
SPECIAL SECTION ON ADVANCED SENSOR TECHNOLOGIES ON WATER MONITORING
AND MODELING

Received August 7, 2019, accepted September 4, 2019, date of publication September 13, 2019,
date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941234

CRML: A Convolution Regression Model With
Machine Learning for Hydrology Forecasting
CHEN CHEN 1,2, (Senior Member, IEEE), QIANG HUI1, QINGQI PEI 1, (Senior Member, IEEE),
YANG ZHOU3, BIN WANG 4, NING LV1, AND JI LI3
1State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, China
3Goldenwater Information Technology Development Company Ltd., Beijing 101400, China
4School of Communication Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Corresponding author: Chen Chen (cc2000@mail.xidian.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFE0121400, in part
by the National Natural Science Foundation of China under Grant 61571338, Grant U1709218, Grant 61672131, and Grant U1636209,
in part by the Key Research and Development Plan of Shaanxi Province under Grant 2017ZDCXL-GY-05-01, Grant 2019ZDLGY13-04,
and Grant 2019ZDLGY13-07, in part by the Key Laboratory of Embedded System and Service Computing, Tongji University, under Grant
ESSCKF2019-05, and in part by the Xian Key Laboratory of Mobile Edge Computing and Security under Grant 201805052-ZD3CG36.

ABSTRACT Hydrologic disasters often result in substantial property damage and casualties. Therefore,
hydrology forecasting, especially the flooding, has become a hot research spot in all countries of the world.
Based on the basic principle of flooding formation, this paper proposes a data-driven hydrology forecasting
model, i.e., the CRML (Convolution Regression based on Machine Learning). This model could reflect the
impact of hourly rainfall on the future flow changes and the flow changes are predicted by superimposing
these impacts. First, our work is implemented on historical data onto the Xixian River Basin in Henan
Province, China. Through the data filtering, the training set of our model is constructed by using the flood
process selection algorithm proposed in this paper. Next, the gradient descent algorithm is used to update
the weights of the model, and the optimal weights are verified by ten flooding events generated in the past
ten years. Finally, the numerical results show that the qualified rates of our model in predicting flood peak
flow and its arrival time is approximately 90% and 100%, respectively. Compared with the latest popular
artificial intelligence schemes, our model structure is clear and concise. And combined with the physical
meaning of the traditional model and machine learning technology, our model can accurately complete the
task of long and short lead time hydrology forecasting.

INDEX TERMS Hydrology forecasting, convolution regression algorithm, flood process selection
algorithm, gradient descent, machine learning.

I. INTRODUCTION
The hydrology plays an important role in the sustainable
development of human society, which is the lifeblood of
human activities, agriculture and industry. Its important to
pay more attention on hydrology forecasting, especially the
flood forecasting. In fact, accurate prediction of water level
has been a hot topic since ancient times [1]. The basis of an
accurate prediction is a large amount of measured data onto
hydrology, meteorology and geology. Actually, due to the
great number of influential factors, the flood forecasting is a
complex nonlinear process, and neither a single mathematical
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nor physical model can accurately describe this process [2].
Experts and scholars in the field of hydrology have proposed
many flood forecasting models and systems based on the
principles of hydrology in the past few decades.

The Hydrologic Engineering Center’s-Hydrologic Mod-
eling System(HEC-HMS) is a basin rainfall-runoff model
system developed by the United States Army Corps of Engi-
neers (USCE) Hydrologic Engineering Center (HEC). It is
a semi-distributed secondary flood runoff model with phys-
ical concepts. The model can calculate the peak amount,
runoff and peak time of the total runoff process at the out-
let of the basin by calculating the runoff and convergence
of each sub-basin [3]. Zhao Renjun et al. proposed the
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XAJ model, considered the relationship between the model
and natural conditions, and added meteorological, climatic,
geological and geomorphological conditions to themodel [4].
Liu Z et al. proposed the TOPKAPI model, which assumed
that the movement of water in the soil, the surface and the
inner side of the channel can be simulated by motion waves
and is widely used in hydrology forecasting all over the
world [5].

The traditional hydrological models analyze the process of
flood formation from the physical and mathematical aspects
by modeling the natural environment to conduct hydrology
forecasting. However, these models usually contain many
parameters, and each parameter is related to local hydro-
logical and natural data which are often difficult to obtain
completely and accurately. Studies have shown that themodel
parameter settings have a great impact on the prediction
results [6], if the required parameters cannot be obtained
completely, the results will not be as expected.

