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ABSTRACT Home energy management systems (HEMSs) enable residential customers to efficiently par-
ticipate in demand response programs in order to obtain optimal benefits. Traditional HEMSs only manage
household electric appliances to reduce the electricity consumption cost while the optimal scheduling of
natural gas appliances has been overlooked. Due to the increasing popularity of natural gas appliances in
modern smart homes, the electricity consumption of residential customers connected to the natural gas
network is significantly affected by the use of natural gas appliances. To consider the interaction between
electric and natural gas appliances in households, a day-ahead optimal joint scheduling model of electric and
natural gas appliances for HEMS is proposed. Firstly, all household appliances are classified into several
categories and the mathematical model of each appliance is presented. Then, a day-ahead optimal joint
scheduling model of both electric and natural gas appliances for HEMS is formulated, in which the objective
function is to minimize the household’s energy cost and the dissatisfaction level caused by the shifting,
reduction and replacement of loads in response to the time varying prices. Case studies using realistic data
indicate that the proposed model can save the total energy costs up to 30% for customers whilst ensuring
their satisfaction levels.

INDEX TERMS Home energy management system, natural gas, demand response, joint scheduling,
dissatisfaction.

A. SUPERSCRIPTS
bch Battery charging
bdch Battery discharging
dw Dishwasher
eac Electric air conditioner
el Electric light
es Electric stove
ev Electric vehicle
ewh Electric water heater
gahs Gas air heating system

The associate editor coordinating the review of this manuscript and
approving it for publication was Alexander Micallef.

gs Gas stove
gwh Gas water heater
ua Uncontrollable appliance
s Stove
wh Water heater
wm Washing machine

B. INDEXES AND SETS
t Index of timeslots
i Index of appliances
k Index of time periods
K Set of time periods
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T Set of timeslots (scheduling cycle)
T k Set of timeslots in time period k
T iwork Operation time window of appliance i

C. PARAMETERS
Cair
p The heat capacity of air

CapB Battery capacity
E ielectric Electric energy demand of appliance i
E iheat Heat energy demand of appliance i
Mair The mass of air
Pirated Rated power of appliance i
Pini,it Initial power of appliance i (without

control actions)
Pimax Maximum power of appliance i
Pimin Minimum power of appliance i
Pbchmax Maximum charging power of battery
Pbdchmax Maximum discharging power of battery
R The equivalent thermal resistance
SOCmin Minimum state of charge
SOCmax Maximum state of charge
1t Time interval
δi Operation durations of appliance i
ηi Efficiency of appliance i
θoutt Outdoor temperature at timeslot t
θ inmin Minimum indoor temperature
θ inmax Maximum indoor temperature
πe Electricity price
πg Natural gas price
πB Unit depreciation cost of a battery
priceB The cost of a household battery
nbch Maximum charging number of batteries
S i Time shifting dissatisfaction function of

appliance i
U i Preference parameters of appliance i
λenergy Coefficient of objective function 1
λdiss Coefficient of objective function 2

D. VARIABLES
Pit Optimized power of appliance i at timeslot t
X it The on/off state of appliance i at timeslot t
θ int Indoor temperature at timeslot t
QHt Heating load supplied by air heating appliance

at timeslot t
QCt Cooling load supplied by air cooling appliance

at timeslot t
SOCt State of charge at timeslot t
Pbcht Charging power of battery at timeslot t
Pbdcht Discharging power of battery at timeslot t
Xbcht Charging state of battery at timeslot t
Xbdcht Discharging state of battery at timeslot t

I. INTRODUCTION
Demand response (DR) utilizes the demand side resources
to help maintaining the reliability [1] and improving the
flexibility [2] of power systems. DR is, indeed, considered

as a promising means to facilitate the accommodation of
renewable energy in addition to some other technologies
such as wind and solar power forecasting with different time
scales (e.g. ultra-short term [3], [4], short term [5], [6]).
End-use customers participate in DR programs by changing
their electricity consumption patterns in response to dynamic
time varying electricity price or incentive signals [7]. For
example, residential customers can shift their appliance
usages from on-peak time to off-peak time to save electric-
ity cost [8]. However, frequent active responses can make
residential customers tired of tracking DR signals and their
own electricity consumption, and this can surely affect the
response deepness [9]. To address this issues, home energy
management systems (HEMSs) can be used. A HEMS is
defined as ‘‘A technology system, comprised of both hardware
and software that allows the user to monitor energy usage
and production and to manually control and/or automate the
use of energy within a household’’ [10]. It performs opti-
mal scheduling of each household appliance and distributed
generator according to an objective function (e.g. the energy
cost) predefined by customer or an aggregator and according
to some external information (e.g. weather, electricity price,
incentive signal, etc.) in order to help residential customers
to efficiently manage their energy consumption [11].

