, resulting in a well-conditioned impedance matrix, all
examples can be converged in about dozen iterations. Unless
otherwise stated, the leaf box size of the MLFMA is fixed
to 0.2λ. All computations are carried out serially in single
precision on a workstation with 2.4 GHz CPU and 384 GB
RAM. During the comparison, the root-mean-square (RMS)
error is used in the study, which is defined as

RMS =

√√√√ 1
M

M∑
i=1

∣∣σ cal
i − σ

Mie
i

∣∣2 (32)

where M is the number of observation angles, and σ cal
i and

σMie
i denote the calculated and the Mie RCS results in the ith

observation angle, respectively, measured in dB.
The first object is an inhomogeneous anisotropic spherical

shell illuminated by a θ -polarized EM plane wave at fre-
quency 140MHz from+z-axis, while the observation range is
−180◦ 6 θ 6 180◦ in xzplane. The outer radius is 1 m, while
the thickness of the shell is 0.055 m. An average mesh size
of 0.06 m yields 10,593 tetrahedrons and 48,350 unknowns,
respectively. The medium parameters are defined under the
spherical coordinate as ε = diag(εrε0, εθε0, εϕε0), µ =
diag(µrµ0, µθµ0, µϕµ0). In this example, εr = 3, εθ =
εϕ = 1.5 and µr = 1.5, µθ = µϕ = 3. For the detailed
comparison between the proposed SE-MLFMA (prop) and
the conventional MLFMA (conv), Table 1 shows the influ-
ence of L and P on the memory cost (Mem) of RPs or ECs
and the computing time per MVP (Tm), while L = 5 or
6 is obtained from 0.2λ or 0.25λ leaf box size obeying the
same truncation order [6], respectively. Figure 1 compares
the numerical results by using the conventional MLFMA and
the SE-MLFMA when 0.2λ leaf box size is adopted with
L = 5. The exact result from Mie series is also shown
for comparison [7], while the RMS errors of conv and prop
compared with the exact result are given in Table 1. It is found
that the result from conv with L = 5 and that from prop with
P = 2 or 3 show the same accuracy, while P = 1 leads to
a relatively large error nearby the backward range (θ = 0).
This indicates that a moderate multipole truncation order and
a commonly leaf box size are enough for the SE-MLFMA.

The second object is a two-layer bi-isotropic sphere, while
the radii of inner and outer spherical surfaces are 0.4λ and
0.5λ, and the medium parameters of inner and outer are
εin= 1.5ε0I , µin = µ0I , ξ in = ζ

∗

in= 0 and εout= 2ε0I ,

µout = µ0I , ξout = ζ
∗

out = (0.5− j0.5)
√
ε0µ0I , respec-

tively. This object is illuminated by an EM plane wave from
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FIGURE 1. Bistatic RCS for a 0.055 m thick anisotropic shell of 1 m outer
radius with εr = 3, εθ = εϕ = 1.5 and µr = 1.5, µθ = µϕ = 3, illuminated
by a θ-polarized plane wave at 140 MHz from +z axis, the observation
range is at −180◦ 6 θ 6 180◦ in xz plane. ‘‘conv’’ is for the conventional
implementation of MLFMA, ‘‘prop’’ is for the proposed approach.

TABLE 1. Memory requirement by RPs and CPU time per iteration with
respect to various of L and P.

−z-axis, and the observation range is 0 6 θ 6 180◦ and
ϕ = 0. After the discretization, the numbers of tetrahedrons
and unknowns are 43,033 and 175,152, respectively, with an
average mesh size 0.07λ. The material is modeled by two-
layer tetrahedral meshes. The numerical results from conv
(L = 5) and prop (P = 2) as well as exact results from [9]
are shown in Fig. 2, while good agreements are observed.
The performance details as well as the RMS error results are
shown in Table 1. It is found that for the θϕ-polarization,

FIGURE 2. Bistatic RCS for a two-layer sphere with inner and outer radii
of 0.4λ and 0.5λ, illuminated by a θ-polarized plane wave from −z axis;
the inner and outer medium parameters are εin = 1.5ε0I , µin = µ0I ,
ξ in = ζ

∗

in = 0 and εout = 2ε0I , µout = µ0I ,
ξout = ζ

∗

out =
(
0.5− j0.5

)√
ε0µ0I .

the proposed SE-MLFMA with P = 3 shows 0.01 dB
reduction in the RMS error difference compared with the con-
ventional MLFMA. Under the mesh size and iterative solver
adopting by this example, this 0.01 dBmay be consistent with
the accuracy of computation.

