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ABSTRACT In this work, we develop a novel no-reference (NR) quality assessment metric for stereoscopic
images based on monocular and binocular features, motivated by visual perception properties of the human
visual system (HVS) named binocular rivalry and binocular integration. To be more specific, we first
calculate the normalized intensity feature maps of right- and left-view images through local contrast
normalization, where statistical intensity features are extracted by the histogram of the normalized intensity
featuremap to representmonocular features. Then, we compute the disparitymap of stereoscopic image, with
which we extract structure feature map of stereoscopic image based on local binary pattern (LBP).We further
extract statistical structure features and statistical depth features from structure feature map and disparity
map by histogram to represent binocular features. Finally, we adopt support vector regression (SVR) to
train the mapping function from the extracted monocular and binocular features to subjective quality scores.
Comparison experiments are conducted on four large-scale stereoscopic image databases and the results
demonstrate the promising performance of the proposed method in stereoscopic image quality assessment.

INDEX TERMS Stereoscopic images, no reference, image quality assessment, asymmetric distortion,
symmetric distortion.

I. INTRODUCTION
In recent years, the rapid development of stereoscopic imag-
ing technologies makes stereoscopic images become the
import medium of information transmission, stereoscopic
image processing techniques have become a hot topic in
both academic research and industry applications, and visual
quality estimation of stereoscopic images plays an important
role in various stereoscopic image processing techniques.
There are many researchers investigating subjective [1]–[4]
and objective quality assessment [5]–[16], [29], [30] for
stereoscopic images. Subjective quality assessment meth-
ods invite subjects to provide perceptual quality scores of
images by human ratings, while objective metrics estimate
the perceptual quality scores of images automatically. As we
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know, subjective quality evaluation is complicated and time-
consuming, and thus, it cannot be embedded in real-time sys-
tems. Objective quality assessment methods predicting image
quality automatically can be easily applied in multimedia
processing systems.

Over the past few years, there has been substantial
effort made to develop objective image quality assess-
ment (IQA) metrics. According to the available reference
information, we can classify IQA metrics into three types:
full-reference (FR), reduced-reference (RR) and no-reference
(NR) approaches. Among IQA methods, FR approaches
compute the visual quality score of a distorted image by
comparing the reference image with this distorted image,
such as structure similarity (SSIM) [17], peak signal-to-
noise ratio (PSNR), structure features and uncertaintyweight-
ing (SFUW) [18]. They require the complete reference
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FIGURE 1. Examples of asymmetric distortion and symmetric distortion of stereoscopic images [28]. (a): reference stereoscopic image; (b) and (e):
distorted stereoscopic images by additive Gaussian noise and Gaussian blur with different distortion levels;(c): distorted stereoscopic image by
additive Gaussian noise for left view and Gaussian blur for right view; (d): distorted stereoscopic image by additive Gaussian noise with the same
distortion level for both views; (f): distorted stereoscopic image is altered by additive Gaussian blur for right view and JPEG compression for left view.

information when predicting visual quality of images.
RR approaches only need partial information of the refer-
ence image when estimating the visual quality of images
[19]. Different from FR and RR approaches, NR approaches
compute the visual quality of images without any reference
information, such as natural image quality evaluator (NIQE)
[20], blind image spatial quality evaluator (BRISQUE) [21],
robust image sharpness evaluation (RISE) [22].

These aforementioned FR, RR and NR IQA approaches
are developed for 2D image quality assessment (2D-IQA).
For stereoscopic image quality prediction, one simple yet
effective solution is to apply 2D-IQA methods to right- and
left-view images directly, and then combine the predicted
visual quality scores of these two views by certain pooling
strategy. In [5], the authors pointed out that using 2D-IQA
methods to predict visual quality of stereoscopic images
would obtain poor performance in the case of asymmetric
distortion and it only works well in the case of symmetri-
cal distortion. In Fig. 1, we give some samples of stereo-
scopic images with asymmetrical and symmetrical distortion
to illustrate the difference between these two distortion types.
Asymmetrical distortion means that right- and left-view
images suffer from different kinds of distortions or different
distortion levels, while symmetrical distortion means that
right- and left-view images suffer from the same amount of
distortion [2].