HEMSs have been widely investigated in the literature.
In [12] a multi-stage based HEMS for optimal scheduling
of home energy resource in a high penetration of rooftop
photovoltaic was proposed. In [13] a multi-objective mixed
integer nonlinear programming model was proposed to opti-
mize the energy use in a smart home, which considers a
meaningful balance between energy saving and a comfort-
able lifestyle. Similarly, in [14] a novel residential energy
management system was presented to improve the efficiency
of energy consumption which considers both the minimum
cost of energy and maximum user’s comfort level. In recent
years, an increasing number of studies incorporated the
uncertainty of information such as renewable generations,
weather conditions [15], and electricity prices into HEMS
optimization models. For example, in [16] a stochastic model
of a HEMS was proposed by considering the uncertainties
of electric vehicles availability and renewable generations.
In [17] an energy efficient scheduling algorithm was pro-
posed to arrange the household appliances, which considers
the uncertainties in household appliance operation time and
intermittent renewable generation. In addition, studies on
multi-household energy management are also receiving more
and more attention. For example, in [18] an energy manage-
ment systemwas proposed for coordinating the operation of a
cluster of distributed household prosumers by considering the
cooperative operations between multiply households, such as
power sharing and storage energy balance.

Natural gas is playing an increasingly important role in
the global energy structure. According to the statistical data
from the International Energy Agency (IEA) [19], the natural
gas will account for more than 24% of the energy structure
and surpass oil to become the second largest energy source
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in the world in 2035. In fact, for households connected to
the natural gas network, part of their electricity demands
can be replaced by natural gas. For example, a natural gas
stove can replace an electric stove to finish the cooking task.
A traditional HEMS only optimizes the consumption of a
single energy source (i.e. electricity), thus it cannot be applied
into those households with multi-energy sources. To consider
the interaction between electricity and natural gas in a multi-
carrier energy home, it is essential to explore new optimal
scheduling models.

There are few studies trying to address the issues related
to the operation of HEMS in a multi-carrier energy home.
In [20] the authors explored the multi-energy management of
a home where a combined heat and power (CHP) system is
installed, the aim of the optimization model is to minimize
the cost of electricity and natural gas. In [21] an energy
management system was proposed for integrated building
and microgrid systems. Some key modeling aspects are con-
sidered as constraints such as heat transfer, thermal dynam-
ics of sustainable residential buildings and load scheduling
potentials of household appliances. Similarly, in [22] a multi-
agent based energy management system was proposed for an
integrated energy system. In [23] the integration of electricity
and natural gas networks were studied based on a reinforce-
ment learning algorithm but the thermal load is simply mod-
eled without considering specific appliance characteristics.
In [24] an optimization-based formulation for optimal oper-
ation of residential energy hub and management of house-
hold demands was presented. In [25] a smart home energy
management model was presented for joint scheduling of
electrical and thermal appliances. However, the interactions
between different appliances are not considered.

In summary, even though there are many studies on
HEMSs, only a limited number of them make preliminary
efforts to carry out the optimal household multi-energy man-
agement. Some limitations can be found for these works.

1) Most works use CHP to model the interaction between
the natural gas and the electricity. The proposed model in
the existing literature maybe cannot work for those house-
holds without CHP. Considering the fact that there are very
few households that use CHP in China, new models that
can meet the realistic requirements in China need to be
proposed.

2) It is common for Chinese households to have appli-
ances doing the same task while being operated by different
energy sources (e.g. electric stoves and natural gas stoves).
These appliances can be substituted for each other. However,
to the best of authors’ knowledge, there is no existing work
considering the interactions between appliances supplied by
different energy sources. In other words, researches on the
optimalmulti-energymanagement at the household appliance
level are urgently needed.

3) In fact, both the operation time shifting and the power
consumption reduction can lead to the dissatisfaction of
customers. However, in most of the previous literature,
customers’ dissatisfactions caused by the re-scheduling of

appliance operation have been overlooked or incompletely
considered (i.e. only considering the dissatisfactions caused
by the time shifting or the power reduction) [26]. Moreover,
the dissatisfaction caused by the operation time shifting
is usually considered to be correlated with the deviation
between the initial and shifted operation time [27], which can-
not accurately reflect the lifestyles and habits of residential
customers in practice. For example, an office worker living
alone may prefer to use the washing machine before or after
work. Considering such a case that the HEMS shifts the
operation time of the washing machine to a period when he is
not at home such as 30 minutes later after leaving his house.
Such a scheduling can be considered to have only a little
impact on the customer if the existing methods are used to
describe the dissatisfaction, because the deviation between
the initial time and the shifted time is small. However, such
a scheduling will actually cause significant inconvenience to
the customer in practice.

To address the above issues, a novel HEMS considering
the interaction between electric and natural gas appliances is
proposed in this paper. The novel contributions of the paper
can be summarized as follows.

1) A novel appliance classification method is proposed
in this paper, which considers the replacement between the
appliances with the same function but supplied by different
energy sources (i.e. electricity and natural gas).

2) A novel day-ahead optimal joint scheduling model of
both electrical and natural gas appliances for HEMS is pro-
posed. Particularly, natural gas wall hanging furnace, a very
popular natural gas appliance in modern households, is con-
sidered and modeled, which can not only heat the house
(i.e. equivalent to an electric air conditioner) but also pro-
vide hot water (i.e. equivalent to an electric water heater),
thus providing more flexibility for home integrated energy
management.

