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ABSTRACT Both millimeter wave (mmWave) communication and massive multiple-input multiple-output
(MIMO) are important technologies in the 5G era. To reduce the cost of a mmWave massive MIMO
system in practice, hybrid beamforming usually adopted, which however inevitability complicates both user
selection and analog beam allocation. To this end, in this paper we jointly optimize user selection and beam
allocation under a wideband frequency selective mmWave channel. To be practical, both beam collision
and inter-user interference have been taken into account. To tackle the non-convexity of the formulated
problem, we propose a ping-pong-like optimization method by using hybrid particle swarm optimization and
simulated annealing (HPS). Concretely, the joint optimization problem is divided into two sub-problems and
the near-optimal solution is approached via ping-pong iteration optimization. The Metropolis acceptance
criterion of simulated annealing algorithm is introduced to overcome the drawback of traditional particle
swarm optimization, improving global search capability of HPS algorithm. The simulation results verify the
effectiveness and flexibility of the proposed method compared with existing methods.

INDEX TERMS Millimeter wave communication, hybrid beamforming, user selection, beam allocation,
particle swarm optimization, simulated annealing.

I. INTRODUCTION
Millimeter Wave (mmWave) communication technology,
which can provide up to GHz of unauthorized bandwidth, is a
key candidate for the explosive growth of data traffic in fifth-
generation (5G) mobile communication systems. However,
a higher carrier frequency and a shorter wavelength imply
that mmWave communication may incur severe path losses
and blockages compared to sub-6 GHz frequency signals.
Massive multiple-input multiple-output (Massive MIMO) is
the main way in which mmWave communication systems
address path loss, as it offers a high beamforming gain ofmas-
sive antenna arrays [1], [2]. Although massive MIMO with
full digital beamforming can obtain optimal performance,
using the same number of radio frequency (RF) chains as
antennas results in high hardware costs and power consump-
tion. Full analog beamforming (ABF) is easy to implement
and has low hardware complexity, but it can only support a
limited rate of data transmission due to its single RF chain
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behind the transceivers. Hence, hybrid analog and digital
beamforming (HBF), as a crucial combination of massive
MIMO and mmWave communication, achieves a trade-off
between system performance and hardware complexity and
has attracted widespread attention [3]–[5].

User scheduling under HBF architectures is totally dif-
ferent from traditional user scheduling methods under sub-
6 GHz architectures [6]. Due to the hybrid architecture for
mmWave massive MIMO systems, user scheduling in HBF
becomes a joint optimization problem of user selection and
beam allocation (referred to as JUSBA in this paper), com-
pared with only user selection in the fourth generation (4G)
orthogonal frequency division multiplexing (OFDM) MIMO
communication systems, which belong to full digital beam-
forming (DBF) systems [7]. In other words, we need to
choose not only which user to schedule but also which beam
to serve the user. JUSBA, which belongs to the user-beam
mapping problem, essentially deals with the user selection
problem in the beam domain. In addition, the performance
of the scheduling method depends not only on user selection
and beam allocation algorithms but also on the design of the
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digital precoder and power allocation. In summary, the above
unfavorable factors pose serious challenges to the scheduling
problem under HBF. To the best of our knowledge, multiuser
mmWave massiveMIMO systems under an HBF architecture
have not received much attention.

A. PRIOR WORK
JUSBA is related to the user-selection-only problem and
the beam-allocation-only problem. Based on the criterion
of efficiency or fairness, there are different kinds of user
scheduling algorithms under sub-6 GHz, such as the Round-
Robin (RR) algorithm, the maximum signal to interference
plus noise ratio (SINR) based algorithm, the proportional
fairness (PF) algorithm and the semi-orthogonal user selec-
tion (SUS) algorithm, etc [8], [9]. However, the existing
scheduling schemes cannot be applied to mmWave commu-
nication systems directly, as they do not fully exploit the
features of mmWave propagation. Moreover, as the beam
domain does not exist under sub-6 GHz, the prior works
in [8], [9] just conducted the user selection without involving
the beam assignment problem.

As for the beam-allocation-only problem, in most previous
studies, the users to be scheduled are predefined [10]–[17],
the number of which is the same as the number of RF chains.
However, in a practical urban cell, the number of candidate
users in one cell is far greater than the number of RF chains
in the base station. Thus, some users must be scheduled.
Most prior works have focused on beam- allocation-only
in mmWave massive MIMO systems [10]–[17] or, more
generally, antenna selection in MIMO systems [18]. In the
maximum magnitude (MM) beam allocation algorithm [10],
several beamswith larger received power are selected for each
user. However, the MM algorithm has two disadvantages:
(i) it only considers the power of the received signal for each
user-beam pair without considering the inter-user interfer-
ence, which leads to performance losses of the achievable
sum rates, especially in the case of a high signal-to-noise ratio
(SNR); and (ii) because it does not consider beam collision
between users, different users may select the same beam so
that some RF chains are wasted and do not contribute to per-
formance improvement. In [11], an interference-aware beam
allocation algorithm was proposed to deal with inter-user
interference by classifying users into interference users and
non-interference users. Based on submodular optimization
and the matroid theory, the beam allocation problem in [12]
was formulated as a combinatorial optimization problem.
Reference [13] formulated beam allocation into an assign-
ment problem and then solved the problem with the classical
Hungarian algorithm. However, [12] and [13] neglected inter-
user interference, thus the beam allocation problem was sig-
nificantly simplified, leading to non-negligible performance
loss. In [14], the beam allocation problem was taken as a
travelling salesman problem (TSP), and a bio-inspired ant
colony optimization-based algorithm was proposed. A data-
driven analog beam selection method for mmWave sys-
tems was investigated in [15] by taking the beam selection

problem as a multiclass-classification problem and solving
it via the support vector machine (SVM) algorithm. Under
the beam division multiple access transmission scheme [16],
to maximize the sum rates, a greedy-based beam alloca-
tion method was presented. In fact, the greedy-based algo-
rithm is an important and effective way to deal with beam
allocation problems, and it can be divided into incremental
greedy [6], [12], [16], [19] and decremental greedy [17]
algorithms.