As indicated by existing studies concerning binocular
perception [23]–[27], the perceptual effect of binoc-
ular rivalry occurs for presented inconsistent signals,
while binocular integration occurs for presented consis-
tent signals. As revealed by the binocular perception
mechanism [23]–[27], the binocular rivalry is a phenomenon
of visual perception from different images presented to each
eye. Only right- or left-view image is perceived by the
HVS when binocular rivalry occurs in the HVS, while both
right- and left-view images are viewed by the HVS simul-
taneously when binocular integration occurs in the HVS.
Inspired by this, we develop a novel NR perceptual quality
assessment metric of stereoscopic images based on monoc-
ular and binocular features. First, with the consideration of
different influence of variations in right- and left-view images

on visual perception, we use normalized intensity features
to measure the distortion of right- and left-view images.
The normalized intensity maps of stereoscopic images are
extracted through local contrast normalization and we extract
the statistical intensity features from normalized intensity
maps in the form of histogram. The statistical intensity
features computed from stereoscopic images are used as
monocular features. Second, we calculate the disparity map
from right- and left-view images. The statistical depth fea-
tures are extracted from the disparity map by histogram.
Meanwhile, we combine the disparity information and nor-
malized intensity information to extract structure features.
Two structure feature maps are computed corresponding to
left- and right-view images based on local binary pattern
(LBP). We extract statistical structure features by the his-
togram of the structure feature map. Here, we use statistical
depth features and statistical structure features as binocular
features in the proposed method.

The feature vector including statistical intensity, depth and
structure features is used to learn a perceptual quality estima-
tionmodel.We conduct validation experiments on large-scale
public databases and the results show that the developed
method can obtain promising performance in stereoscopic
image quality assessment over other existing FR and NR
methods. In sum, the main contributions of the proposed
method include the following aspects.
• Considering the effect of binocular rivalry that only
right- or left-view image is perceived, we extract inten-
sity features as monocular features to capture the visual
distortion of stereoscopic images simultaneously.

• In view of that binocular integration occurs when right-
and left-view images are consistent during stereoscopic
image viewing, we extract the binocular features of
stereoscopic images including structure and depth fea-
tures in the proposed method.

• Different from existing methods which employ the
parameters of fitted functions as certain features to esti-
mate image quality, we utilize the histograms of different
features to represent the monocular and binocular fea-
tures to design a novel blind IQAmetric for stereoscopic
images. Compared with feature extraction by fitting
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functions, the feature extraction in the proposed method
shows better generalization ability, since it does not have
to make the assumption that the used features obey some
specific distributions.

II. RELATED WORK
The study [31] demonstrates that the perceived depth and 2D
image quality determines the overall stereoscopic quality of
experience. Inspired by the study on binocular rivalry [24],
a ‘‘cyclopean’’ algorithm [5] was proposed for stereoscopic
image quality assessment and it performed significantly bet-
ter than the baseline IQA metrics on stereoscopic image
quality datasets including both asymmetric and symmetric
distorted stereoscopic images. It have been widely accepted
that binocular perceptual properties are of great importance
in developing effective IQA algorithms for stereoscopic
images [2], [5], [8].

Currently, considering binocular characteristics of the
HVS [2], [5], many FR quality prediction methods have been
proposed for stereoscopic images. In [28], Wang et al. pro-
posed a multi-scale IQAmethod to estimate the visual quality
of stereoscopic images inspired by binocular rivalry. The
authors proposed an divisive normalization and information
content-based pooling strategy for stereoscopic image qual-
ity assessment and developed a 2D-to-3D quality estimation
metric to compute the overall quality score of the stereoscopic
image. In [8], binocular integration behaviors are utilized as
the basis to compute the perceptual quality of stereoscopic
images. In [32], Bensalma et al. developed a binocular energy
quality metric (BEQM) with the consideration of binocular
fusion in the HVSwhere binocular energy is used to calculate
the visual distortion of stereoscopic images. In [33], Cao et al.
presented a primary visual processing mechanism (PVPM)
based model for estimating the perceptual quality of stereo-
scopic images, in which the stereoscopic image was divided
into binocular and monocular regions for quality estima-
tion. Qi et al. proposed a RR IQA method for stereoscopic
image quality assessment by using binocular visual features,
which are calculated by the entropy of right- and left-view
images [34].