3) A complete and realistic dissatisfaction characteriza-
tion model is proposed to describe customers’ dissatisfaction
caused by the re-scheduling of loads in response to time
varying electricity price. The proposed model not only con-
siders the dissatisfaction caused by the operation time shifting
and power consumption reduction of appliances, but also
considers customers’ preferences for different types of energy
when optimizing the cooperation of electric appliances and
natural gas appliances.

The rest of the paper is organized as follows. The math-
ematical formulations of the HEMS model are presented in
Section II. The numerical studies and discussions are pre-
sented in Section III. Section IV highlights the conclusions
of this paper.

II. MODELING OF THE PROPOSED HEMS
A. APPLIANCE CLASSIFICATION
In this paper, home appliances are classified into the fol-
lowing categories according to the appliance types and their
functions.
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FIGURE 1. Schematic diagram of the smart household.

1) Uncontrollable appliances: this type of appliances are
uncontrolled and have to be preserved without intervention.
A typical example is the refrigerator.

2) Shiftable appliances: all appliances whose operation
time can be shifted across the day, whilst achieving the
required energy use within a single day. These appliances
can be further divided into two sub-categories: i) replaceable;
ii) irreplaceable.

i) Replaceable shiftable appliances: all shiftable appliances
that can be replaced by natural gas appliances with the same
function. For example, cooking appliances such as electric
stoves can be replaced by natural gas stoves.

ii) Irreplaceable shiftable appliances: all shiftable appli-
ances which cannot be replaced by natural gas appliance. For
example, the washing machine cannot be replaced by any
natural gas appliance.

3) Reducible appliances: all appliances whose power con-
sumption can be controlled. Similarly, these appliances also
can be divided into replaceable and irreplaceable appliances.

i) Replaceable reducible appliances: all reducible appli-
ances which can be replaced by natural gas appliance. For
example, an electric air conditioner can be replaced by a
natural gas wall hanging furnace.

ii) Irreplaceable reducible appliances: all reducible appli-
ances which cannot be replaced by natural gas appliance.

4) Energy storage system: a household energy storage
system usually has two operation modes: Grid-to-Household
(G2H) and Household-to-Grid (H2G). The energy stored in
an energy storage system not only can supply the household
demand, but also can be injected into the electrical grid.
Typically, an energy storage system stores energy during

low-tariff periods (i.e. G2H mode) and sells it to the grid
during high-tariff periods to allow a cost reduction for the
customer (i.e. H2G mode).

It should be noted that the above classification is performed
according to the realistic situation. Actually, it is common for
a household in China to have appliances doing the same task
while being operated by different energy sources. For exam-
ple, a Chinese household usually has both an electric stove
and a natural gas stove. There are several factors contributing
to this phenomenon. One of the factors is that Chinese people
have different cooking demands. For example, it is more
convenient to make a soup by electric stoves. However, it is
better to stir fry with natural gas stoves.

B. OVERVIEW OF THE PROPOSED HEMS
A modern smart household is selected for analysis in this
paper. The schematic diagram of the smart household is
presented in Fig. 1. The household has the following dif-
ferent types of appliances: 1) Uncontrollable appliances: a
refrigerator, a TV, a personal computer, critical electric lights;
2) Irreplaceable shiftable appliances: a washing machine,
an electric vehicle and a dishwasher; 3) Irreplace-
able reducible appliances: non-necessary electric lights;
4) Replaceable shiftable appliances: an electric water heater,
a natural gas water heater contained in a natural gas wall
hanging furnace, an electric stove and a natural gas stove;
5) Replaceable shiftable appliances: an electric air condi-
tioner and a natural gas air heater contained in the natural
gas furnace. 6) Energy storage system: a household battery is
contained in the household.
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The overview of the proposed day-ahead scheduling model
can be illustrated as follows. The HEMS controller first
receives the external information such as the forecasted elec-
tricity price and outdoor temperature data for the upcoming
24 h period, as well as the customer settings information
such as the valid operation time windows of shiftable appli-
ances, operation durations and preference for different appli-
ances [28]. Subsequently, the HEMS aims to find the best
scheduling of all appliances across a finite time horizon of a
single day to minimize the daily energy cost whilst achieving
maximum satisfaction level [29].

C. APPLIANCES MODELING
1) MODEL OF UNCONTROLLABLE APPLIANCES
For uncontrollable appliances, neither the operation time nor
the power can be controlled. Therefore, the daily power
consumption of all uncontrollable appliances are aggregated
and modeled as a lumped load, which can be predicted from
historical load profiles.

2) MODEL OF IRREPLACEABLE SHIFTABLE APPLIANCES
The models of irreplaceable shiftable appliances are pre-
sented in Eqs. (1)-(4). In Eq.(1), Pit is the optimized power
of appliance i at timeslot t . X it is a binary variable repre-
senting the state of appliance i at timeslot t , which is 1 if
the appliance is on and is 0 if the appliance is off. Pirated
is the rated power of appliance i. Eq. (1) shows that the
optimized power consumption of each irreplaceable shiftable
appliance at each timeslot is equal to its rated power if
the appliance is on. Eq. (2) ensures the appliance to oper-
ate within a valid operation time window, where T iwork is
the pre-defined valid operation time window of appliance i.
In Eq.(3),1t is the time interval. E ielectric is the electric energy
demand of appliance i. Eq. (3) ensures that the consumption
of appliance i within a day should achieve the required elec-
tric energy demand E ielectric. Eq. (4) is used to guarantee that
the appliance operates continuously during a operation cycle
without any interruption, where δi is the operation duration
of appliance i.

