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ABSTRACT In this paper, an iterative learning recursive least squares (ILRLS) identification method is
developed by considering a class of repetitive systems. First, considering a repetitive discrete-time system
corrupted by white noise, we present a linear time-varying data model to describe the input-output dynamic
behavior of the system in iteration domain. On this basis, two ILRLS methods are proposed taking both
white noises and colored noises into consideration. With an extensive analysis, the two proposed methods
are shown applicable to repetitive nonlinear discrete-time systems owing to their data-driven nature by which
no explicit models are required. The proposed ILRLS methods are executed pointwisely along the iteration
direction, and they can also deal with time-varying uncertainties. The results are proved and verified by
mathematical analysis along with simulations.

INDEX TERMS System identification, iterative learning recursive least squares, linear time-varying data
model, repetitive discrete-time systems, data-driven approach.

I. INTRODUCTION
System identification is of great importance in many engi-
neering fields such as in chemical process [1], [2], power
system [3], [4], biomedical system [5], [6], and so on. Many
identification methods [7]–[9] have been proposed over the
last several decades to identify time-invariant parameters of
the system. However, time-varying parameters are actually
more common in practice. Examples include the armature
resistance and flux linkage of DCmotor [10], stiffness of rota-
tional mechanical system [11], etc. Therefore, it is impera-
tive to investigate the identification problem for time-varying
parametric systems.

Time-varying system identification has also been exten-
sively studied. In [12], an improved least squares algo-
rithm is proposed for linear time-varying (LTV) systems
by adding additional terms to the parameter estimation law
and the covariance matrix update law. In [13], a recursive
least squares (RLS) method is proposed for the permanent
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magnet synchronous motor by coupling identification with
bias compensation. A robust forgetting factor based RLS
algorithm [14] is proposed for time-varying disturbances.
Some other identification methods for time-varying para-
metric systems include robust adaptive method [15], matrix
gradient algorithm [16], variable structure systems theory and
sliding-mode based identification method [17], etc. However,
the identification performance of these methods may deteri-
orate significantly if a large change or a fast-rate variation of
parameters occurs.

Many systems [18]–[20] perform repetitive operations
over fixed time intervals. For such a repetitive system,
the time-varying parameters can also vary along the itera-
tion direction. From this perspective, several identification
algorithms [21]–[27] have been proposed for repetitive sys-
tems by extending the traditional identification algorithms
from the time domain to the iteration domain. The time-
varying parameters are estimated in batch from iteration
to iteration rather than from time to time. To be spe-
cific, Reference [21] proposes an iterative identification
approach for linear continuous-time systems. An iterative
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learning RLS algorithm has been developed in [22], [23]
for time-varying autoregressive moving average exogenous
models. Later, a two-dimensional RLS algorithm is devel-
oped in [24], [25] for time-varying autoregressive exoge-
nous (ARX) model identification. In addition to the above
parametric identification methods [21]–[25] for linear repet-
itive systems, Ref. [26] proposes an iterative learning identi-
fication projection algorithm for nonlinear systems. Further,
Ref. [27] extends the results in [26] and proposes a modi-
fied iterative RLS algorithm for nonlinear high-speed train
systems where the linear parametric structures are known
a priori.

It is worth pointing out that either a mechanistic model
structure or an identification model structure must be
required in most of the existing system identification meth-
ods [12]–[17], [21]–[27], which causes difficulties in some
practical applications where these model structures are not
easily available. In addition, it is often costly to obtain a
mathematical model by using physical and/or chemical prin-
ciples because of the complicated dynamic behaviors of a
practical large-scale plant. On the other hand, simpler linear
identification methods may loss some information when lin-
earizing a nonlinear system where unmodeled dynamics and
other model-unmatching factors can occur. To deal with the
above mentioned problem in system identification, a nonlin-
ear system identification method is proposed in [28] by using
a dynamic neural network. Further, a parallel and a series-
parallel neural network identification models are proposed
in [29] with a dynamic BP algorithm for network training.
Reference [30] uses fuzzy neural modeling to identify the
nonlinear time-varying plant. However, all of these nonlinear
system identification methods [28]–[30] are only conducted
in time domain and little result has been reported for non-
linear iterative identification of repetitive systems. Another
limitation of the fuzzy neural network based nonlinear iden-
tification methods [28]–[30] is the need of proper choice of
fuzzy rules and neural networks, which might be difficult
especially when there is no available priori model knowledge
about the nonlinear systems.