Besides FR and RR IQA methods designed for perceptual
quality estimation of stereoscopic images, there have also
been some NR IQA models developed for perceptual quality
evaluation of stereoscopic images [2], [6], [35], [36]. In [2],
Chen et al. proposed a NR IQA method for stereoscopic
images by natural scene statistics (NSS) features, including
both 3D and 2D features. In [35], the authors employed
local features and disparity to construct a NR quality assess-
ment model for JPEG coded stereoscopic images. In [36],
the authors proposed a unified NR quality evaluator for mul-
tiply and singly distorted stereoscopic images by learning
binocular and monocular local perceptual primitives, which
characterize the underlying binocular and monocular local
receptive field properties of the visual cortex in response to
stereopairs.

Ryu et al. designed a perceptual quality estimation metric
for stereoscopic images by computing blockiness and blurri-
ness scores in right- and left-view images [37]. In that study,
the authors calculated blurriness by using spatial activity
and wavelet diagonal coefficients, and measured the block-
iness based on the marginal distribution of local wavelet
coefficients. The overall quality score of the stereoscopic
image is calculated by linear summation of blockiness and
blurriness scores. In [38], Zhou et al. used binocular energy
response (BER) and binocular rivalry response (BRR) of
stereoscopic images to predict stereoscopic image quality.
BER can be expressed as responses of a couple of monocular
simple cells perceived by both eyes, while BRR is a percep-
tual effect that occurs when both left and right eyes view
mismatched right- and left-view images at the same retinal
location [38]. The authors used the local magnitude pattern
and local directional pattern to extract local patterns of BER
and BRR to evaluate the perceptual quality of stereoscopic
images [38].

In [39], Zhang et al. introduced a 3-channel convolutional
neural network (CNN) model to estimate visual quality of
stereoscopic images, whose input includes the patches of
left- and right-view images and the image patch difference
between the corresponding right- and left-view images. The
authors utilized subjective quality scores of the whole stereo-
scopic image to represent the ground-truth of the input image
patches for training. Lv et al. designed a NR IQA model for
stereoscopic images based on binocular self-similarity (BS)
binocular integration (BI) [40]. In [40], the authors computed
BS by measuring the similarity of original left-view and
synthesized images, and calculated BI by the trained CNN.
In [41], Zhou et al. proposed to use sparse coding to build
stereoscopic image quality estimation model. In that study,
the authors utilized K-Nearest Neighbor (KNN) method to
construct stereoscopic image quality estimation metric based
on the assumption that stereoscopic images have similar
visual quality if they have similar quality-aware features.

Although many IQA models have been designed for
stereoscopic images, predicting the perceptual quality of
stereoscopic images without reference images is still chal-
lenging. In this paper, we propose a novel NR IQA method
for stereoscopic images by monocular and binocular features.
First, the statistical intensity features, regarded as monoc-
ular features, are extracted from both left- and right-view
images; the statistical depth and structure features, regarded
as binocular features, are computed from disparity map and
single-view images. Then the quality prediction model is
learned by support vector regression (SVR) from the feature
vector including both monocular and binocular features to
subjective quality scores.

III. PROPOSED METHOD
The framework of the proposed method is given in Fig. 2.
First, we apply local contrast normalization to stereoscopic
images which mimics the early behavior of the HVS and
remove visual information redundancy [20], [21], and the
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FIGURE 2. The framework of the proposed method.

statistical intensity features from the normalized intensity
feature maps are then extracted. Second, we estimate the
disparity map of the right- and left-view images, and fur-
ther extract the depth features from the disparity map by
histogram. Meanwhile, we combine the disparity map with
the intensity maps of right- and left-view images to compute
two corresponding structure feature maps by LBP. Finally,
SVR is adopted to train the mapping function which maps
the quality-aware features space including structure, intensity
and depth features to subjective quality scores.

A. MONOCULAR FEATURE EXTRACTION
Local contrast normalization is a local non-linear process
to log-contrast luminance, and the statistical dependence of
input visual signals can be eliminated via this operation [46].
In this work, we adopt a normalization operation [20], [21] to
right- and left-view images as:

Î(j, i) =
I(j, i)− µI

σI + C
(1)

where I(j, i) and Î(j, i) denote the pixel values at the spatial
location (j, i) in the original and normalized intensity maps,
respectively. Here,C is used to avoid instability when denom-
inator is close to zero, and we set C as 6.5025 [17]. µI and σI
denote the mean and standard deviation of the local region,
which are computed as:

µI =

Y∑
x=−X

Y∑
y=−Y

ϕ(x,y)I(j+ x, i+ y) (2)

σI =

√√√√ X∑
x=−X

Y∑
y=−Y

ϕ(x,y)[I(j+ x, i+ y)− µI]2 (3)

where {ϕ(x,y)|x = −X , . . . ,X; y = −Y , . . . ,Y } is a
unit-volume Gaussian weighting window (X and Y are set
as 3 [21]).