Pit = X itP
i
rated , ∀i ∈ {ev,wm, dw}, ∀t ∈ T (1)

X it =

{
0, ∀i ∈ {ev,wm, dw}, ∀t /∈ T iwork
0 or 1, ∀i ∈ {ev,wm, dw}, ∀t ∈ T iwork

(2)∑
t∈T

Pit1t = E ielectric, ∀i ∈ {ev,wm, dw} (3)

t=t+δi−1∑
t=t

X it = δ
i, ∀i ∈ {ev,wm, dw}, ∃t ∈ T (4)

3) MODEL OF REPLACEABLE SHIFTABLE APPLIANCES
There are two kinds of replaceable shiftable appliances in the
studied household, i.e. stoves and water heaters. Eqs. (5)-(10)
present the models of the stoves. Stoves are used for cooking
during each time period k ∈ K,K = {morning, noon, night}
in a day. There are two different stoves in the studied

household: an electric stove and a natural gas stove. The
customers can choose one of them to finish the cooking
task during each period. The operation time of stoves can
be shifted during each time period. Eqs. (5) and (6) describe
the optimized power consumption of the electric stove and
the natural gas stove, respectively, where Pesrated and Pgsrated
represent the rated power of the electric stove and the natural
gas stove, respectively. T k is the set of timeslots during each
time period k . X sk,t is a binary variable showing the operation
state of stoves at timeslot t during each time period k . X esk
and Xgsk are also binary variables indicating whether the
appliance is chosen for cooking or not. Eq. (7) ensures the
stove to operate within a pre-defined valid time window.
Eq. (8) ensures that only one stove can be used during the
same time period. This constraint is important since it avoids
an unrealistic situation that the cooking task transfers from
one stove to another stove. Eq. (9) is used to guarantee
that the total heat energy generated by electric stoves and
natural gas stoves can meet the customer’s heating energy
demand Esk,heat , where η

es and ηgs are the energy conversion
efficiency of the electric stove and the natural gas stove.
Eq. (10) guarantees the continuity of operation process for
stoves during each time period, where δsk is the operation
duration of the stove during each time period k .

Pesk,t = X sk,tX
es
k P

es
rated , ∀t ∈ T k , ∀k ∈ K (5)

Pgsk,t = X s
k,tX

gs
k P

gs
rated , ∀t ∈ T k , ∀k ∈ K (6)

X sk,t =

{
0, ∀t /∈ T sk,work , ∀k ∈ K
0 or 1, ∀t ∈ T sk,work , ∀k ∈ K

(7)

X esk + X
gs
k = 1, ∀k ∈ K (8)∑

t∈Tk

X s
k,t
(
X esk P

es
ratedη

es
+ Xgsk P

gs
ratedη

gs)1t
= Esk,heat , ∀k ∈ K (9)

t=t+δsk−1∑
t=t

X sk,t = δ
s
k , ∃t ∈ T k , ∀k ∈ K (10)

Similar to stoves, there are two different water heaters
in the studied household: an electric water heater and a
natural gas water heater (contained in the natural gas wall
hanging furnace). Their models are respectively shown in
Eqs. (11)-(16), where ηewh and ηgwh are the energy conversion
efficiency of the electric water heater and the natural gas
water heater, respectively.

Pewht = Xwht X ewhk Pewhrated , ∀t ∈T k , ∀k ∈K (11)
Pgwht = Xwht Xgwhk Pgwhrated , ∀t ∈T k , ∀k ∈K (12)

Xwhk,t =

{
0, ∀t /∈ Twhwork , ∀k ∈ K
0 or 1, ∀t ∈ Twhwork , ∀k ∈ K

(13)∑
t∈Tk

Xwht (X ewhk Pewhratedη
ewh
+ Xgwhk Pgwhratedη

gwh)

= Ewhk,heat , ∀k ∈ K (14)
X ewhk + Xgwhk = 1, ∀k ∈ K (15)
t=t+δwhk −1∑

t=t

Xwh
k,t = δ

wh
k , ∃t ∈ T k , ∀k ∈ K (16)
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4) MODEL OF IRREPLACEABLE REDUCIBLE APPLIANCES
The non-necessary electric lights in the studied household
are considered to be a kind of irreplaceable reducible appli-
ance, whose models are presented in Eqs. (17) and (18).
Pirated is the rated power consumption of all non-necessary
lights before implementing the control actions. The power
of non-necessary lights can be modified to 0 in order to
reduce the cost of purchasing electricity but this will result
in dissatisfaction of customers.