Recently, the data-driven approach [31]–[36], whether for
control design or system identification, has become increas-
ingly popular because it is independent from model infor-
mation except for the use of I/O data. A data-driven hybrid
ARX and markov-chain modeling method [31] is proposed
to identify time-varying time delays. Reference [32] pro-
poses a variational Bayesian approach to identify the ARX
model. According to the I/O data statistical analysis and
the prespecified state dependent parameter model, a data-
based mechanistic modeling method [33] is proposed to
determine the model parameters. Huang and Kadali [34]
propose a data-driven approach to predictive control with-
out requiring an explicit model. However, either an ARX
model structure in [31]–[32] or the state dependent parameter
model in [33], [34] is required although they are also called
data-driven methods. Model structure is the prerequisite of
conducting system identification, while actual systems are

difficult to be captured completely by any specific model
structure.

More recently, Hou and Jin [35] propose linear data mod-
els for nonlinear systems to reformulate the input-output
mapping relationship, without needing complex mechanistic
analysis, which only describes the dynamic behavior of the
I/O data. Further, Chi et al. [36] propose iterative dynamic
linearization (IDL) for nonlinear repetitive plants mainly for
the design and analysis of control applications. However,
the application of IDL for nonlinear system identification has
not been reported up to now.

In view of the above considerations, we propose an iterative
learning RLS (ILRLS) identification method for repetitive
systems under a data-driven framework in this work. First,
an iterative linear time-varying data model is derived for
linear repetitive systems subject to white noise, and then the
linear time-varying data model based ILRLS identifications
algorithm is developed. Subsequently, its convergence is ana-
lyzed rigorously. Further, the algorithm is extended to the
case with colored noise, and the corresponding parameter
estimation convergence analysis is also provided. Moreover,
by introducing an IDL technique of Ref. [36], an iterative lin-
ear time-varying data model of nonlinear systems is derived,
and the corresponding ILRLS identifications algorithm for
nonlinear systems is designed, which follows a similar design
procedure of the ILRLS for linear systems. The main innova-
tions of our work are summarized below.

(i) The presented ILRLS method does not use any explicit
model knowledge but is data-driven using only I/O data, such
that it is applicable to both linear and nonlinear systems.
(ii) The proposed ILRLS is conducted along the iterative
direction instead of the time direction, and thus it can address
arbitrarily fast time-varying uncertainties. (iii) The iterative
linear data model used in this work virtually exists in the
computer and does not need to have a physical interpretation
such as mechanistic models.

To clearly demonstrate the basic idea, the proposedmethod
is analyzed by taking linear time-varying system as an exam-
ple, and then is extended to nonlinear systems. Mathematical
analysis and simulations verify that the presented ILRLS is
efficient in applications with ability to attenuate influences
of the disturbances.

This paper is structured as follows. Section II formulates
the problems. Section III proposes the ILRLS method. The
analysis is shown in Section IV. Section V extends the results
to a repetitive nonlinear nonaffine system. Section VI gives
simulations results, and Section VII concludes the paper.

II. PROBLEM FORMULATION
Consider a discrete-time LTV system,{

xk (t + 1) = A(t)xk (t)+ B(t)uk (t)
yk (t) = C(t)xk (t)+ vk (t),

(1)

where yk (t) ∈ R, uk (t) ∈ R, vk (t) ∈ R and xk (t) ∈ Rn

represent system outputs, inputs, white noise and state,
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respectively; t ∈ {0, 1, · · · ,N } is discrete-time sampling
instants, where N ∈ Z+ is finite; k is the iteration index;
A(t) ∈ Rn×n, B(t) ∈ Rn×1 and C(t) ∈ R1×n are system
matrixes.