As introduced in [47], these normalized intensity values
follow a Gaussian distribution, and NSS features extracted

by these intensity values are widely adopted in existing
2D-IQAmetrics [48]–[52].Most existing studies of 2D image
quality assessment [20], [21] and stereoscopic image quality
assessment [1] fit a generalized Gaussian distribution (GGD)
by normalized intensity values and the fitted GGD param-
eters are used as visual perceptual features. Different from
these existing studies [1], [20], [21], we propose to employ
histogram to extract intensity features in this work. It is
advantageous to employ histogram to extract statistical fea-
tures compared with the feature representation method by
fitting functions [1], [20], [21]. The feature representation
by histogram in the proposed method shows better general-
ization ability than that by fitting functions, since we don’t
have to make the assumption that the features obey some
specific distributions. Here, we obtain the intensity features
with 15 elements: {h1,h2, · · · h15} by setting the number of
histogram bins as 15. The histogram of normalized intensity
values is computed below:

hb =
1
HW

B∑
b=1

H∑
j=1

W∑
i=1

�(|Î(j, i)|,G(b)) (4)

�(p, q) =

{
1, p ∈ q
0, otherwise

(5)

where b represents the bin index of the histogram; G(b) is the
interval of the b-th bin;W and H denote the width and height
of the image, respectively.

In Fig. 3, we provide some visual samples of distorted
stereoscopic images degraded by different distortion types.
As shown in Fig. 3, due to the presence of visual distortion,
the calculated feature maps are altered and different distor-
tion levels can be clearly observed by feature maps. From
Fig. 3 (e) and (n), we can observe that different distortion
types (white noise and Gaussian blur) destroy the image
content in different ways, which can be also reflected by
characteristics of feature distributions. Thus, the statistical
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FIGURE 3. The visual examples of stereoscopic images and their corresponding feature maps. (a): a reference stereopair; (b) and (c): distorted
stereopairs degraded by white noise symmetrically and asymmetrically, respectively; (d)(e)(f) and (g)(h)(i): the corresponding normalized intensity
maps and distributions for stereoscopic images in (a), (b) and (c); (j): the reference stereoscopic image pair; (k) and (l): distorted stereoscopic images
degraded by Gaussian blur symmetrically and asymmetrically, respectively; (m)(n)(o) and (p)(q)(r): the corresponding normalized intensity maps and
distributions for stereoscopic images in (j), (k) and (l).

intensity features can effectively capture the visual distortion
of single-view in stereoscopic images.

B. BINOCULAR FEATURE EXTRACTION
In addition to monocular features, we extract binocular fea-
tures including structure and depth features. Here, we first
compute the disparitymap denoted as d by SSIMbased stereo
algorithm [5] between the right- and left-view images, and
extract structure features by integrating disparity map into
right- and left-view images.

The structure features are extracted as shown in Fig. 4,
where l(j, i) and d(j, i) denote values at location (j, i) in the
intensity map of left-view image and disparity map, respec-
tively. In order to obtain the structure feature of each pixel,
we calculate the Euclidean distance between the center pixel
and its neighboring pixels:

Dk =
√
(l(j′, i′)− l(j, i))2 + (d(j′, i′)− d(j, i))2 (6)

Dm =
1
8

7∑
k=0

Dk (7)

where j′ and i′ represent spatial indices and their values are
in the range of (j − 1, j + 1) and (i − 1, i + 1), respectively;
Dk denotes the distance between feature descriptors of the
k-th neighboring pixel (k ∈ {0, 1 . . . , 7}) and the centre
pixel {l(j, i), d(j, i)}; Dm represents the mean value of the set
{D0,D1, . . . ,D7} in a local patch.
As indicated in [53], LBP can be used to capture structure

information effectively, and it has been used in the field of
image quality evaluation [54]–[60]. Here, we use LBP to
estimate the variation of structure information of left-view
image from the angle of stereo after the transformation by
Eqs. (6) and (7) as below.