Although these previous studies [8]–[17] do not take
JUSBA into consideration, they are still instructive to the
interests of this paper. To the best of our knowledge, only
a few studies have jointly considered the allocation of
beams and the selection of users [6], [19], [20]. In [19],
the joint optimization problem was formulated as a non-
convex combinatorial optimization problem, and a DC-based
(difference of two convex functions) method and a greedy-
based method were proposed. Reference [6] exploited the
problem in the Lyapunov-drift optimization framework for
lens antenna array beam-based downlinks, and a BCU-based
(block coordinated update) algorithm and a greedy-based
algorithm were presented. With the help of Lyapunov-drift
optimization tool, [20] proposed an algorithm that conducted
user scheduling, resource allocation and analog precoder
design for broadband mmWave mimo system under hybrid
architecture. The above three methods provide an analyti-
cal way to solve combinatorial optimization problems that
belong to NP-hard problems which have no mature approach
to acquire an analytical solution. However, all of them have
extremely high complexity, which is even higher than the
exhaustive searching (ES) method. Accordingly, [6] and [19]
present heuristic greedy methods to reduce complexity after
proposing analytical methods.

The aforementioned studies have the following problems:
(1) most studies were conducted under a narrowband channel
that was assumed to be frequency flat, while in practical
mmWave communication systems with large bandwidths,
the channel is frequency selective; (2) few studies jointly
considered beam collisions and inter-user interference, and
even fewer articles jointly considered beam allocation and
user selection, which has proven to be an NP-hard problem;
and (3) to solve the JUSBA problem, the analytical solutions
have a prohibitively high complexity, while heuristic solu-
tions such as greedy-based solutions are unable to achieve
satisfactory performance.

B. CONTRIBUTION
In this paper, we aim to address the JUSBA prob-
lem for mmWave massive MIMO communication systems
under an HBF architecture. The main contributions are as
follows:
• While most previous studies have focused on narrow-
band mmWave communications, we treat the JUSBA
problem in the wideband channel. By adopting OFDM,
a wideband frequency selective channel is transformed
into several narrowband frequency flat subchannels.
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FIGURE 1. System model for hybrid multi-user massive MIMO
communication. A baseband precoder and an analog precoder construct
the HBF architecture. The millimeter-wave channel is characterized via L
paths. In the cell, there are a total of N candidate users and only U users
scheduled.

• By jointly considering beam collision and inter-user
interference and the practical scenario that transceivers
cannot obtain perfect channel state information (CSI),
the JUSBA problem is formulated as a non-convex com-
binatorial optimization problem with constraints.

• To address the combinatorial programming problem,
a ping-pong-like algorithm based on HPS is proposed.
To overcome the drawback of traditional particle swarm
optimization (PSO), the Metropolis acceptance criterion
of simulated annealing (SA) algorithm is introduced to
improve global search capability of HPS algorithm.

The remainder of this paper is organized as follows.
To investigate JUSBA,we present system and channelmodels
in Section II. By introducing the scheduling indicate func-
tion and a beam training procedure to acquire equivalent
channel information, we formulate the problem into a non-
convex combinatorial optimization problem in Section III.
In Section IV, the P-HPS algorithm is specified. In Section V,
simulation results are presented to prove the effectiveness of
the proposed algorithm.
Notation: Bold uppercase A, handwriting uppercase A,

bold lowercase a, and non-bold a denote matrix, date set, vec-
tor, and scalar value, respectively. The transpose, conjugate
transpose, and inverse ofmatrixA are denoted asAT ,AH , and
A−1, respectively.E(·) and a! are the expectation and factorial
operations, respectively. IN is the identity matrix of order N ,
and ‖A‖F denotes the Frobenius norm.

II. SYSTEM MODEL
We consider a downlink multi-user massive MIMO system
withM antennas at the base station (BS) and a single antenna
at each user terminal (UT), as shown in Figure 1. There
is a fully connected hybrid architecture BS equipped with
NRF (NRF < M ) RF chains, each of which connects with
a uniform linear array (ULA) via analog phase shifting net-
works. A baseband precoder FBB and an analog precoder FRF
construct the HBF architecture. For the wideband mmWave
channel, the analog precoder needs to be jointly designed
for all OFDM subcarriers, while the digital precoder can
be designed individually [21]. For resource limited urban
cells, there are N candidate users in the cell among which
only U users can be chosen. Note that this model can be
easily extended to a more practical case with multiple BSs,
by particularly considering the inter-BS interference [22].