As usual, the following assumption is made.
Assumption 1: System (1) has identical initial condition,

that is, xk (0) = c, ∀k , where c represents a constant vector.
According to (1), we have

yk (t + 1) = C(t + 1)
t∏
i=0

A (i) xk (0)

+C(t + 1)
t+1∑
j=1

t∏
i=j

A (i)B (j− 1)

× uk (j− 1)+ vk (t) (2)

Then, using Assumption 1, we can get

yk (t + 1)− yk−1(t + 1) = 1uTk (t)ϕ(t)+1vk (t), (3)

where uk (t) = [uk (0) , · · · , uk (t)]T , 1 is a difference oper-
ator along the direction of iteration, e.g., 1uk (t) = uk (t) −
uk−1(t), ϕ(t) = [φ0(t), · · · , φt (t)]T ∈ R(t+1), where φi(t) =

C(t + 1)
t∏

j=i+1
A(j)B (i), i ∈ {0, · · · , t}, and

t∏
i=t+1

A (i) = 1.

In this work, we define ϕ̂k (t) and ŷk (t+ 1) to represent the
estimate of parameter ϕ(t) and output yk (t + 1) respectively.
We will design an estimator to estimate time-varying param-
eter ϕ(t), so that the predicted output ŷk (t + 1) can estimate
the real output yk (t + 1). And the predicted output can be
calculated using the following equation:

ŷk (t + 1) = ŷk−1(t + 1)+1uTk (t)ϕ̂k (t) (4)

III. ALGORITHM DESIGN
From (3) and (4), we have the following equation:

Yk (t + 1) = Yk−1(t + 1)+1Uk (t)ϕ(t)+1V̄k (t) (5)

where

Yk (t + 1) = col {y1(t + 1), · · · , yk (t + 1)} ∈ Rk×1,

Yk−1(t + 1) = col {y0(t + 1), · · · , yk−1(t + 1)} ∈ Rk×1,

Uk (t) = [u1(t), · · · ,uk (t)]T ∈ Rk×(t+1),

V̄k (t) = col {v1(t), · · · , vk (t)} ∈ Rk×1,

and col {·} is a notation for the column vector. Define an
objective function,

J (ϕ(t)) = 1V̄
T
k (t)1V̄k (t) (6)

Solving (6), the least square estimation of the parameter
vector ϕ(t) can be obtained

ϕ̂k (t) =
(
1UTk (t)1Uk (t)

)−1
1UTk (t)Tk (t + 1), (7)

where Tk (t + 1) = Yk (t + 1)− Ŷk−1(t + 1) and Ŷk−1(t + 1)
is the estimate of Yk−1(t + 1).

Denote

P−1k (t) =
k∑
j=1

1uj(t)1uTj (t), (8)

ζ k (t + 1) = 1UTk (t)Tk (t + 1). (9)

Then, (7) becomes

ϕ̂k (t) = Pk (t)ζ k (t + 1) (10)

Further, one has

P−1k (t) = P−1k−1(t)+1uk (t)1u
T
k (t) (11)

Using the Matrix Inversion Lemma [35] and (11), it results

Pk (t) = Pk−1(t)−
Pk−1(t)1uk (t)1uTk (t)Pk−1(t)

1+1uTk (t)Pk−1(t)1uk (t)
(12)

Further, according to (11), one has

P−1k (t) = 1UTk (t)1Uk (t) (13)

Then, consideration of (7), (8) and (13), yields

ϕ̂k (t) = Pk (t)
[
1UTk−1(t),1uk (t)

] [Tk−1(t + 1)
ϑk (t + 1)

]
(14)

where ϑk (t + 1) = yk (t + 1)− ŷk−1(t + 1).
According to (9) and (10), Eq. (14) is further written as

ϕ̂k (t) = Pk (t)
(
P−1k−1(t)ϕ̂k−1(t)+1uk (t)ϑk (t + 1)

)
(15)

Substituting (11) into (15), yields

ϕ̂k (t) = ϕ̂k−1(t)+ Pk (t)1uk (t)

×

(
ϑk (t + 1)−1uTk (t)ϕ̂k−1(t)

)
(16)

DenotingHk (t) = Pk (t)1uk (t), according to (12), one has

Hk (t) = Pk−1(t)1uk (t)

(
1−

1uTk (t)Pk−1(t)1uk (t)

1+1uTk (t)Pk−1(t)1uk (t)

)
=

Pk−1(t)1uk (t)
1+1uTk (t)Pk−1(t)1uk (t)

(17)

In summary, the ILRLS algorithm can be presented as
follows:

ϕ̂k (t) = ϕ̂k−1(t)+Hk (t)
(
ϑk (t + 1)−1uTk (t)ϕ̂k−1(t)

)
(18)

Hk (t) =
Pk−1(t)1uk (t)