In addition, with the fast development of statisti-
cal machine learning [7]–[9] and computing technologies
[10]–[12], many data-driven artificial intelligence models
were also emerging. In 1995, Charles A et al. proposed a
hydrology forecasting method based on component analysis.
By analyzing the principal factors affecting the flood gen-
eration of different regions, a flash flood forecasting model
was established [7]. Rudolf Scitovski et al. proposed a short-
term and long-term water level prediction method for one
river measurement location in 2012. Long-term forecasting
is considered as the problem of investigating the periodicity
of water level behavior at least one year by using linear-
trigonometric regression and short-term forecasting within
several days is based on the modification of the nearest neigh-
bor method [8]. However, this method is not generalized.
In 2016, Wahid Palash et al. proposed a ReqSim (Requisite
Simplicity) model based on linear regression, which adds his-
torical water level data, historical rainfall data and weather-
model-generated forecasted rainfall data into the model [9].
This model works fairly well for 1-10-day forecasts. But it is
impossible to accurately predict the peak of the flood and its
arrival time which are most important in flood forecasting.

Some machine learning algorithms such as support vector
machine [10], decision tree [11], logistic regression [12]
have also been applied to hydrology forecasting. The ANN
(Artificial Neural Networks, ANN) models have been widely
used in hydrology because of its good performance in solving
nonlinear problems [13], [14]. C.L. Wu et al. proposed an
ANN model by combining multiple data processing tech-
niques [15]. Ramli Adnan added Kalman filtering technique
to the ANN model to correct the error [16]. However, these
models can achieve good results in short lead time predictions
which the lead time is less than two days [17], but there are
large errors in long lead time predictions which the lead time
is longer than two days.

In general, traditional hydrological models could yield
a good prediction result by precisely modeling the flood

formation process, but a large number of parameters need
to be manually calibrated. Instead, data-driven models can
readily achieve the short lead time flood-forecasting based on
historical data, but its performance in long lead time hydrol-
ogy forecasting is weak.

In order to balance the performance gap between these two
types of models, this paper proposed a novel hydrology fore-
casting model by using the proposed convolution regression
algorithm based on the basic principle of flood formation.
This model can mainly reflect the influence of rainfall on
the flow of the basin section. It superimposes the effect of
unit hourly rainfall on the future n-hour flow changes, which
means the output of the model is a series of data rather than
a single value. This makes it possible to predict the process
of a flood, peak value and its arrival time which are the most
important in flood forecasting [18].

The most significant innovation of this article is that it
is the first time to add the discrete convolution functions
to the regression problem. Deducing and explaining its
solution steps in detail. Due to the characteristics of the
convolution function, not all samples are required to be
structurally consistent. The number of the inputs and outputs
of each sample just need to meet the same quantitative
relationship. This feature makes the selection of samples
very flexible and the flood processes with different duration
can be selected to train the model. This feature can be
also applied in the field of signal processing [19]. As a
result, the contributions of this paper can be generalized as
follows:

1) The first main contribution of this paper is proposed
a novel convolution regression algorithm, derived its
closed-form expression and gave its iterative solution
by using a machine learning method.

2) The second contribution is that a flood process selec-
tion algorithm is proposed to extract the flood processes
in historical data.

3) Finally, The flood forecasting model based on the pro-
posed CRML is validated by historical flooding events.
The results showed that the model has high accuracy in
predicting flood peak and its arrival time.

II. METHODS
A. STUDY AREA AND DATA PROCESS
The data used in this paper are rainfall data and flow data
from January 1, 2011 to September 7, 2018 of 50 rainfall
stations and one hydrological station (Xixian hydrological
Station) in the Xixian Basin, Henan Province, China as shown
in Figure 1. Both rainfall and hydrological stations collect
data in hours with some missing data.

In the historical data of Xixian basin, there are a lot
of missing rainfall data. The Inverse Distance Weighting
method(IDW) is one of the traditional methods which is the
most commonly used approach for estimation of missing
rainfall data [20].The formula of weighting method is given
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FIGURE 1. Distribution map of the rainfall and hydrological stations in
Xixian Basin, Xixian Hydrological Station is on the right-most side of the
map.

as Equation 1.