In the downlink transmission, the original transmitter sig-
nal at subcarrier k(k = 1, · · · ,K ) iss[k] ∈ CU×1, which
satisfies normalization E

[
s[k]s[k]H

]
=

P
KU IU , where P is

the total transmit power. s[k] is first precoded by the baseband
precoder FBB[k] ∈ CNRF×U and then transformed to the
time domain using K -point IFFTs and adding a cyclic prefix
to symbol blocks. The resulting signal is processed by the
time domain analog precoder. It is worth mentioning that
the analog precoder remains the same for all the subcarriers,
and hence, we can denote it as FRF ∈ CM×NRF , which
remains independent with the frequency. For the purpose
of power normalization, we set ‖FRFFBB[k]‖2F = NRF .
The discrete-time transmitted complex baseband signal at the
k-th subcarrier x[k] from BS can be written as

x[k] = FRFFBB[k] s[k]. (1)

To embody the frequency selective characteristics of the
wideband mmWave channel [23], assuming that the chan-
nel has a maximum delay tap Nc and considering the com-
monly used wideband geometric channel model, the channel
between the BS and the u-th UTwith d-th (d = 0, 1, · · · ,Nc)
delay tap can be expressed as

hdu =

√
M
Lβu

L∑
l=1

αl,up(dTs − τl,u)αH (ϕl,u,M ), (2)

where L, βu, and Ts stand for the total number of paths,
path loss, and sampling period, respectively; αl,u denotes the
complex gain of the l-th path of the u-th user; τl,u is the delay
of the l-th path; p(t) is the pulse-shaping filter observed at
t; ϕl,u is the angle of departure (AoD); and α

(
ϕl,u,M

)
is

the transmit normalized array response vector. For a ULA
with M elements [19], [23], the array response vector can be
given by

αULA (ϕ,M)= (
1
√
M

[1, ejβd sinϕ, . . . , ejβd(M−1) sinϕ])T , (3)

where β = 2π/λ, λ is the signal wavelength, and d denotes
the antenna array spacing distance. Based on [21], the channel
of the u-th UT at subcarrier k can be written as

hu[k] =
Nc−1∑
d=0

hdu e
−j 2πkK d . (4)

Assuming that synchronization is perfect and that the
received signal is transformed to the frequency domain using
K -point FFT, the received signal at the u-th (u = 1, · · · ,U )
UT can be expressed as

yu[k] = hu[k] x[k]+ n[k]. (5)

where n[k] is i.i.d. n[k] ∈ CN(0, σ 2I) additive com-
plex Gaussian noise at subcarrier k . For the multi-BS case,
an interference item should be added in addition to the noise.
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FIGURE 2. Graphical representation of inter-user interference in the
JUSBA problem. The star denote users to be scheduled, while the
triangles represent interference to the scheduled users.

III. PROBLEM FORMULATION
In this section, we discuss how to formulate the JUSBA
problem in mathematical language. To solve for user selec-
tion in the beam domain, we should re-examine the pro-
cess of calculating the achievable sum rates from the
perspective of a user-beam pair. Note that FBB[k] =[
f1BB[k], . . . , f

u
BB[k], . . . , f

U
BB[k]

]
denotes the digital precoder,

while FRF =
[
f1RF , . . . , f

u
RF , . . . , f

U
RF

]
stands for the analog

precoder. Assuming that all users have equal power transmis-
sion for simplicity, we can define the equivalent channel gain
pu,b[k] between the u-th user and the b-th beam at subcarrier
k as

pu,b[k] =
P

Uσ 2

∣∣∣hu[k]fu,bRF fu,bBB [k]∣∣∣2 , (6)

where P/(Uσ 2) denotes the transmitted SNR. Moreover, we
introduce an indicator function Iu,b[k] to indicate if the beam
and user pair have been chosen, i.e., Iu,b[k] = 1 means the
u-th user is scheduled by the BS with beam b, and otherwise,
Iu,b[k] = 0. The SINR of the u-th user and the b-th beam can
be defined as

SINRu,b[k] =
Iu,b[k]pu,b[k]

1+
∑

u′∈U\u

∑
b′∈B\b

Iu′,b′ [k]pu′,b′ [k]
, (7)

where U = [1, 2, . . . ,U , . . . ,N ] is the alternative user set
and B =

[
f1RF , . . . , f

U
RF , . . . , f

B
RF

]
is the alternative beam set

in which B is the total number of beams in the codebook.
For easy understanding, in Figure 2, we use anN×Bmatrix

of equivalent channel gain where the rows stand for the user
index and the columns denote the beam index. All we need
to do is carefully select at most NRF elements in the matrix to
maximize the sum rate, and each row and column only have
at most one element to be selected (Once selected, we mark
them as stars).

When coming to the inter-user interference, without a loss
of generality, we take the red star in Figure 2 as an example.

The other yellow stars are also the users to be scheduled. Once
a user has been assigned to a beam, the side lobes of this beam
will inevitably interfere with other users. The blue triangles
denote inter-user interference to the red star.

According to [21], [24], [25], the achievable rate of the u-th
user is written as

Ru =
1
K

K∑
k=1

U∑
u=1

B∑
b=1

log2
(
1+ SINRu,b[k]

)
. (8)

Then, based on the criterion of sum-rate maximization,
we can formulate the JUSBA problem into the following
programming as

max
I

1
K

K∑
k=1

U∑
u=1

B∑
b=1

log2
(
1+ SINRu,b[k]

)
s.t. C1 : Iu,b[k] ∈ {0, 1}, ∀u ∈ U , b ∈ B

C2 :
B∑
b=1

Iu,b[k] ≤ 1, ∀u ∈ U

C3 :
U∑
u=1

Iu,b[k] ≤ 1, ∀b ∈ B

C4 :
U∑
u=1

B∑
b=1

Iu,b[k] = NRF , ∀u ∈ U , b ∈ B (9)

where I is the set of Iu,b[k]. Constraint (C1) means that
the binary link variable I can only take a value of 0 or 1.
Constraint (C2) and (C3) guarantee that each beam can
only be allocated to at most one user and each user can
only be assigned to at most one beam, respectively. As a
result, there is no beam collision between selected users.
In the HBF architecture, the simultaneous transmission of
data streams depends on the number of RF chains, and hence,
the total number of users to be scheduled must satisfy the
constraint (C4), whichmeans the user number to be scheduled
U = NRF .