1+1uTk (t)Pk−1(t)1uk (t)
(19)

Pk (t) = Pk−1(t)−Hk (t)1uTk (t)Pk−1(t) (20)
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IV. CONVERGENCE ANALYSIS
Before we give the convergence theorem of the presented
algorithm, the other necessary assumptions and a useful prop-
erty are given.
Assumption 2:The noise in the system is white and satisfies

following conditions,

E {vk (t)|Fk−1(t)} = 0 and E
{
v2k (t)|Fk−1(t)

}
≤ σ 2(t),

where E {·} is the expectation operator; Fk (t) represents the
σ -algebra [22] formed by input and output data obtained
through k has repeated runs, and σ (t) is uniformly bounded
with respect to t .
Assumption 3 [23]: There exists a constant k0, such that the

following persistent excitation condition is established when
k ≥ k0:

α(t)I ≤
1
k

k∑
i=1

1ui(t)1uTi (t) ≤ β(t)I, a.s.

where α(t) > 0 and β(t) > 0.
Property 1 [37]: For a matrix Q and a vector x, the follow-

ing inequation is satisfied:

λmin (Q) ‖x‖2 ≤ xTQx ≤ λmax (Q) ‖x‖2,

where λmin (Q) and λmax (Q) represent the minimum and
maximum eigenvalue of the matrix Q, respectively.
To describe the results, we introduce the notation O. When

k → ∞, the sequences fk → 0 and gk → 0; fk = O (gk)
means that there are a positive constant c and a positive
integer k0 such that when k > k0,

∣∣fk/gk ∣∣ ≤ c.
The convergence of the proposed ILRLS method is shown

in the following theorem.
Theorem 1: Consider the linear system (1) under Assump-

tions 1 – 3. Applying the ILRLS method (18) – (20), one can
guarantee that the parameter estimation error converges with
the increasing number of iterations, i.e.,

∥∥ϕ̃k (t)∥∥=O
√√√√ t∑

j=0

Lk (j)

/
λmin

(
P−1k (t)

), a.s., (21)

where Lk (j) =
(
ln
∣∣∣P−1k (j)

∣∣∣)ς (j), ς (j) > 1, j = 0, 1, · · · , t ,
and ϕ̃k (t) = ϕ̂k (t)− ϕ(t).

Proof: Denote ηk (t) = ϑk (t + 1) − 1uTk (t)ϕ̂k (t), and
εk (t) = ϑk (t+1)−1uTk (t)ϕ̂k−1(t). Multiplying1uTk (t) from
both sides of (18), and then subtractingϑk (t+1) from the both
sides, one obtains

ηk (t) = εk (t)−1uTk (t)Hk (t)εk (t) (22)

Substituting Eq. (19) into Eq. (22), results in

ηk (t) =
1

1+1uTk (t)Pk−1(t)1uk (t)
εk (t) (23)

Subtracting ϕ(t) from both sides of (18), results in

ϕ̃k (t) = ϕ̃k−1(t)+Hk (t)εk (t) (24)

According to (19) and (23), Eq. (24) becomes

ϕ̃k (t) = ϕ̃k−1(t)+ Pk−1(t)1uk (t)ηk (t) (25)

Using (25) and (11), one obtains

ϕ̃Tk−1(t)P
−1
k−1(t)ϕ̃k (t) = ϕ̃

T
k (t)P

−1
k (t)ϕ̃k (t)

− ϕ̃Tk (t)1uk (t)1u
T
k (t)ϕ̃k (t)

−1uTk (t)ϕ̃k (t)ηk (t) (26)

Again, using (25), we have

ϕ̃Tk−1(t)1uk (t)ηk (t)

= ϕ̃Tk (t)1uk (t)ηk (t)

−1uTk (t)Pk−1(t)1uk (t)η
2
k (t) (27)

Denoting γk (t) = −1uTk (t)ϕ̃k (t), then according
to (26)-(27), we can get

ϕ̃Tk (t)P
−1
k (t)ϕ̃k (t)

= ϕ̃Tk−1(t)P
−1
k−1(t)ϕ̃k−1(t)+ γ

2
k (t)

− 2γk (t)ηk (t)−1uTk (t)Pk−1(t)1uk (t)η
2
k (t)

≤ ϕ̃Tk−1(t)P
−1
k−1(t)ϕ̃k−1(t)+ γ

2
k (t)− 2γk (t)ηk (t) (28)

Defining Vk (t) = ϕ̃Tk (t)P
−1
k (t)ϕ̃k (t), then from (28),

we get

Vk (t) ≤ Vk−1(t)+ βk (t)− 2vk (t)γk (t) (29)

where βk (t) = γ 2
k (t)− 2 (ηk (t)− vk (t)) γk (t).