Rt =
N∑
i=1
i 6=t

αiRi (1)

αi =
d−pit
N∑
i=1
i 6=t

d−pit

(2)

where Rt is the estimated value of the missing data at the
target station t; N is the number of the neighboring stations;
Ri is the observation at the ith neighboring station and αi
is the weight of the ith neighboring station with constraint∑N

i=1 αi = 1. In the Equation 2, the dit is the distance
between the target station t and the ith neighboring station.
Greater values of p assign greater influence to values closest
to the target station. The value of p usually ranges from
1.0 to 6.0 and the most commonly used value for p is 2.
In this study, the value for p is 2, the number of neighboring
station is 3.

The hourly rainfall data of each rainfall station is then
weighted and summed according to the Thiessen poly-
gon [21]. The Thiessen polygon was proposed by the Dutch
climatologist Thiessen. Thiessen uses the rainfall intensity of
a rainfall station in each Thiessen polygon to represent the
average rainfall intensity of this polygonal region. The ratio
between the area of the Thiessen polygon and the total area of
the basin is used as the weight of the rainfall station. Through
data filling and superposition, the hourly rainfall data of the
Xixian Basin is obtained. For the flow missing data from
the hydrology station, the interpolation methods can be used
because of its continuity. The missing flow data is filled by
quadratic interpolation [22] in this paper.

The important notations in this paper are listed
in TABLE 1.

TABLE 1. Notations.

B. PROPOSED CRML
In this chapter, the proposed convolution regression algorithm
is deduced, and the closed-form solution and iterative solu-
tion for solving the convolution coefficients are given. The
hydrology forecasting problem can be simplified as the super-
position of the influence of hourly rainfall on the future flow
changes. The convolution formula [23] shown in Equation 3
can be used to get the flow at any time in the future:

Wt =

n∑
j=1

σjrt−j+1 (3)

where Wt is the flow at the moment t , σj is the convolution
coefficients, rt−j+1 is the rainfall at time t − j+ 1.
How to measure the error between the predicted and actual

values is the key to measure the performance of the regression
task. In this paper, the sum of square error [24] is used as
the performance metric. The sum of square error has a good
geometric meaning, which represents the Euclidean distance.
For any sample in this problem, the sum of square error can
be expressed as:

Si =
Ti∑
t=1

(W i
pred(t) −W

i
real(t))

2
(4)

where Si is the sum of square error of the ith sample, Ti is the
length of the sample,W i

pred(t) is the predicted value of the flow
of the sample i at the time t while theW i

real(t) is expressed as
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the actual value. Then our task can be transformed into the
following objective function:

σ ∗ = argmin
σ

m∑
i=1

Si

= argmin
σ

m∑
i=1

Ti∑
t=1

(wipred(t) − w
i
real(t))

2

= argmin
σ

m∑
i=1

Ti∑
t=1

(
n∑
j=1

σjrt−j+1 − wireal(t))
2

(5)

In the above objective function, the first summation for-
mula represents the total errors of m training samples, and
the second summation formula represents the sum of square
error between the actual value and the predicted value for
each training sample. This formula is similar to the objec-
tive function in linear regression, except that we introduce a
convolution formula. In order to solve this objective function,
a loss function was designed as shown in Equation 6:

E =
1
2m

m∑
i=1

Ti∑
t=1

(wipred(t) − w
i
real(t))

2

=
1
2m

m∑
i=1

Ti∑
t=1

(
n∑
j=1

σjrt−j+1 − wireal(t))
2

(6)

The method of solving the parameters σ to minimize the
error E is called the least squares method [25]. To achieve E
minimum, you are required to:

∂E
∂σl
=

1
m

m∑
i=1

q∑
t=1

(
n∑
j=1

σjr it−j+1 − q
i
real(t))r

i
t−l+1

= 0, (l = 1, 2, . . . , n) (7)

Then we can get the normal equations of its least squares
method. 

K11σ1 + K12σ2 + . . .+ K1nσn = V1,
K21σ1 + K22σ2 + . . .+ K2nσn = V2,
. . . . . .

Kn1σ1 + Kn2σ2 + . . .+ Knnσn = Vn.