IV. PROPOSED ALGORITHMS
From the above discussion, programming (9) involves non-
linear objective coupled discrete constraints in user selection
or beam allocation and a binary constraint of the indicator
function. We can confirm that (9) is a non-convex combi-
natorial optimization problem. Obviously, it is an NP-hard
problem, and no mature solution can be adopted directly.
An exhaustive searching (ES) method over all possible sub-
sets of user-beam pairs is the optimal user schedulingmethod,
but its extraordinary complexity and time requirements make
it infeasible, especially when the number of beams and users
increases. The ES method stands for the upper bound of the
sum rate in our later simulation. In this section, we first give
a brief introduction of the codebook-based beam training,
which is widely used in mmWave massive MIMO systems
to acquire equivalent CSI. Later, a ping-pong optimization
method based on the HPS method to solve the JUSBA
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problem is proposed. Finally, the details of the HPS method
are presented.

A. CODEBOOK-BASED BEAM TRAINING
Because we consider the scheduling scenario in which the
BS does not acquire perfect or statistical CSI, beam training
based on a predefined codebook between the BS and the users
is necessary to obtain the equivalent CSI. It is challenging to
acquire perfect CSI in massive MIMO systems, and hence,
a reasonable beam training scheme with a well-designed
codebook is a practical way to solve the analog precoder
FRF and the digital precoder FBB. From (7) we can see that
both power intensity and multiuser orthogonality could affect
the SINR and further affect the achievable sum rate. Under
HBF architecture, the analog precoder FRF is responsible for
improving the received SNR and reducing inter-user interfer-
ence, while the digital precoder FBB is responsible for further
eliminating residual inter-user interference. If in the analog
precoding stage, inter-user interference is greatly suppressed
or even eliminated, that is, if programming (9) is perfectly
resolved, then we can temporarily ignore the digital precoder
FBB, leading to an equivalent channel gain between the u-th
user and the b-th beam at subcarrier k as

pIE
u,b
[k] =

P
Uσ 2

∣∣∣hu[k]fu,bRF ∣∣∣2 , (10)

where IE is short for interference eliminated. Temporarily
ignoring the digital precoding stage is not without a basis.
In mmWave massive MIMO communication systems, candi-
date beams are far beyond the scheduled users, so we could
select the user-beam pairs that remain orthogonal to each
other. Once the analog precoder FRF is determined, channel
estimation and digital precoding could be conducted based on
an equivalent channel matrix. Details will be given at the end
of this section.

In this paper, the widely used beamsteering code-
book [21], [24] is adopted, and the weight matrix of the m-th
element in the n-th codebook vector can be defined as

W (m, n) = exp
(
jπm sin(

2πn
2Nbit

)
)

m = 0, 1, . . . ,M − 1;

n = 0, 1, . . . , 2Nbit − 1, (11)

where M is the antenna number, and the total number of
beams B = 2Nbit . In this paper, we set B = M . It can be seen
from the above formula that the beamsteering codebook uses
Nbit to quantify the AoDs in the angle domain [0, 2π ].

In general, the beam training scheme contains a link
establishment, sector level searching and beam level search-
ing [26]–[28]. Here, we assume that the first two steps have
been completed. In the third beam level searching step, our
proposed scheme includes two stages as follows. (1) BS
beam sweeping stage. Note that each column of FRF stands
for one beam based on the predefined codebook. The BS
sequentially sweeps all the codebook in FRF and transmits
one codebook at a time with a single RF chain. In this stage,

FIGURE 3. Proposed ping-pong optimization scheme based on HPS
algorithm for JUSBA.

all the users continue receiving an omnidirectional pattern.
(2)User feedback stage. Each user feeds back equivalent CSI
to the BS, which includes the received signal intensity and
the corresponding codebook index, while the signal intensity
stands for the equivalent channel gain pIEu,b, and the codebook
index indicates the location information of users.

Once the beamsteering codebook has been determined and
the beam training process is finished, we can easily obtain the
equivalent channel matrix of pIEu,b[k], as shown in Figure 2.
In this paper, we propose a ping-pong optimization algorithm
to reduce the calculational complexity of the JUSBA prob-
lem. The algorithm has two key components: the ping-pong
optimization problem will be described in section IV-B, and
the HPS method will be described in section IV-C.

B. PING-PONG OPTIMIZATION OF JUSBA
From the above discussion, it is difficult to analytically
and directly resolve the JUSBA problem. The DCA method
in [19] and the Lyapunov-drift optimization method in [6]
yield analytical solutions with a higher complexity and a
worse performance than those of the ES method. Notably,
it is not worth the candle, which is why a heuristic greedy
method with a much lower complexity is proposed. In this
paper, we propose a method with a similar analytical solution
performance but a lower complexity compared with themeth-
ods in [6] and [19]. Inspired by [29] and [30], we propose an
iteration scheme called ping-pong-like optimization, which
divides the JUSBA problem into two sub-problems: a user
selection problem when the beam is determined and a beam
allocation problem when the user is selected. Moreover, for
these sub-problems, much research has been completed and
can be used for reference.