In addition, in view of (25) and the definition of γk (t),
we can derive

−γk (t) = 1uTk (t)Pk−1(t)1uk (t) (ηk (t)− vk (t))

+1uTk (t)Pk−1(t)1uk (t)vk (t)

+ ϕ̃Tk−1(t)1uk (t) (30)

Substitute (30) into (29), gives

Vk (t) ≤ Vk−1(t)+ βk (t)+ 2Gk (t)vk (t)

+ 21uTk (t)Pk−1(t)1uk (t)v
2
k (t) (31)

where Gk (t) = ϕ̃
T
k−1(t)1uk (t)+1u

T
k (t)Pk−1(t)1uk (t)

(ηk (t)− vk (t)).
Further, denoting bk (t) = ηk (t)− vk (t)−

1+q
2 γk (t), where

q is a constant. Then βk (t) becomes

βk (t) = −2γk (t)bk (t)− qγ 2
k (t) (32)

Substituting (32) into (31), and then summing over both
sides of it, one has

t∑
j=0

Vk (j) ≤
t∑
j=0

Vk−1(j)− 2
t∑
j=0

γk (j)bk (j)

− q
t∑
j=0

γ 2
k (j)+ 2

t∑
j=0

Gk (j)vk (j)

+ 2
t∑
j=0

1uTk (j)Pk−1(j)1uk (j)v
2
k (j) (33)
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Denoting Sk (t) =
k∑

l=k0

{
2

t∑
j=0
γl(j)bl(j)

}
, according to the

positive real lemma, one has Sk (t) ≥ 0.
Then, we can further obtain

Sk (t) = Sk−1(t)+ 2
t∑
j=0

γk (j)bk (j) (34)

Denoting Mk (t) = Sk (t) +
t∑
j=0

Vk (j), then from (33)

and (34), one can derive

Mk (t) ≤ Mk−1(t)− q
t∑
j=0

γ 2
k (j)

+ 2
t∑
j=0

1uTk (j)Pk−1(j)1uk (j)v
2
k (j)

+ 2
t∑
j=0

Gk (j)vk (j) (35)

Taking expectation on both sides of (35), one gets

E {Mk (t) |Fk−1(t) }

≤ Mk−1(t)− qE


t∑
j=0

γ 2
k (j) |Fk−1(t)


+ 2

t∑
j=0

1uTk (j)Pk−1(j)1uk (j)σ
2 (36)

Denote

Dk (t) = q
k∑

l=k0

t∑
j=0

γ 2
l (j) = Dk−1(t)+ q

t∑
j=0

γ 2
k (j) (37)

Let

4k (t) = (Mk (t)+ Dk (t))

/
t∑
j=0

Lk (j) (38)

where Lk (j) =
(
ln
∣∣∣P−1k (j)

∣∣∣)ς(j), ς (j) > 1.
Taking expectation on both sides of (38), and using (36)

and (37), we get

E {4k (t) |Fk−1(t) }

=
1

t∑
j=0

Lk (j)
E {Mk (t)+ Dk (t) |Fk−1(t) }

≤ 0k (t) (Mk−1(t)+ Dk−1(t)+2k (t)) (39)

where 0k (t) = 1
t∑
j=0

Lk (j)
, and 2k (t) = 2

t∑
j=0
1uTk (j)Pk−1(j)

1uk (j)σ 2.
Further, from (38) and (39), it is yielded,

E {4k (t) |Fk−1(t) }

≤ 4k−1(t)+ 0k (t)2k (t)

− (Mk−1(t)+ Dk−1(t)) (0k−1(t)− 0k (t)) (40)

Considering the martingale convergence theorem [38],
we obtain that

lim
k→∞

Mk (t)0k (t) <∞ (41)

By virtue of the definition ofMk (t), one obtains

0k (t)
t∑
j=0

Vk (j) <∞

That is,

Vk (t) = O

 t∑
j=0

Lk (j)