Pit = X itP
i
rated , ∀i ∈ {el}, ∀t ∈ T (17)

X it =

{
0, ∀i ∈ {el}, ∀t /∈ T iwork
0 or 1, ∀i ∈ {el}, ∀t ∈ T iwork

(18)

5) MODEL OF REPLACEABLE REDUCIBLE APPLIANCES
Air heating appliances are typical examples of replace-
able reducible appliances. There are two air heating appli-
ances: an electric air conditioner and an natural gas air
heating system (contained in the natural gas wall hanging
furnace). The model of air heating appliances is shown in
Eqs. (19)-(23). Eq. (19) is a linearized model of the thermal
inertia of buildings [16], where θ int and θoutt are the indoor and
outdoor temperature at timeslot t . Cair

p is the heat capacity of
air, Mair is the mass of air, R is the equivalent thermal resis-
tance. Different from previous HEMSs which only use the
electric air conditioner to supply the heating energy demand
QHt at each timeslot t , the HEMS proposed in this paper can
control and optimize the power consumption of both electric
air conditioners and natural gas air heating systems to meet
the required heating load which is shown in Eq. (20), where
Peact and Pgahst are the power consumption of the electric air
conditioner and the natural gas air heating system, respec-
tively. ηeac and ηgahs are the energy conversion efficiency
of the electric air conditioner and the natural gas air heating
system, respectively. Eq. (21) limits the indoor temperature
within a certain range, where θ inmin and θ

in
max are the minimum

and maximum indoor temperature pre-defined by customers.
Eqs. (22) and (23) present the power consumption limitation
of the electric air conditioner and the gas air heating system.

θ int+1 = (1−
1

MairCair
p R

)θ int +
1

MairCair
p R

θoutt

+
QHt

MairCair
p
, ∀t ∈ T (19)

QHt = (Peact ηeac + Pgahst ηgahs)1t, ∀t ∈ T (20)

θ inmin ≤ θ
in
t ≤ θ

in
max, ∀t ∈ T (21)

Peacmin ≤ Peact ≤ P
eac
max, ∀t ∈ T (22)

Pgahsmin ≤ Pgahst ≤ pgahsmax , ∀t ∈ T (23)

It should be noted the above model can only be applied
in winter since the air cooling load in summer can be only
supplied by the electric air conditioner. The models of air
cooing appliances in summer are shown in Eqs. (24) - (27),

where QCt is the cooling energy demand.

θ int+1 = (1−
1

MairCair
p R

)θ int +
1

MairCair
p R

θoutt

+
QCt

MairCair
p

∀t ∈ T (24)

QCt = Peact ηeac1t, ∀t ∈ T (25)

θ inmin ≤ θ
in
t ≤ θ

in
max, ∀t ∈ T (26)

Peacmin ≤ Peact ≤ P
eac
max, ∀t ∈ T (27)

6) MODEL OF THE BATTERY
Eqs. (28)-(32) give the model of household batteries. Eq. (28)
describes the variations of the state of charge (SOC) of the
battery [30], where Xbcht and Xbcht are binary variables show-
ing the charging/discharging state of the battery at timeslot t ,
where Pbcht and Pbdcht are the Charging power of battery at
timeslot t and the Discharging power of battery at timeslot t .
where ηbch and ηbdch are the battery efficiency of charg-
ing and battery efficiency of discharging. Where CapB is
the Battery capacity. Eq. (29) guarantees that a household
battery cannot be charged and discharged at the same time.
Inequality (30) limits the depth of discharge and guarantees
that the battery is not overcharged. The maximum charging
and discharging power are limited in Eqs. (31) and (32).

SOCt = SOCt−1 + Xbcht
Pbcht ηbch1t
CapB

−Xbdcht
Pbdcht 1t
ηbdchCapB

, ∀t ∈ T (28)

Xbcht + X
bdch
t = 1, ∀t ∈ T (29)

SOCmin ≤ SOCt ≤ SOCmax, ∀t ∈ T (30)

0 ≤ Pbcht ηbch ≤ Pbchmax, ∀t ∈ T (31)

0 ≤
Pbdcht

ηbdch
≤ Pbdchmax , ∀t ∈ T (32)

D. OBJECTIVE FUNCTIONS
The objective functions of the proposed HEMS contain two
parts:

1) MINIMIZATION OF COST
The first objective function is to minimize the total energy
costs subject to aforementioned constraints, which is for-
mulated in Eq. (33). Total energy costs include three parts:
electricity purchasing costs, natural gas purchasing costs and
depreciation costs of the household battery. Eq. (34) indi-
cates that the electricity costs are equal to the electricity fee
consumed by all electric appliances minus the revenue from
selling electricity back to the grid. Eq. (35) gives the model
for calculating the natural gas purchasing costs. The costs of
battery depreciation due to be operated in discharging modes
are shown in Eqs. (36) and (37) [31]. πB is the depreciation
cost of battery for unit discharging power. priceB denotes
the cost of the battery. nbdch and CapB are the maximum
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discharging times and the capacity of the battery.

min costenergy = coste + costg + costB (33)

coste = πet
∑
t∈T

(Xbcht Pbcht − X
bdch
t Pbdcht + Puat

+Pevt + P
wm
t + P

dw
t + P

el
t + P

ewh
t

+Pest + P
eac
t )1t (34)

costg = πgt
∑
t∈T

(
Pgwht + Pgst + P

gah
t

)
1t (35)

costB = πB
∑
t∈T

Xbdcht Pbdcht 1t (36)

πB =
priceB

nbdchCapB
(37)