The proposed ping-pong optimization scheme based on
HPS algorithm (P-HPS) is shown in Figure 3. Denote
B
opt
i (Uopt

i ) as the local optimum beam (user) set in the i-th
iteration, which is chosen from candidate set B = [f1RF , . . . ,
fURF , . . . , f

B
RF ] (U = [1, 2, . . . ,U , . . . ,N ]). The number of

elements in B
opt
j (Uopt

j ) is U , while j = 1, 2, · · · ,Niter , and
Niter is the predefined maximum iteration time. Our ping-
pong optimization scheme begins with selecting the initial
beam setB0 =

[
f1RF , f

2
RF , . . . , f

U
RF

]
, which can be an arbitrary

combination of elements in candidate beam set B. Then,
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for the fixed beam set B0, the optimal user set Uopt
1 that

pairs with B0 can be found based on the achievable sum rate
maximization. Similarly, with user set Uopt

1 fixed, we seek to
find the optimal beam set Bopt

1 . We repeat such iterations for
Niter times in a similar way as ping-pong games. During each
iteration, the HPS method is adopted to acquire the optimum
solution, which will be presented in detail in section IV-C.
In the end, outputs Bopt

Niter and U
opt
Niter are the final results. The

details of the P-HPS method are described as Algorithm 1,
which conducts user selection optimization and beam alloca-
tion optimization until the iteration time comes to the upper
limit.

Algorithm 1 P-HPS Method for JUSBA
Initialization
1 Set initial beam B

opt
t = B0, iteration time t = 0

While t < Niter do
User selection stage
2 For given B

opt
t , use the HPS algorithm to obtain U

opt
t

Beam allocation stage
3 For above Uopt

t , use the HPS algorithm again to
obtain Bopt

t in turn
4 t = t + 1.
End while
Output : Bopt

Niter , U
opt
Niter , Iu,b.

C. HPS-BASED ALGORITHM
The PSO algorithm was invented by Kennedy [31] via sim-
ulating the collective intelligence and social behavior that
exists among fishes and birds and combining it with evo-
lutionary computational methods. When solving a problem
with PSO, initial swarms iteratively explore the search space
to find solutions. By considering velocity and location in the
search space, each particle moves under both the best local
solution found by each individual particle and the best overall
solution of the swarm. When the algorithm just begins the
iteration, a large difference exists in the particle population,
and hence, the global searching ability of the PSO algorithm
is strong. After multiple iterations, the particles in the popu-
lation gradually approach the optimal value. At this moment,
the searching adjustment is small, and the searching result
cannot be guaranteed to be a global optimum, resulting in the
premature problem in the algorithm [32]. In conclusion, PSO
has several advantages including quick convergence and easy
implementation, however it often suffers from being trapped
into local optima in its search process.

In physics and metallurgy, annealing is a process in which
a material first is heated to a sufficiently high temperature
and then its temperature is gradually decreased to allow its
molecules to rearrange to an improved crystalline structure
with reduced energy. The basic idea of SA [33] algorithm
is that the current state generates a new state through the
state generation function and accepts the new state through
the Metropolis acceptance criterion [34]. The SA algorithm

consists of the search space S, the utility function U (S,R),
the temperature T , and the cooling rate ∅. The algorithm is
a robust and versatile random search algorithm that converg-
ing to global optimal solution with probability 1. However,
the disadvantage is that its convergence speed is relatively
slow especially when dealing with large search space.

Therefore, in order to combine the advantages of PSO and
SA, in this paper we adopt a hybrid heuristic optimization
called HPS algorithm. Assume the total number of particles
is Np, and each particle represents a scheduling solution, i.e.,
the combination of users or beams. The location of the i-th
particle is the U -dimensional vector xi = [xi,1, · · · , xi,U ], in
which each element xi,q(i = 1, 2, · · · ,Np, q = 1, 2, · · · ,U )
can take any integer value in the range of [1,N ] (for beam
particles, the range is [1,B]). For each particle xi, there is a
corresponding velocity vector vi = [vi,1, · · · , vi,U ] where∣∣∣vui,q∣∣∣ ≤ V u

max and
∣∣∣vbi,q∣∣∣ ≤ V b

max (in what follows, we set

V u
max = N , V b

max = B [35]). The velocity should not be an
arbitrary value because higher velocities would overshoot the
optimal solution and lower values might cause the particle
to get trapped in local optima. In the n-th iteration, the local
optimal solution for i-th particle is expressed as pi (n), while
the global optimal solution that all Np particles found is
denoted as pg (n). Then, the velocity of the next iteration is
updated as

vi(n+ 1) = ω · vi(n)+ c1ϕ1 · (pi (n)− xi(n))

+ c2ϕ2 ·
(
pg (n)− xi(n)

)
, (12)

where c1 and c2 are constants that influence the random
movement of particles around the solution region. ϕ1 and ϕ2
are two random vectors, the elements of which are uniformly
distributed in the range (0, 1), and each represents the accel-
eration of the particle towards pi (n) and pg (n), respectively.
The inertia weight ω in this paper is defined as