 (42)

Furthermore, according to Property 1, we can finally derive
that

∥∥ϕ̃k (t)∥∥ = O

√√√√ t∑
j=0

Lk (j)

/
λmin

(
P−1k (t)

) (43)

V. ALGORITHM EXTENDED
A. EXTENSION TO THE CASE WITH COLORED NOISE
Again consider system (1), and replace vk (t) byD

(
z−1

)
vk (t),

where D
(
z−1

)
represents the polynomial of the unit back-

shift operator z−1, i.e.,

D
(
z−1

)
= 1+ d1z−1 + · · · + dnd z

−nd ,

where d1, · · · , dnd are some unknown constants, and nd is
the order of the polynomial. Thus, D

(
z−1

)
vk (t) represents a

colored noise.
Then, following the same steps from (2) - (3), we can get

yk (t + 1) = yk−1(t + 1)+1EuTk (t)Eϕ(t)+1vk (t) (44)

where Euk (t) =
[
uTk (t), vk (t − 1) , · · · , vk

(
t − dnd

)]T , and
Eϕ(t) =

[
ϕT (t), d1, · · · , dnd

]T .
Further, following the same step as (5), we can get

Yk (t + 1) = Yk−1(t + 1)+1 EUk (t)Eϕ(t)+1V̄k (t) (45)

where EUk (t) =
[
EuT1 (t), · · · , Eu

T
k (t)

]T
∈ Rk×(t+1+nd ).

Designing the same objective function as (6), and solving
it, one has

Êϕk (t) =
[
1 EU

T
k (t)1 EUk (t)

]−1
1 EU

T
k (t)Tk (t + 1) (46)

Denote EP
−1
k (t) =

k∑
j=1
1Euj(t)1EuTj (t) ∈ R

(t+1+nd )×(t+1+nd ),

and following the similar derivation process as (9) - (17),
we can obtain the ILRLS algorithm for linear systems with
colored noise as follows,

Êϕk (t) = Êϕk−1(t)+ EHk (t)
(
ϑk (t + 1)−1EuTk (t) Êϕk−1(t)

)
(47)

EHk (t) =
EPk−1(t)1Euk (t)

1+1EuTk (t)EPk−1(t)1Euk (t)
(48)

EPk (t) = EPk−1(t)− EHk (t)1EuTk (t)EPk−1(t) (49)
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It can be found that the ILRLS with colored noises has
a similar form as that of (18) - (20), but the dimenisions of
corresponding variables in the two methods are different.

B. CONVERGENCE ANALYSIS
The following is an additional assumption.
Assumption 4 [23]: 1

D(z−1)
−

1
2 is strictly positive.

The convergence property of the proposed
ILRLS (47) - (49) for the system with colored noises is given
in Theorem 2.
Theorem 2: Consider the linear system (1) with colored

noises under assumptions 1 – 4. Applying the proposed
ILRLS (47) - (49), one can guarantee that the parame-
ter estimation error converges with increasing number of
iterations, i.e.,∥∥∥ Ẽϕk (t)∥∥∥ = O

√√√√ t∑
j=0

ELk (j)

/
λmin

(
P−1k (t)

) , a.s.,

where ELk (j) =
(
ln
∣∣∣EP−1k (j)

∣∣∣)ς (j), ς (j) > 1, j = 0, 1, · · · , t ,

Ẽϕk (t) = Êϕk (t)− Eu(t).
Proof: Since the proof is similar to that of Theorem 1,

we omit it wherein for simplicity.

C. EXTENSION TO NONLINEAR SYSTEMS
Consider a nonlinear discrete-time system:

xk (t + 1) = f (xk (t), · · · , xk (t − nx), uk (t), · · · ,
uk (t − nu))

yk (t + 1) = xk (t + 1)+ vk (t)

(50)

where f (·) is a nonlinear function and is continuously differ-
entiable; nx and nu are positive integers.

Besides Assumption 1, another assumption [36] is made
on (50), as shown below.
Assumption 5: f (·) satisfies globally Lipschitz condition,

i.e., |f (χ1,u1)− f (χ2,u2)| ≤ Lχ |χ1 − χ2|+Lu ‖u1 − u2‖,
where Lχ <∞ and Lu <∞.
According to [36], one has

xk (t + 1) = g
(
xk (0),uTk (t)

)
(51)

where g (·) is a composite function of f (·) and thus
has the same properties as f (·), i.e., g (·) also satisfies
assumptions 1 and 5.