PK ,R =
K−1∑
k=0

t(Dk − Dm)2K−1−k (8)
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FIGURE 4. The example of combining left-view image with disparity map to extract the corresponding
structure feature.

t(Dk − Dm) =


1, (Dk − Dm) ≥ 0

0, (Dk − Dm) < 0

(9)

where R and K denote the radius of the neighborhood and
the number of neighbors, respectively; (D0,D1, . . . ,D(K−1))
represents the feature vector which is composed of K cir-
cularly symmetric neighborhood. As suggested in the study
[57], LBP is effective in capturing the structure information
when R and K are set to 1 and 8, respectively. When K
increases,Rwould be larger and it would result in the increase
of feature dimension. If R increases and K keeps a small
value, the sampling points is insufficient and it makes the
feature description unable to capture local structure features.
Thus, we setK = 8 and R = 1 and a feature map are obtained
by incorporating the left-view image with disparity map
based on the aforementioned operations in Eqs. (8) and (9).
Similarly, we can obtain another feature map by combining
the disparity map and the intensity map of right-view image
through the same operation. The statistical structure features
of the right- and left-view images are extracted in the form of
histogram as defined in Eqs. (4) and (5).

Meanwhile, we also extract the depth feature to capture the
quality degradation of stereoscopic images. In the study [2],
with the normalization operation defined in Eq. (1), the dis-
tribution of disparity can be modeled by a GGD and the
parameters of GGD are used as quality-aware features. Here,
different from the depth feature extraction method in [2],
we first adopt the normalization operation defined in Eq. (1)
to process the disparity map to obtain the normalized dispar-
ity map. Then, the histogram defined in Eqs. (4) and (5) is
used to compute statistical depth features and the number of
histogram bins is also set to 15.

Fig. 5 shows some original and distorted stereopairs, and
their corresponding structure and depth feature distributions.
By comparing the binocular feature distributions of the origi-
nal and distorted stereopairs, it can be seen that the shapes of
these distributions are altered more in the case of noise distor-
tion than these in other distortion types, which suggests that
the influence of distortion on binocular perception (fusion

and rivalry) is more sensitive. This is consistent with previous
findings on the role of noise contaminations with stereoscopic
image quality [28] and stereoscopic depth quality [45]. With
respect to depth feature distributions, it can be seen that a
larger dynamic range of the distributions exists for noisy
images than that for blurry images. This trend, i.e., the shapes
of feature distribution change (large and narrow range),
is consistent with the distortion type dependency found in pre-
vious subjective quality assessment studies [28], [45] that the
influence of noise and blur on stereoscopic image quality are
significantly different. Thus, the extracted binocular features,
i.e., structure and depth features, can be used as effective
features to represent influence of different distortion types on
the perceived stereoscopic image and depth quality.

C. QUALITY PREDICTION
In this work, we extract statistical intensity features, structure
features and depth features by employing the histogram. The
bin number is set to 15. Thus, we can obtain 30 features
for intensity information from right- and left-view images,
30 features for structure information from right- and left-view
images, and 15 features for depth information of a stereo-
scopic image. In total, we can obtain 75 features for a dis-
torted stereoscopic image pair. A regression model is used to
learn a mapping function from feature space to quality scores.
In our implementation, SVR with radial basis function (RBF)
kernel [61] is used as the mapping tool for feature pooling
from the feature vector to quality measure. The standard form
of SVR with the parameters α and β is given by:

min
w,b,δ,δ′

1
2
wTw+ α

S∑
s=1

(δs + δ′s) (10)

subject to wTφ(hs)+ b− ys ≤ β + δs (11)

ys − wTφ(hs)− b ≤ β + δ′s (12)

δs, δ′s ≥ 0, s = 1, . . . , S. (13)

where α > 0 and β > 0; K (hi, hj) = φ(hi)Tφ(hj)
denotes the kernel function and RBF kernel K (hi, hj) =
exp(−χ

∥∥hi − hj∥∥2). The parameters α and χ are set through
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FIGURE 5. Original and distorted stereopairs, and their corresponding structure and depth feature distributions. (a): original pristine stereopair; (b):
asymmetric distortion (original + bur); (c): symmetric distortion (blur + blur); (j): mixed distortion (blur + noise); (k): asymmetric distortion (original
+ noise); (l): symmetric distortion (noise + noise). (d), (e), (f), (m), (n), (o) and (g), (h), (i), (p), (q), (r) are their corresponding structure and depth
feature distributions.

cross validation on the training data. We set χ to 1 which is
fixed for all databases.