2) MINIMIZATION OF DISSATISFACTION
The second objective function is to minimize the dissatisfac-
tion level caused by the re-scheduling of appliances, as shown
in Eq. (38). A complete and realistic dissatisfaction character-
ization model is proposed to describe the dissatisfaction level
caused by the shifting, reduction and replacement of loads in
response to the time varying electricity prices.

min f diss = f dissshift + f
diss
reduce + f

diss
replace (38)

Eq. (39) presents the model for calculating the dissatis-
faction level resulting from shifting the operation time of
the appliance. S it is a score evaluating the dissatisfaction
level caused by operating shiftable appliance i at timeslot t ,
which is determined by customers according to their living
arrangement in the next day. S it ranges from 0 to 5. A larger
value of S it means a higher dissatisfaction level. X it is a binary
variable representing the state of appliance i at timeslot t .

f dissshift =
∑

i∈{ev,wm,dw,wh,s}

∑
t∈T

X it S
i
t (39)

Eq. (40) introduces the model for calculating the cus-
tomers’ dissatisfaction resulting from reducing the power of
the appliance, where Pini,elt ,Pini,eact ,Pini,gahst are the initial
power consumption of reducible appliances before imple-
menting the HEMS and Pelt , P

eac
t , Pgahst are the optimized

power consumption of reducible appliances after implement-
ing the proposed HEMS. Larger value of power reduction
means a higher dissatisfaction level for users.

f dissreduce =
∑
t∈T

(Pini,elt − Pelt )1t

+

∑
t∈T

((
Pini,eact + Pini,gahst

ηgahs

ηeac

)
−

(
Peact + P

gahs
t

ηgahs

ηeac

))
1t (40)

In the previous HEMS models, one kind of load demand
can only be supplied by one kind of energy, but for the
proposed HEMS, one kind of load demand can be supplied
provided by different energy sources. In order to consider
customers’ preferences for different types of energy when

optimizing the cooperation of electric appliances and natural
gas appliances, a novel model for calculating the dissatisfac-
tion level caused by the alternative use of different kind of
appliances is proposed as shown in Eq. (41), whereU denotes
the customers’ preference parameters. A lower value of U
means a higher preference level. The specific values of U for
different appliances are determined by customers. The deeper
the user’s preference for the appliance i, the smaller the U i,
the smaller the PiU i, that is to say, the less dissatisfied the
user will be if HEMS choosing the appliance i to meet users’
demand.

f dissreplace =
∑
t∈T

(Pewht U ewh
+ Pest U

es
+ Peact U eac)1t

+

∑
t∈T

(Pgwht Ugwh
+Pgst U

gs
+Pgahst Ugahs)1t (41)

E. OPTIMIZATION MODEL OF THE PROPOSED HEMS
The decision variables are the on/off state of shiftable appli-
ances, power consumption of reducible appliances, the charg-
ing and discharging power of the battery.

It is noted that the two objective functions given in
Eqs. (33) and (38) show different quantitative units. In order
to eliminate the impacts of quantitative units on the opti-
mization results, the two objective functions are normalized
to their maximum values. The maximum value of the first
objective function is the total energy costs without imple-
menting the HEMS. Themaximum value of the second objec-
tive function occurs when all appliances are re-scheduled to
the most unsatisfactory situation, i.e. all shiftable appliances
are shifted to the most unsatisfactory time, the power of all
reducible appliances are reduced to zero and all selected
replaceable appliance are disliked by customers. The opti-
mization problem can be reformulated as a single-objective
optimization shown in Eq. (42).

min f = λenergy
costenergy

costenergymax

+
λdiss

3

(
f dissshift

f dissshift,max

+
f dissreduce

f dissreduce,max

+
f dissreplace

f dissreplace,max

)
Subject to Eqs. (1)− (32) (42)

The above model can be efficiently solved by the existing
commercial solvers.

III. CASE STUDY
A case study is performed to verify the effectiveness of the
proposed model. The program is developed using MATLAB
R2015a. The optimization solver is Gurobi 8.1.0 [32].

A. SIMULATION SETTINGS
The day-ahead optimal scheduling of electric and natural
gas appliance on a typical day in winter is investigated in
this paper. A household in the U.S. is selected to perform
the simulation [33]. The parameters of each appliance in
the household are given in Table 1. It is assumed that there

133634 VOLUME 7, 2019



K. Li et al.: Day-Ahead Optimal Joint Scheduling Model of Electric and Natural Gas Appliances

TABLE 1. The parameters of household appliances.

TABLE 2. The parameters of the household battery.

TABLE 3. Different DR programs.

is a battery with the capacity of 5kWh in the household.
The initial SOC of the battery is set to be 0.8. The detailed
parameters of the battery are presented in Table 2.

Three different electricity tariffs are considered, includ-
ing fixed tariff, time-of-use (TOU) tariff [34] and real-time
pricing (RTP) tariff, as presented in Table 3. In fact, the
RTP price varies day by day. Therefore, a day-ahead electric-
ity price forecasting should be performed in the day-ahead
optimal scheduling. However, electricity price forecasting is
out of the scope of this paper. More details on electricity
price forecasting can be found in [35]. The price of natural
gas is set to be 0.034 $/kWh. The scheduling cycle is from
7:00 to 6:00 in the next day.