Then, the iterative dynamic linearization of (50) can be
obtained as,

xk (t + 1) = xk−1(t + 1)+1uTk (t)ϕk (t) (52)

where ϕk (t) =
∂g(·)
∂uk (t)

= [ϕk (0) , · · · , ϕk (t)]T .
Note that ϕk (t) represents the gradients of function g (·)

with respect to input uk (·). If the nonlinear system (50)
is strongly repetitive, ϕk (t) can be iteration-independent or
becomes slowly iteration-varying at least. Under this consid-
eration, ϕk (t) can be denoted as ϕ(t), and then (52) can be
rewritten as Eq. (3).

Therefore, the subsequent design and analysis of the
ILRLS algorithm for the repetitive nonlinear nonaffine
system (50) becomes the same as that for the repetitive
linear system (1). In other words, the proposed ILRLS
methods (18) - (20) as well as its extension to colored
noises (47) - (49) are both capable of identifying the repet-
itive nonlinear nonaffine systems.

VI. SIMULATION
Example 1: Consider the LTV system (1), where

A(t) =

 0.2 exp(−t
/
100) −0.6 0

0 0.5 sin t
0 0 0.7

,
B(t) =

[
0 0.3 sin t 1

]T
,

C(t) =
[
0 0.1 1+ 0.1 cos t

]
,

t ∈ {0, 1, · · · , 200}, and vk (t) is a random output noise
varying with both the iteration and time. In the simulation,
vk (t) = 0.1randn is shown in Fig. 1. The input uk (t) is a
random sequence with mean 0 and variance 1.

FIGURE 1. White noise sequence in Example 1.

Applying the proposed ILRLS method (18) - (20) and
setting ϕ̂0(t) = 0.8I, and P0(t) = 0.1I, where I repre-
sents an identity matrix, the relative parameter estimation
error, defined as εk (t) =

∥∥ϕ̂k (t)− ϕ (t)∥∥/‖ϕ(t)‖, is shown
in Fig. 2. From Fig. 2, it is clear that along the direction
of increasing iteration number, parameter estimation error
decreases. In addition, the output estimate performance of the
200th iteration is shown in Fig. 3, which illustrates that the
estimated output approaches closely to the observed one and
the presented ILRLS method is effective.

Further, define the mean square sum (MSS) of output

estimation error as δk =
100∑
t=0

(
ŷk (t)− yk (t)

)2/100 which

is shown in Fig. 4. It is seen that the output estimation error
decreases gradually along iteration direction, which indicates
the effectiveness of ILRLS method.
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FIGURE 2. Relative parameter estimation error.

FIGURE 3. The identification performance of the 200th iteration in
Example 1.

FIGURE 4. The MSS of output estimation error in Example 1.

Example 2: Consider a nonlinear nonaffine system:

yk (t + 1) =
−0.9yk (t)+ (1+ a(t)) uk (t)

1+ yk (t)2
+ vk (t)

where a(t) = 4 × round(t
/
100) + sin(t

/
100), and

t ∈ {0, 1, · · · , 500}.
In the simulation, vk (t) is taken as white noise, as shown

in Fig. 5. The input signal uk (t) is generated by uk (t) =
0.1 sin(tπ/100)+ 0.1randn.

FIGURE 5. White noise sequence in Example 2.

Applying the proposed ILRLS algorithm (18) - (20) and
selecting ϕ̂0(t) = 40I, and P0(t) = 5I, Fig. 6 shows the
observed and estimated output profiles at the 50th iteration,
which indicates that the developed method is applicable for
nonlinear systems and achieves a satisfactory identification
performance. Accordingly, the MSS of output estimation
error δ50 is shown in Fig. 7, andwe can see from Fig. 7 that the
MSS of output estimation error decreases with the increase of
iteration number.

FIGURE 6. The identification performance of the 50th iteration in
Example 2.

Further, consider the nonlinear casewith colored noise, i.e.,

yk (t + 1) =
−0.9yk (t)+ (1+ a(t)) uk (t)

1+ yk (t)2
+ D

(
z−1

)
vk (t)

where D
(
z−1

)
= 1+ 2z−1 − 0.8z−2.