ω(n) = ωm − n×
ωm − ωs

nmax
, (13)

where ωm and ωs (ωm > ωs) are the starting and ending value
for ω(n), respectively. And nmax is the maximum iterations of
PSO algorithm. When the iteration begins, n close to 0 and
ω(n) is approaching ωm. And when n close to nmax , ω(n)
tends to ωs. In general, a bigger ω (n) helps PSO algorithm
searching for larger area while a smaller one enables faster
convergence to local optima. After obtaining the updated
velocity value, the temporary position for i-th particle in
(n+ 1)-th iteration is defined as

xi (n+ 1) = xi (n)+ vi (n+ 1) . (14)

xi (n+ 1) may be out of the range [1,N ] (for beam parti-
cles, the range is [1,B]), determining how to adjust the parti-
cles when they reach the border of the valid search region is a
problem.We take the reflective borders as our solution to deal
with data that are out of range [35]. With reflective borders,
the particles reflect or bounce off the borders of the search
region, much light bounces off a mirror or a ball bounces off
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a wall, i.e., the borders reflect the particle back into the search
region. Here we introduce Metropolis acceptance criterion
of SA algorithm to update local optimal solution pi (n) as
following.

pi (n+ 1) =

xi (n+ 1) , exp(
1R
Tn

) > r

pi (n) , else,
(15)

where1R = R (xi(n+ 1))−R (pi(n)) denotes the difference
of sum rate between two solutions, r is a random value in the
interval [0,1). If 1R > 0, xi (n+ 1) was accepted directly as
new local optimal solution, otherwise xi (n+ 1)was accepted
when exp(1R

/
Tn) > r . It means that better particles are

directly accepted while worse ones are also possibly accepted
with a certain probability. When the temperature is high,
the algorithm accepts the deterioration solution with a large
probability, which can enhance the global exploration ability
of the algorithm. As the temperature T decreases, the prob-
ability that the algorithm accepts the deterioration solution
gradually decreases, facilitating the algorithm to perform a
local fine search. Metropolis acceptance criterion enable the
HPS algorithm to jump away from the local optima and
finally find the global optimal solution.

The pseudo-code of the HPS-based algorithm is summa-
rized in detail as Algorithm 2. Initialize inertia weightωm and
ωs, constant c1 and c2, velocity upper bound Vmax , total par-
ticles Np, maximum iteration times nmax , initial temperature
T0, cooling rate ∅. xi (1) and vi (1) denote initial location and
velocity which are randomly selected from the searching area.
Then we can calculate achievable sum rate and update local
optimum and global optimum. Let ϑdenotes the maximum
percentage of particles whose sum rate values are the same
in the current swarm. The while loop ends when the iteration
time n comes to nmax or 90% particles have the same sum
rate value. Lines 3-5 calculate inertia weight and velocity
to update particle location. Every particle whose velocity
is out of bound should be restricted to [−Vmax ,Vmax].
Lines 6-7 update local optimum for i-th particle pi(n + 1)
and global optimal solution under current iterations pg(n+1)
using the Metropolis acceptance criterion of SA.
Lines 8-9 decrease the temperature T by cooling rate ∅ and
go on operation until the while loop comes to the end.

D. CONVERGENCE OF HPS
In this subsection, we prove the convergence of the algorithm.
First we introduce a theorem.
Theorem 1 [36]: Assume that U (S,R) denotes the utility

function of optimization problem, Si is the neighborhood of
state i. The state generation probability G and the reception
probability A of SA algorithm are respectively defined as

Gij(Tn) =

{
1/ |Si| , j ∈ Si
0, else,

(16)

∀i, j ∈ S : Aij(Tn) = min
(
1, exp

(
R(j)− R(i)

Tn

))
. (17)

Algorithm 2 HPS-Based Algorithm
Initialization
1 Let ωm, ωs, c1, c2, Vmax , nmax , Np, T0, and ∅
xi (1) , vi (1) : initial location and velocity selected from
the searching area randomly
Calculate sum rate Rxi(1)
Update pi (1) ,pg (1)

2 While n ≤ nmax or ϑ ≤ 90% do
For i = 1 toNp do

3 Compute ω via (13) and vi (n+ 1) by (12)
4 Repair out of bound particles
5 Compute xi (n+ 1) via (14)
6 Calculate sum rate Rxi(n+1)
7 Update pi(n+ 1) and pg(n+ 1) using (15)

End For
8 Decrease the temperature by ∅
9 n← n+ 1
End while

Output : pg

The Markov chain accompanying the SA algorithm is
strong ergodicity and the SA algorithm converges to the
global optimal solution with probability 1 when the following
condition is satisfied.

Tn ≥ (1+ λ) ·1/ ln(n+ n0), n = 0, 1, · · · , (18)

where constant n0 ≥ 2, λ = min
i∈S/Smax

{max
j∈S
{dij}}, Smax is the

set of local optimum, dij is the minimum transform number
from state i to state j, and 1 = max

i∈S,j∈Si
{|R(i)− R(j)|}.

Based on Theorem 1, the convergence of HPS algorithm is
proven as following.

Proof: Theorem 1 states that when the temperature con-
trol parameter satisfies the condition (18), the SA algorithm
will converge to global optimal solution with probability 1
as long as the state generation function obeys the uniform
distribution in the neighborhood of the current state, and the
acceptance of the new state is the Metropolis criterion.

According to (12), (14), ϕ1 and ϕ2 are two independent
random variables obeying uniform distribution U(0,1), hence
new state xi(n+ 1) belongs to the neighborhood of pi (n)

SPi(n) = (xi(n)+ ωvi(n),

× xi(n)+ ωvi(n)+ c1(pi(n)− xi(n))

+ c2(pg(n)− xi(n))) (19)

xi(n + 1) was generated by uniform distribution in SPi(n),
therefore (16) is satisfied. And new state accepted via (15) by
Metropolis criterion meets the requirement of (17). Hence,
as long as (18) is satisfied in HPS algorithm, the algorithm
converges to the global optimal solution with probability 1.