B. SIMULATION RESULTS
When there is no DR, customers tend to use their appliances
in a way to have the highest comfort level. Fig. 2 shows the

household energy consumption of electric appliances and nat-
ural gas appliances without DR program (i.e. fixed tariff). If a
TOU program is implemented, customers have motivations
to change their electricity consumption patterns to save the
cost. The proposed HEMS can help customers to efficiently
participate in the DR program by re-scheduling the appliance
usages. Fig.3 shows the household energy consumption after
implementing the proposed HEMS under the TOU program.

1) SCHEDULING OF IRREPLACEABLE SHIFTABLE
APPLIANCES
It can be seen from Fig. 2 (a) that the charging time of
the electric vehicle is during the on-peak time period if the
proposed HEMS is not employed. According to Fig. 3(a),
by employing the proposed HEMS and considering a TOU
program, the start time of electric vehicle charging is shifted
from 18:00 (i.e. on-peak time) to 20:00 (i.e. off-peak time)
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FIGURE 2. The household energy consumption of electric and natural gas appliances without the proposed HEMS under the fixed tariff
program. (a) Electric appliances. (b) Natural gas appliances.

FIGURE 3. The household energy consumption of electric and natural gas appliances after implementing the proposed HEMS under the
TOU program. (a) Electric appliances. (b) Natural gas appliances.

in order to reduce the electricity cost. Similar to the electric
vehicle, the operation time of the washing machine and the
dishwasher are shifted from 19:00 (i.e. on-peak time) to 20:00
(i.e. off-peak time).

2) SCHEDULING OF REPLACEABLE SHIFTABLE APPLIANCES
Theoretically, the operation time of replaceable shiftable
appliances can be shifted. However, it can be found by com-
paring Fig. (2) and Fig.(3) that the proposed HEMS does
not shift the operation time of water heaters and stoves. The
reasons can be illustrated as follows: the operation time of
each shiftable appliance is limited within valid timewindows.
For example, the operation time of the stove is limited to
7:00-8:00 and 18:00-19:00. Both electricity and natural gas
prices remain unchanged during these valid time windows.
In other words, shifting the operation time of water heaters
and stoves cannot reduce the total energy cost but result in
the increase of the customer’s dissatisfaction level, thus the
proposed HEMS does not shift the operation time of these
two appliances. The water heating load is still supplied by
the natural gas water heater after re-scheduling since the
natural gas price is lower than the electricity price during the
operation time of the water heater. The proposed HEMS uses
the natural gas stove to replace the electric stove to supply
the cooking related heating load at 7:00 and 11:00 due to the
lower price of natural gas, while still uses the electric stove at
17:00. This is because that the battery discharges at 17:00 and
the electricity consumed by the electric stove is supplied by

the battery without purchasing extra electricity from the grid
at 17:00. The scheduling of the battery will be analyzed in the
following section.

3) SCHEDULING OF IRREPLACEABLE REDUCIBLE
APPLIANCES
It can be observed by comparing Fig.2 (a) and Fig. 3(a) that
the proposed HEMS curtails a part of the load during the
on-peak time period (i.e. 17:00-19:00) by turning off the
non-necessary electric lights. However, the electricity cost
saving is lower than the dissatisfaction cost due to the power
consumption reduction of electric lights during off-peak time,
thus the electric lights remain on during 22:00-23:00.

4) SCHEDULING OF REPLACEABLE REDUCIBLE APPLIANCES
It can be found from Fig.2 that the air heating load is entirely
supplied by the natural gas air heating system before imple-
menting the HEMS. It can be observed from Fig.3 that the
air heating load is supplied by the natural gas air heating
system during the on-peak time and supplied by the electric
air conditioner during the remaining time after implementing
the proposed HEMS. This is because that the efficiency of
the electric air conditioner is higher than that of the natural
gas air heating system. Thus, even if the natural gas price
is lower than the electricity price during the mid-peak and
off-peak time, the proposed HEMS still uses the electric air
conditioner to replace the natural gas air heating system to
supply the air heating load. Meanwhile, the air heating load
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FIGURE 4. The SOC of the battery and the power exchange with the grid. (a). Initial performance without the proposed HEMS under fixed
tariff. (b). Optimized performance after implementing the proposed HEMS under the TOU program.

TABLE 4. Comparisons of energy costs under different DR programs.

is reduced from 14.97 million J to 12.51 million J in order to
reduce the energy costs.

5) SCHEDULING OF THE BATTERY
Fig. 4 shows the operation of the battery and the power
exchange with the grid. It can be observed from Fig. 4 that
the operation of the battery is significantly affected by the
electricity price. The battery charges during the off-peak and
mid-peak time due to the lower electricity price during these
periods. It discharges during the on-peak time, not only to
supply the demand but also to inject the power back to the
grid.

6) COMPARISON OF TOTAL ENERGY COST UNDER
DIFFERENT CASES
Fig.5 and Table 4 show the comparisons of energy costs
under different cases. It should be noted that the total energy
cost in Table 4 and Fig.5 refers to the energy bill excluding
the depreciation costs of the battery for one day. The pro-
posed HEMS can significantly reduce the total energy cost
from 18.05% up to 30.70%. TOU is the most economic DR
program for the customer after implementing the proposed
HEMS.