Applying the proposed ILRLS algorithm (47) - (49) and
choosing Êϕ0(t) = 45I, EP0(t) = 2I, the results are given
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FIGURE 7. The MSS of output estimation error in Example 2.

FIGURE 8. The identification performance at the 50th iteration in case of
colored noises in Example 2.

FIGURE 9. The MSS of output estimation error in case of colored noises
in Example 2.

in Figs. 8 and 9. According to figures 8 - 9, one can see
that the proposed identification algorithm is also applicable
to nonlinear systems with colored noise and achieves a good
identification performance.

Example 3: To further verify the wide applicability of the
proposed method, we apply the proposed ILRLS method to
a linear motor drive system. The dynamic model of a linear
motor system [27], [39] is given as follows:

Mv̇ = u− Ffric (v)+ d (53)

Ffric (v) = Bv+3 arctan (9000v) (54)

where v(m/s), u (V ), and M
(
V/m/s2

)
denote the speed,

the control input voltage and the nominal mass of the linear
motor, respectively. d (V ) denotes the time-varying external
disturbance. B = 0.2 is an equivalent viscous friction coeffi-
cient. 3 is a time-varying amplitude.
The running time of the linear motor system is 2 seconds.

In this simulation, the sampling time is h = 0.004 (s).3(t) =
0.2 cos(50t/N ) with N = 500. The nominal mass M =

0.00088. The disturbance d(t) = 0.5randn (V ). Applying the
proposedmethod (18) - (20), the parameters are set as ϕ̂0(t) =
7I and P0(t) = 20I. TheMSS of output estimation error δ50 is
shown as the red dotted line in Fig. 10, and the Fig. 11 shows
the identification performance at the 50th iteration. It is seen
from Figs. 10 – 11 that the proposed method can achieve
a good output identification performance for the practical
linear motor system.

FIGURE 10. The MSS of output estimation error in Example 3.

For the sake of comparison, the iterative identification
method in [27] is also applied for the identification of linear
motor system (53) - (54). In [27], the linear motor system
is transformed into a discrete-time parametric one shown as
follows,

vk (t + 1) = 8T
k (t)θ (t)+ h

/
M
(
uk (t)+M

/
hvk (t)

)
(55)

where 8k (t) = [− (h/M) vk (t),− (h/M) arctan(9000vk (t)),
h/M ] and the parameters to be identified are θ (t) =
[B,3(t), d(t)]T . The iterative RLS method proposed in [27]
is given as follows:

θ̂k (t) = θ̂k−1(t)+ Pk (t)8k (t) (yk (t + 1)

−8T
k (t)θ̂k−1(t)− h/Muk (t)

)
(56)
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FIGURE 11. The identification performance at the 50th iteration in
Example 3.

+Pk (t)P−10 (t)1θ̂k−1(t)

Pk (t) = Pk−1(t)−
Pk−1(t)8k (t)8T

k (t)Pk−1(t)

1+8T
k (t)Pk−1(t)8k (t)

(57)

Applying the identification method (56) – (57) with
P0(t) = diag(10, 0.02, 0.1) and θ̂0(t) = [0.5, 0, 0.5]T ,
the simulation results are also shown in figures 10 – 11.

One can see that the traditional iterative identification
method [27] achieves a slightly better performance than the
proposed one because it utilizes the known model structure
information of the linear motor system, i.e., the linear para-
metric structure. However, the traditional iterative identifica-
tion method [27] is hard to be directly applied to a nonlinear
plant since it is difficult to transfer the plant to a linear
parametric model.

VII. CONCLUSION
Two linear time-varying data model based ILRLS identi-
fication methods are proposed for repetitive discrete-time
systems with white noises and colored noises, respectively.
The linear time-varying data model is purely data based with-
out any physical meaning and is used for the identification
algorithm design and analysis only. Both the two proposed
methods are data-driven, which can also be applied to non-
linear repetitive systems. The arbitrarily fast time-varying
uncertainties can well be addressed by using the proposed
ILRLS since the identification is done along iterations where
the time-varying uncertainties become invariant along with
the iteration direction.Mathematical analysis and simulations
both verify the theoretical results. However, the nonlinear
systems considered in this work are required to be global
Lipschitz continuous, and the ILRLS design and analysis for
local Lipschitz nonlinear systems are still an open problem,
which will be considered in our future work.
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