E. HYBRID PRECODING
After obtaining the optimal analog precoder matrix
F̃RF = B

opt
Niter for the scheduled user set U

opt
Niter at subcarrier k ,
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the equivalent channel matrix can be denoted as Heq[k] =
hu[k]F̃RF , which in essence, is the product of the channel
matrix and the analog precoder. Note that pIEu,b[k] does not
contain detailed information of channel Heq[k], which is
necessary in the digital precoding stage. To estimate Heq[k],
the typical method of pilot-assisted channel estimation is
used [37]. Assume that the estimation of Heq[k] is H̃eq[k].
The baseband digital precoder based on commonly adopted
methods such as the minimummean square error (MMSE) or
the zero-forcing (ZF) criterion can be easily determined by

FMMSE
BB

[k] = H̃H
eq
[k]
(
H̃eq[k]H̃H

eq
[k]+

KUσ 2

P
IU

)−1
FZF
BB

[k] = H̃H
eq
[k]
(
H̃eq[k]H̃H

eq
[k]
)−1

. (20)

F. COMPLEXITY ANALYSIS
Next, we provide the complexity analysis of the P-HPS
method. The comparisons include the DCA method and the
greedy algorithm in [19], the Hungarian algorithm in [13],
the MM algorithm in [10] and the ES method. The proposed
scheme has Niter iterations, in which each iteration contains
nmaxN u

p operations in the user selection stage and nmaxN b
p

operations in the beam allocation stage. Hence, the complex-
ity of the P-HPS method is O{N iternmax(N

b
p + N

u
p )}.

The DCA method transforms the non-convex combinato-
rial problem of (9) into the difference of two convex problems
through a series of approximations. Then successive convex
approximation and the interior point method are adopted to
solve the classical convex optimization problem. During the
DCA operation, there are a total of 3NBoptimization vari-
ables, � = 4NB + N + B + 1 linear constraints and K

operation times. Thus, the computational complexity of the
DCA method is O

(
K(NB)3�

)
[19], [38]. In the worst case,

the Hungarian algorithm has a complexity of O
(
B3
)
[39].

Through some improvements, such as removing the zero
columns or rows from the cost matrix, the Hungarian algo-
rithm can be sped up. However, the computational complexity
remains on the order of O

(
B3
)
.

The essence of the greedy algorithm is to acquire an incre-
mental gain of the target metric in each round of selection.
To begin, the user-beam pair that maximizes pIEu,b[k] is chosen,
and the selected sets and alternative sets are updated. Then,
the algorithm selects beam b̄ that causes the minimum inter-
user interference to the selected user set. Next, the user ū from
the alternative set that pairs with beam b̄ and results in the
maximum SINR is selected. If the user-beam pair (ū, b̄) bring
in sum rate increasing, then they are added to the selected
sets. Otherwise, the user-beam pair (ū, b̄) is added to the alter-
native sets, and iterations are repeated until NRF user-beam
pairs are selected or any alternative set is empty (see Algo-
rithm 2 in [19] for details). The computational complexity of
the greedy-based method is O

{
NB+

∑U−1
i=1 (N + B− 2i)

}
.

The MM algorithm in [10] selects the user-beam pair
that has the maximum magnitude to be scheduled. In this
paper, we adopt a simple way to avoid beam collision based

TABLE 1. Parameters of simulation.

on the original algorithm. Once the maximum element in
the equivalent channel matrix is chosen, we delete the row
and column in which the element is located. Then, we can
choose the second largest element in the deleted matrix.
This operation is repeated until all U user-beam pairs are
selected. The computational complexity of the MM algo-
rithm isO

{∑U−1
i=0 (N − i)(B− i)

}
. The ES method searches

brutely over all possible user-beam combinations, so it could
achieve optimal performance, which is regarded as the upper
bound in this paper. The computation complexity of the ES
method is O(CU

NC
U
B A

U
U ), where C

b
a =

a!
b!(a−b)! Stands for the

combination number, and Aba =
a!

(a−b)! Denotes the permuta-
tion number.

V. SIMULATION RESULTS
In this section, we demonstrate the simulation analysis results
of the proposed P-HPS optimization method. The detailed
parameters of the wideband mmWave channel in the sim-
ulation are shown in Table 1. To obtain the average sum
rate under specific SNR values, we perform 100 simulations
for each packet, in which a frame containing 1000 bits of
data is transmitted, i.e. we take the mean spectral efficiency
of 100 times simulation as our average sum rates.

As for proposed P-HPS method, we set ωm = 0.9,
ωs = 0.4, c1 = c2 = 2, V u

max = N , V b
max = B. For

temperature control parameter T we have T = T 0∅
n. T0 is

initial temperature and is defined by simulation such that
the HPS algorithm initially has at least a 90% probability of
accepting suboptimal solutions. ∅ denotes cooling rate that is
acceptable with a parameter value in the interval 0.85 ≤ ∅ ≤
0.99 [40]. In this paper, we set ∅ = 0.95. n is iteration times
which gradually reduces the temperature.