(8)

Klk =
m∑
i=1

q∑
t=1

r it−l+1r
i
t−k+1, {l, k = 1, 2 . . . , n} (9)

Vl =
m∑
i=1

q∑
t=1

W i
real(t)r

i
t−l+1, {l = 1, 2, . . . , n} (10)

Convert it to a matrix form:

Kσ = V (11)

The optimal closed-form solution [26] for convolution
coefficients can be obtained:

σ = K−1V (12)

The above equations prove that the proposed method can
converge to an optimal solution. However, it is difficult to get

that optimal solution directly. Gradient descent algorithm is
a kind of iterative method and often used to solve the least
squares problem [27]. The gradient descent ensures that in
each iteration, the parameters are updated in the opposite
direction of the loss function gradient. Then the iteration
formula of σj can be expressed as:

σ n+1j = σ nj − η∇σ
n
j

= σ nj − η
∂E
∂σ nj

(13)

where η is the learning rate, which is used to control the step
size of each σj iteration. The learning rate determines how
fast the parameters move to the optimal values. If the learning
rate is too large, it is likely to exceed the optimal value;
conversely, if the learning rate is too small, the efficiency of
the optimization is low, and the algorithm may not converge
for a long time [28]. In this paper, in order to improve the
efficiency of the algorithm operation, a more flexible learning
rate setting method-exponential decay method [29] is added
to achieve exponential decay of the learning rate. In this
way, the model uses a large learning rate at the beginning
of training to quickly obtain a suboptimal solution, and then
gradually reduce the learning rate as the iteration progresses,
making the model more stable in the later stage of training.
The learning rate exponential decay function is designed in
this paper as follows:

Decay_rate(iter) = α

⌊
iter

decay_steps

⌋
(14)

where α ∈ (0, 1) is the attenuation coefficient. iter is the
current iteration number and decay_steps is the attenuation
speed. The ratio is rounded down so that the decay rate
becomes a step function.

Using the learning rate decay function in Equation 14,
the iterative formula can be modified to:

σ n+1j = σ nj − ηα

⌊
n

decay_steps

⌋
∇σ nj (15)

According to the above theory, the pseudo code of the
convolution regression algorithm can be seen in Algorithm 1:
where xk = {x1, x2, . . . , xn} and yk = {y1, y2, . . . , ym}.
The stop condition is set to reach the maximum number of
iterations or the minimum drop error is less than tol.

C. PHYSICAL MEANING OF THE MODEL
The model proposed in this paper was inspired by the unit
hydrograph theory first mentioned by Sherman in 1932 [30].
The unit hydrograph theory is derived from the physical
assumption that all floods due to rainstorms of a given dura-
tion runoff in the same amount of time. Zoch et al. pro-
posed a general physical theory of streamflow based on the
assumption that at any time the streamflow is proportional
to the amount of rainfall remaining with the soil at that time
which is called net rainfall based on the work of Sherman.
All unit hydrograph procedures are based on two fundamen-
tal: Invariance and superposition, which means flood can be
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Algorithm 1 Convolution Regression Algorithm
Input: The training sets D = {(xk , yk )}mk=1;

The convolution coefficient σi;
The learning rate η;
The attenuation coefficient α;
The decay steps dec;
The maximum number of iterations iter ;
The minimum decline error tol;

Output: convolution coefficients;
1: Random initialization convolution coefficients σi;
2: repeat
3: for all (xk , yk ) ∈ D do
4: Calculate the output of the current sample ŵi

based on the current convolution coefficients according
to Equation 3;

5: Calculate the gradient term ∇σj according to
Equation 7;

6: Update the parameters σj according to Equa-
tion 15;

7: end for
8: until The stop condition is reached

FIGURE 2. The fundamental of the unit hydrograph.

superimposed by the unit net rainfall times the unit hydro-
graph as shown in Figure 2.

However, this theory has a few limitations. One of the
biggest limitations is that it must be associated with a produc-
tion function in order to provide an estimate of net rainfall
[31]. But over the years researchers and practitioners have
mostly used empirical methods [32] such as use the Soil
Conservation Service(SCS)s curve number (CN)method [33]
to obtain the net rainfall. The CN method is an empirical
equation to calculate net rainfall by using a shape parameter
Sh based on soil, vegetation, land use and soil moisture prior
to a rainfall event [34]:

Nr =


(R− 0.2Sh)2

P+ 0.8Sh
, R > 0.2Sh

0, R ≤ 0.2Sh
(16)

where Nr(mm) is net rainfall, R(mm) is rainfall. The shape
parameter Sh is obtained from:

Sh =
25400
CN

− 254 (17)

where CN ranges from 0 to 100. The CN is determined from
land cover and management, and from the hydrologic soil
group using a table from the SCS handbook [35]. This tradi-
tional method has many parameters which need to calibrated
by experienced experts. To solve this problem, the model
based on the proposed CRML learns the convolution coeffi-
cients which has the similar meaning to unit hydrograph from
the historic data directly and ignores the soil, topography, and
vegetation of a certain basin. The proposed model not only
retains the physical meaning of the traditional model, but also
is simpler and more objective than the traditional model.