FIGURE 5. Comparisons of household energy costs under different cases.

C. DISCUSSIONS
1) IMPACT OF THE PROPOSED HEMS ON CUSTOMERS’
DISSATISFACTION
To analyze the impact of the proposed HEMS on customers’
dissatisfaction level and verify the effectiveness of the pro-
posed dissatisfaction characterization model, the proposed
dissatisfaction characterization model is compared with the
traditional dissatisfaction model (i.e. the model describes
customers’ dissatisfaction level according to the deviation
between the initial time and the shifted time) in this section.
Taking the electric vehicle as an example, dissatisfaction
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TABLE 5. Dissatisfaction levels of a customer on electric vehicle charging in each time period.

FIGURE 6. Comparison of scheduling schemes obtained by different dissatisfaction characterization models. (a). Obtained by the
traditional dissatisfaction model. (b). Obtained by the proposed dissatisfaction characterization model.

levels of a customer on electric vehicle charging in each
time period are given in Table 5, where a larger value of
Sevt means a higher dissatisfaction level. Sevt is equal to 0
during 18:00-20:00 since the initial electric vehicle charging
time period (i.e. the baseline condition without DR) is during
18:00-20:00.

Fig. 6 presents the comparison of scheduling schemes
obtained by different dissatisfaction characterization models.
It can be observed from Fig.6 that both of two schedul-
ing schemes delay the electric vehicle charging time after
20:00 to save energy costs because the off-peak time period
begins from 20:00. Both of two scheduling schemes show
the same energy cost. The difference is that, in the first
scheduling scheme, the electric vehicle charging time is
shifted to a time period that is close to the initial operation
time period. By contrast, the scheduling scheme obtained
by the proposed model shifts the operation time of electric
vehicle charging to 24:00-2:00+1. However, it can be seen
from Table 5 that the customer is not willing to charge
the electric vehicle during 22:00-23:00 in this case. The
traditional dissatisfaction model simply takes the deviation
between the initial and shifted operation time as the metric
to describe the customer’s dissatisfaction level but doesn’t
consider customer’s actual requirements, which may lead
to significant inconvenience to customer’s life. The pro-
posed dissatisfaction model calculates the dissatisfaction
level according to the customer’s actual requirement, which
can produce more reasonable scheduling results.

2) IMPACT OF NATURAL GAS PRICE
In order to analyze the impacts of natural gas prices and
battery capacities on the effectiveness of the proposed model,

different natural gas prices and different capacities of the bat-
tery are individually investigated. Fig. 7 presents the expected
household daily energy costs for different natural gas prices.
Both the energy costs before and after implementing the
HEMS increase with the increase of the natural gas price.
However, the growth of the cost before implementing the
HEMS is greater than that of the cost after implementing the
HEMS. Moreover, the deviation is getting larger and larger
with the increase of natural gas prices, which means the
higher the natural gas price, the more obvious the advantage
of using the HEMS. In addition, when the natural gas price
reaches a certain level, the increase of natural gas price
cannot lead to the increase of the household daily energy
cost, because all natural gas appliances have been replaced by
electric appliances, and the natural gas price no longer affect
the household daily energy cost.

FIGURE 7. The impact of the natural gas price on the household daily
energy cost.

3) IMPACT OF BATTERY CAPACITY
Fig. 8 shows the impact of the battery capacity on the house-
hold daily energy cost. It can be observed that introducing a
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FIGURE 8. The impact of battery capacity on the household daily energy
cost.

household battery can significantly reduce the daily energy
cost. In addition, the daily energy cost decreases with the
increase of the battery capacity because the batterywith larger
capacity can provide more electricity to supply the household
demand without purchasing extra electricity from the grid.

IV. CONCLUSION
A novel model for day-ahead optimal joint scheduling of
electric and natural gas appliances was proposed in this
paper, which considered the interactions between the elec-
tric and natural gas appliances. In addition, a complete and
realistic dissatisfaction characterization model was proposed
to describe the dissatisfaction level caused by the shifting,
reduction and replacement of loads in response to the time
varying electricity prices. Simulation results indicated that
the proposed model can significantly reduce the costs of
customer’s energy consumption up to 30% whilst guaran-
teeing the customer’s satisfaction level by considering the
technical limits of electric and natural gas appliances and the
household battery. Due to the impacts of various influence
factors, residential electricity consumption patterns vary for
different days and different customers [36]. Thus, the results
obtained in this paper are case-sensitive and different results
may be obtained for different datasets. It is noted that dis-
tributed renewable generations are playing important roles in
the distribution network. Particularly, more and more house-
holds are installing distributed photovoltaic systems [37].
Therefore, distributed renewable generations will be con-
sidered in the optimal scheduling model in future works.
In addition, this paper only considers price-based DR pro-
grams [38], [39] such as TOU [40]. Actually as another
important DR program, incentive-based DR program [41] is
gradually applied into the residential sector [42]. The optimal
scheduling of appliance under incentive-based DR programs
will be incorporated into the HEMS in the future.
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