First, we investigate the achievable sum rate of the P-HPS
method. We consider the scenario that the BS is equipped
with 16 ULA antennas and 4 RF chains, while there are
10 candidate users in the cell, among which only 4 users
can be scheduled. We introduce the ES method and DCA
method for comparison, as ESmethod has proven to be global
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FIGURE 4. Complexity comparison (M = 16, N = 10, U = 4).

optimal solution that will be regarded as upper bound in our
simulation, while DCA method shows a good performance
in solving the JUSBA problem. As expected, the greater

the particle population Np and the larger maximum iteration
times nmax , the better the performance of the achievable
sum rate. And through simulation, we discover that the par-
ticle population Np has a more sensitive influence to the
scheduling results compared with maximum iteration times
nmax . For fixed ping-pong and PSO iterations (Niter = 4,
nmax = 50), in Figure 5(a), we compare the performance
versus particle population Np in 5%, 10%, and 20% of the
total candidate particles β. It can be seen that as the particle
population increases, the performance improvement is obvi-
ous. Figure 5(b) compares the performance versus iteration
number for 10, 20, and 50 ping-pong iterations Niter and
when the particle number is fixed (Niter = 4, Np = 0.2 β).
Similarly, the performance improves when the number of iter-
ations increases. Figure 5(c) demonstrates the performance
of the proposed algorithm versus the number of ping-pong
iterations Niter . Assume that SNR = 10 dB, for fixed pop-
ulations and iterations of the PSO algorithm (Np = 0.2β,
nmax = 50), the proposed algorithm converges to a stable
value after only 4 ping-pong iterations, which is very close to

FIGURE 5. The performance of the proposed algorithm with system parameters (M = 16, N = 10, U = 4).
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FIGURE 6. The performance of the proposed algorithm with system parameters (M = 64, N = 20, U = 10).

the performance of the ESmethod.When expanding the SNR
operating regions, we can obtain the performance comparison
for different scheduling schemes in details with parameters
(system parameters: M = 16, N = 10, U = 4; P-HPS
parameters:Niter = 4, nmax = 50, Np = 0.2β), as shown in
Figure 5(d). No doubt that the ESmethod performs the best in
all the considered SNR operating regions. The performance
of the proposed P-HPS method can achieve a considerable
performance close to the upper limit ES method but requires
substantially fewer computing resources, which is 21.25% of
the ES method, as shown in Figure 4. In addition, the pro-
posed P-HPS method performs better than the DCA method
with much lower complex. The DCA method introduces too
many optimization variables, which leads to a prohibitively
high complexity. The greedymethod has a better performance
than the Hungarian algorithms and MM method in all SNR
operating regions, while the latter two methods have similar
performance but the MM method achieves a relatively good
performance.

Next, we expand the simulation to the scenario with param-
eters (system parameters: M = 64, N = 20, U = 10;
P-HPS parameters: Niter = 20, nmax = 100, Np = 0.1β)
in Figure 6. With the increasing of antennas and candidate
users, the complexity of the ES method and DCA method
reach a horrible level that system cannot afford. Hence in
this scenario we just conduct performance comparison with
the greedy method, the Hungarian algorithms and the MM
method. From Figure 5(d) and Figure 6(a), we can conclude
that the proposed P-HPS algorithm performs better than the
other three methods in both simulation scenarios. The main
idea of the greedy method is to optimize two metrics (i.e.,
the received signal energy and user orthogonality) one by
one instead of jointly optimizing the two metrics, which
will inevitably cause a performance loss. The P-HPS method
conducts an exhaustive search of the population number
in each iteration and updates the particles by Metropolis

acceptance criterion. Further, the search results optimize via
ping-pong iterations. Hence, the performance of the P-HPS
method is better than that of the greedy one. The MMmethod
and the Hungarian algorithm have a similar performance;
however, the MM algorithm has a much lower complexity.
In essence, the ideas of the MM and Hungarian algorithms
are similar. They both select the user-beam pair with the
maximum receive signal power. At the same time, they both
consider beam collision in this simulation. Moreover, P-HPS
method has more flexibility due to its adjustable parameters,
which can achieve good trade-off between computational
complexity and system performance.

The stability and effectiveness of the proposed meth-
ods when SNR = 10 dB is verified in Figure 6(b),
which shows the cumulative distribution function (CDF) for
1000 iterations. The proposed method performs better than
the other three methods, the conclusion in Figure 6(a) are
confirmed from the perspective of CDF simulation. The
proposed scheme and greedy method have a higher stabil-
ity and precision compared with the MM and Hungarian
methods.

Interestingly, in the in the scenario that the BS equips with
16 antennas, the greedy method has a better performance in
all the SNR simulation region. While in the scenario with
64 antennas of the BS, the greedy method is worse than
the MM and Hungarian methods in the low SNR region;
however, the greedy method performs better than the other
two methods in the high SNR region. Due to the sparsity of
the mmWave channel and because the candidate beams are
far beyond the candidate users in massive MIMO systems,
the methods that only consider the received signal energy,
e.g., the MM and Hungarian methods, could achieve a good
performance because energy plays a leading role in low SNR.
As the SNR increases, the impact of inter-user interference
on performance is more pronounced, hence the achievable
sum rate of the MM and Hungarian methods, which ignore
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inter-user interference, hardly grow, while the greedy method
comes up in the high SNR region.

VI. CONCLUSION
In this paper, the JUSBA problem was investigated for
mmWave massive MIMO communication systems with an
HBF architecture. A practical scenario with a wideband
mmWave channel was adopted, and both beam collision and
inter-user interference were considered. After the joint opti-
mization problem was modeled as a non-convex combination
program, a P-HPS method was proposed to address the prob-
lem. The simulation results indicate good performance and
evaluate the effectiveness of the proposed algorithm. Future
work can take fairness as the optimization goal and extend to
multi-cell multi-user hybrid massive MIMO communication
systems.
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