The third object is a homogeneous bi-anisotropic cylinder
with 0.5λ radius and 0.2λ height, illuminated by an EM
plane wave from -z-axis, and the observation range is 0 6
θ 6 180◦ and ϕ = 0. The medium parameters are ε =
diag(2ε0, 3ε0, 2ε0), µ = diag(1.2µ0, 1.2µ0, µ0), while for ξ
and ζ , ξ21 = ζ ∗12 = −j�

√
ε0µ0 and other elements are zero.

A 0.07λmesh size is set to generate totally 18,072 unknowns
with 4,395 tetrahedrons. Numerical results from conv (L = 5)
and prop (P = 2) are shown in Fig. 3, while the results
from [22] (ref) implemented by Y. Zhang et al. using the
finite element-boundary integral method are also given for
comparison. With different �, the θθ -polarization results are
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FIGURE 3. Bistatic RCS for a homogeneous bi-anisotropic cylinder with
0.5λ radius and 0.2λ tall, illuminated by an EM plane wave from −z-axis.

similar, while the ϕϕ-polarization changes a lot. The perfor-
mance details are shown in Table 1.

In the fourth, we consider a combinative structure of four
different objects, placing along the y direction in order,
as shown in Fig. 4. The center distance between two neighbor
objects is 3λ. For easy presentation, we define

¯̄3 =

 2.5 −j 0
j 2.5 0
0 0 1.5

 (33)

The first object is a 2λ × 2λ × 0.2λ size of gyromagnetic
cube with ε1 = ε03. The second one is a Faraday chiral
almond [23] shell with ε2 = ε03, µ2 = µ03, ξ2 =
ζ
∗

2 = (0.5 − j0.5)
√
ε0µ0I . The outer length is 3λ with a

0.1λ thick shell. The third one is a chiral spherical shell
with ε3 = (2 − j2)ε0I , µ3 = (2 − j2)µ0I , ξ3 = ζ

∗

3 =

(0.5 − j0.5)
√
ε0µ0I . The outer radius is 1.55λ, while the

shell thickness is 0.05λ. The last one is a gyroelectric cylinder
with µ4 = µ03, whose radius and height are 1λ and 0.2λ,
respectively. After discretizing, the numbers of tetrahedrons
and unknowns are 268,560 and 1,152,684 with 0.05λ average

FIGURE 4. Position of the combination in the Cartesian coordinate.

FIGURE 5. Monostatic RCS for a combination of four different objects, the
observation range is at −90◦ ≤ θ ≤ 90◦ and ϕ = 0.

mesh size, respectively. Monostatic RCS at −90◦ 6 θ 6
90◦ and ϕ = 0 is calculated, while the performance details
and numerical results are shown in Table 1 (comb.) and
in Fig. 5, respectively. It is found that due to the general
medium tensor parameters, the cross-polarization (ϕθ ) and
the co-polarization (θθ ) have the same level in most angles,
which cannot be ignored. However, for θ = ±90◦, the cross-
polarization is much lower than its counterpart.

From Table 1, it is observed that due to the use of SE-
MLFMA, a considerable core memory is saved, while the
memory requirement of RPs or ECs and RM rigidly match
with (29)-(31). Besides, the value of RM is only relative to L
and P and independent of the shape of object, which demon-
strates that (31) is suitable for all kinds of cases. Moreover,
the SE-MLFMA is more efficient than the conventional one
during the MVP implementation, since the aggregation of the
outgoingwaves and the disaggregation of the incomingwaves
at the finest level can also be executed in a faster way by fully
utilizing the orthonormality of the spherical harmonics.

V. CONCLUSION
The SE-MLFMA is proposed and successfully implemented
to solve the EM scattering by inhomogeneous bi-anisotropic
objects. With a mixed-potential VIE representation and the
tetrahedron-based grouping scheme, rather than the com-
monly used dyadic form and face-based scheme, a consider-
able amount of core memory requirement of RPs is reduced
without compromising accuracy. In addition, elimination of
the transformations of RPs between the spherical and Carte-
sian coordinates yields a faster computation. Great flexibility
of the method is exhibited through the numerical examples.
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