In the experiment, we select 80% images with the cor-
responding subjective scores randomly in each database for
training and the remaining images of the same database are
used for testing. This operation is repeated for 1000 times for
each database where the training image and testing image sets
change in repeated experiments, and the median performance
[20], [21] is reported as the final result.

IV. EXPERIMENTAL RESULTS
A. STEREOSCOPIC IMAGE QUALITY DATABASES
We utilize four publicly available stereoscopic image quality
databases to evaluate the proposed NR 3D-IQA algorithm,

includingWaterloo-IVC 3D Image Quality Database (Phase I
and Phase II) [28] and LIVE 3D Image Quality Database
(Phase I and Phase II) [1], [2], [5]. Please note that
Waterloo-IVC Phase I/II and LIVE Phase II contain stereo-
scopic images with symmetrical and asymmetrical distortion,
while LIVE Phase I only contains stereoscopic images with
symmetrical distortion.

1) Waterloo IVC 3D PHASE I DATABASE [64]
There are 78 distorted single-view images and 330 distorted
stereoscopic images in Waterloo IVC 3D Phase I Database.
Three types of distortion with four levels of distortion, includ-
ing Gaussian blur (GB), additive white Gaussian noise con-
tamination (GN) and JPEG, are applied in single-view images
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TABLE 1. Detailed information of stereoscoptic image quality databases.

of 6 pristine stereoscopic image pairs to produce the dis-
torted images. This database contains stereoscopic images
with symmetrical and asymmetrical distortion.

2) Waterloo IVC 3D PHASE II DATABASE [64]
Compared to Waterloo IVC 3D Phase I Database, there are
more diverse image content in Waterloo IVC 3D Phase II
Database. This database provides 130 distorted single-view
images and 460 distorted stereoscopic images in total. Similar
to Waterloo IVC 3D Phase I Database, the distorted images
are generated by introducing the same types and levels of
distortion in single-view images from 10 pristine stereoscopic
image pairs. Both symmetrically and asymmetrically dis-
torted stereoscopic images are included in this database.

3) LIVE 3D IQA PHASE I DATABASE [1]
This database consists of 20 reference images and 365 dis-
torted images, which are degraded symmetrically by five
common types of distortion, includingGB,white noise (WN),
Rayleigh fast-fading channel simulations (FF), JPEG2000
(JP2K) and JPEG. GB is used to create 45 distorted images,
and the remaining types of distortion are used to generate
80 distorted images for each type of distortion. The cor-
responding subjective scores are available in the form of
DMOS. Given a stereoscopic image, a higher DMOS repre-
sents a worse visual quality.

4) LIVE 3D IQA PHASE II DATABASE [2], [5]
Different from LIVE 3D IQA Phase I Database, LIVE 3D
IQA Phase II Database consists of distorted stereoscopic
images with asymmetrical and symmetrical distortion. The
same types of distortion as LIVE 3D IQA Phase I Database
are utilized to generate distorted images and each type of dis-
tortion produces 72 distorted stereoscopic images. There are a
total of 120 symmetrically distorted and 240 asymmetrically
distorted stereoscopic images in this database.

The detailed information of these databases is given
in Table 1. As shown in Table 1, the spatial resolutions of
images in Waterloo IVC 3D Phase I Database are different
and the resolutions of images in Waterloo IVC 3D Phase II
Database are the same; while the spatial resolutions of images
in LIVE 3D IQAPhase I Database and LIVE 3D IQAPhase II
Database are the same. The subjective scores for all these
databases are not in the same scale.We extract the features for
each stereoscopic image in gray-scale. When extracting fea-
tures, we first convert original colorful stereoscopic images

into gray-scale images. For each gray-scale image, each pixel
is represented by 8 bits.

B. PERFORMANCE EVALUATION
To evaluate the performance of the algorithm, we use two
performance evaluation metrics, including Pearson Linear
Correlation Coefficient (PLCC) and Spearman Rank-order
Correlation Coefficient (SRCC) [65]. PLCC and SRCC are
correlation coefficients which measure the prediction accu-
racy of quality prediction metrics. Generally, the higher
SRCC and PLCC values mean that the performance of the
objective evaluation method is better. Given N images with
subjective and objective scores, PLCC and SRCC can be
calculated as follows.

PLCC =

∑N
i=1(vi − v)(si − s)√∑N

i=1(vi − v) ∗
∑N

i=1(si − s)
(14)

SRCC = 1−
6
∑N

i=1 ε
2
i

N 3 − N
(15)

where si and vi are subjective and objective scores of the
i-th image; s and v represent the mean values of subjective
and objective scores, respectively; εi denotes the difference
between the i-th image’s ranks in subjective and objective
results.

For fair performance comparison, the Video Quality
Experts Group (VQEG) recommends reducing the nonlin-
earity of estimated image quality scores during performance
evaluation [65]. Here, a five-parameter logistic regression
function which is employed for nonlinearly regressing the
quality scores into a common score space is defined as fol-
lows [65]:

F(x) = 21(
1
2
−

1
exp(22(x −23))+ 1

)+24x +25 (16)

where (21, . . . ,25) are fitted parameters via using objective
and subjective quality scores.

C. EXPERIMENT COMPARISONS AND DISCUSSIONS
We compare the proposed method with state-of-the-art
2D and 3D IQA models, including PSNR, MS-SSIM [5],
SSIM [17], IDW-SSIM [28], Chen [2], S3D-BLIND [9],
Zhou [38], Zhang [39], Shao [62], and Shao [63]. Among
these compared metrics, SSIM [17] and PSNR are designed
for 2D image quality assessment, while the rest methods are
designed for stereoscopic image quality assessment. PLCC
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TABLE 2. Experimental results on LIVE 3D IQA DataBases, * means that
the performance of the proposed is significantly different from that of the
existing method (multi-comparison test, p<0.05). The best and
second-best performance are denoted by boldface.

and SRCC are used to evaluated to the performance of IQA
methods.

In Table 2, we provide the performance of different IQA
methods on LIVE 3D image quality Phase I and Phase II.
As shown in Table 2, the quality prediction of the proposed
NR method on both Phase I and Phase II is the best in terms
of PLCC. The SRCC value of Zhang is higher than that
of the proposed method due to its use of deep network for
learning deep features. The consistent results of the proposed
method from Phase I (including symmetric distortion only)
and Phase II (including both symmetric and asymmetric dis-
tortion) indicate that the designed monocular and binocular
features can reasonably account for the relationship between
the binocular rivalry and binocular integration.

The experimental results on Waterloo IVC image quality
databases are shown in Table 3. Please note that only experi-
mental results of FR 2D-IQAmethods PSNR and SSIM [17],
and FR 3D-IQA methods MS-SSIM [5] and IDW-SSIM [28]
are shown in Table 3, since we cannot get the source code of
other related studies. From this table, the proposed method

TABLE 3. Experimental results on the Waterloo IVC 3D IQA databases, *
means that the performance of the proposed method is significantly
different from that of the existing method (multi-comparison test,
p<0.05). The best performance is denoted by boldface.

outperforms other metrics on both Phase I and Phase II
database in terms of PLCC and SRCC. For [4], it is shown
that the weighted averaging 2D-IQA estimation of right- and
left-view images can remove the prediction bias by con-
sidering binocular rivalry mechanism. However, the simple
combination of quality scores of right- and left-view images
cannot yield good results. The interactions between multiple
stereoscopic visual cues during stereoscopic visual percep-
tion are complex and non-intuitive. Here, the superiority of
the proposed method suggests that high predicting accuracy
in stereoscopic image visual quality assessment are obtained
with introduced structure and depth features.

Moreover, in order to evaluate the generalization capa-
bilities of the proposed method on LIVE 3D image quality
databases, experimental results for individual distortion types
in terms of PLCC are reported in Table 4. As shown in Table 4,
2D-IQA methods which are directly applied for stereoscopic
image quality assessment works well on both LIVE 3D IQA
Phase I and Phase II database in the case of white noise
distortion. From Table 4, there are five types of distortion in
the database. Compared with other IQA methods, the pro-
posed method obtains better prediction performance for most
distortion types. The main reason is that the effective monoc-
ular and binocular features used in the proposed method can
measure the visual distortion from all these five distortion
types. Zhang et al. [39] delivers higher performance than
other methods in most cases since the structure and depth
features of stereoscopic images are learned effectively and
automatically by CNN model instead of handcrafted features
in that study. Chen et al. [2] can obtain competitive perfor-
mance on LIVE Phase II database, since both asymmetric-
and symmetric-distorted stereopairs can be represented by the
features of binocular rivalry used in that study. It also proves
the effectiveness of binocular rivalry in stereoscopic image
quality assessment.

We conduct the statistical test by using analysis of vari-
ance (ANOVA) followed by multi-comparison test and show
some experimental results in Tables 2 and 3. From these
experimental results, we conclude that the proposed method
is significantly different from some compared IQA methods.

D. PARAMETER SETTINGS
We also conduct comparison experiments to test the param-
eter sensitivity of the proposed method. In our implemen-
tation, we separate each database into training samples and
test samples without overlapping. We set the ratio of train-
ing samples to 50%, 60%, 70%, and 80%, and the median
results of 1000 iterations are presented in Table 5. As shown
in Table 5, the proposed method can obtain the best per-
formance when the ratio of training samples is set to 80%.
What’s more, the performance decreases as the training sam-
ples decreases. When the proportion of training samples
decrease to 50%, the proposed method can still obtain highly
consistent results with subjective results, which proves the
robustness of the proposed method. Here, we set the ratio of
training samples as 80% for the optimal performance.
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TABLE 4. Experimental results for individual distortion types in terms of PLCC on LIVE 3D IQA databases. The best and second-best performance are
denoted by boldface for each distortion.

TABLE 5. Experimental results with different ratios of training samples.

TABLE 6. Experimental results from different features in the proposed method.

FIGURE 6. The experimental results of histograms with different numbers of bins on four stereoscopic image databases in terms of PLCC and
SRCC.

To demonstrate the importance of the monocular and
binocular features, we further conduct the comparison exper-
iment and tabulate the experimental results in Table 6. As we
can observe from this table, the proposed method by using
binocular features can obtain better performance than using
monocular features. Overall, the performance of the combi-
nation of monocular and binocular features is better than that
with only one type of features, and the best performance is
obtained when all the features are integrated.

In this work, we extract the features in the form of his-
togram. The performance of the proposed method might vary
with the number of bins in feature histogram. In general,
the feature histogram with a small number of bins cannot
effectively represent the characteristics of feature distribu-
tion, while the feature histogram with a large number of
bins is unstable. We perform a comparative experiment with
different number of bins for histogram feature extraction. The
experimental results are given in Fig. 6. As indicated in Fig. 6,
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we set the number of histogram bins to 5, 10, 15 and 20, and
the robust stereoscopic image quality prediction performance
is obtained with different number of histogram bins. Consid-
ering the overall performance, the number of histogram bins
is set as 15 to get stable performance in the proposed method.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel NR 3D-IQA algorithm
for stereoscopic images based on monocular and binocu-
lar features, motivated by binocular perception mechanism
including binocular rivalry and binocular integration. For
monocular feature extraction, we first calculate the normal-
ized intensity maps of right- and left-view images by local
normalization, which are used to compute statistical intensity
features. For binocular feature extraction, we first estimate
the disparity map of stereopairs. Then, the estimated dis-
parity map is combined with intensity maps of right- or
left-view images to compute the structure features, and we
also extract depth features from the estimated disparity map.
After computing monocular and binocular features, we use
SVR as the mapping tool for mapping the extracted percep-
tual feature vectors to subjective scores. Experimental results
show that the prediction results of the proposed method are
highly consistent with subjective ratings and the performance
is better than most state-of-the-art methods, especially for
asymmetrically distorted stereoscopic images.

Although the promising performance of the proposed
method in visual quality assessment of stereoscopic images
are achieved, there are still some aspects that we can investi-
gate in the future. One is to design effective opinion-unaware
methods for stereoscopic image quality assessment, which
means that there is no subjective score in the training pro-
cess. In the training stage, we can use FR objective quality
assessment algorithms to calculate the visual quality scores of
images which can be used as subjective ratings. We can also
use the relative quality of image pairs to represent subjective
ratings. Machine learning techniques can be further adopted
to build stereoscopic image quality assessment models.
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