III. SIMULATION OF THE CRML
In order to verify the effectiveness of the algorithm, this
section simulates the proposed CRML. We assume that the
convolution coefficients can be generated by the Equation 18
in this paper to better demonstrate the effectiveness of the
algorithm.

σt = 0.5 ∗ sin(2π t)+
1
2
t2 (18)

where the t ∈ [0, 1], and the step is 0.01 so that we can get
100 convolution coefficients σ . Then we can get the training
and testing sets by generating a series of numbers randomly
as the input X and then convolving X with the convolution
coefficients as the output Y. For the purpose of verifying
the robustness of the algorithm, we added white noise to the
output of each training sample as shown in Figure 3.

FIGURE 3. Generating a training sample by add white noise to the output.

In addition, in order to reflect that the proposed algorithm
doesn’t need to maintain the consistency of the samples
which have the same length of input X and the output Y.
Samples with different length of X and Y are generated in
the simulation, and the statistics are shown in TABLE 2.
Then set the learning rate as 0.005 and the total iterations as
200, the result of the simulation can be shown in Figure 4
and TABLE 3. The results were discussed by using three
statistical measures: Root Mean Square Error (RMSE), mean
absolute error (MAE), and determination coefficient (R2)
given by:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(19)
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FIGURE 4. The simulation results. (a) The theoretical convolution coefficients generated by the Equation 18. (b) The input X of
a training sample generated by randomly. (c) The output Y of the a training example by convolving the convolution
coefficients shown in (a) with the input X shown in (b). (d) The theoretical and empirical of convolution coefficients.

TABLE 2. The statistics of training and testing sets.

MAE =

∑N
i=1 |yi − ŷi|

N
(20)

R2 = 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(yi − yi)2

(21)

The convolution coefficients can be obtained after training
as shown in Figure 4 (d), compared the empirical results
with the theoretical results by using the R2. The R2 was
0.9992 which means the calculated results match the real
results perfectly. The error of the training sets comes from the
white noise, while the testing sets’s R2 score all above 0.99.

TABLE 3. Statistical performance of the simulation.

This simulation verified that the proposed algorithm in this
paper is effective and robust. In the next section, we will
implement this algorithm on hydrology forecasting.

IV. RESULTS AND DISCUSSION ON
HYDROLOGY FORECASTING
A. CREATE TRAINING SET AND TESTING SET
Based on the above analysis, we can easily convert the flood
process into the superposition of the hourly rainfall effect
on the flow. For training the convolution coefficients in the
proposed CRML, we generated training set and testing set
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in the historical rainfall and flow data in Xixian basin from
January 1, 2010 to September 7, 2018.

In hydrology forecasting, people pay more attention to the
peak of the flood and its arrive time [18]. However, there is a
large amount of non-flood data in the historical data which
would cause error in training. Therefore, a flood progress
selection algorithm was proposed in this paper and expressed
at Algorithm 2.

Algorithm 2 Flood Progress Selection Algorithm
Input: The historical rainfall data Rainfall;

The historical streamflow data Flow;
The historical average streamflow avg_flow;
The sliding window size sw_size;

Output: Selected data set D̂{x, y};
1: Initialize the selected data set D̂{x, y};
2: set threshold thr = 2 ∗ avg_flow;
3: for all index in D do
4: if mean(Flow[index : index + sw_size])≥ thr then
5: end = index + sw_size+ 1;
6: while mean(Flow[end − sw_size:end])≥ thr do
7: end = end + 1;
8: end while
9: add Flow[index − sw_size:end] in D̂[y];
10: add Rainfall[index − sw_size:end] in D̂[x];
11: index = end + 1;
12: else
13: index = index + 1
14: end if
15: end for

In the Algorithm 2, we used a sliding window to extract
flood progresses in the historical data. When the average
streamflow of a sliding window greater than the double of
the historical average streamflow, it can be considered as
the start of a flood process. Then slide the window until the
average streamflow in the sliding window is less than twice
of the historical average streamflow, it can be considered
as the end of a flood process. We extracted the rainfall and
flow data between the start and end of a flood process as the
input X and the output Y. By using the proposed flood process
selection algorithm, a set of samples that only consist of
flood processes are generated. Random selection of 10 flood
processes from the sample set is utilized to verify the effec-
tiveness of the model while the rest samples are divided into
training set and testing set by 7:3. In order to make the model
converge as quickly as possible, we normalized the data set.
Normalization [36] treats data as dimensionless data ranging
between 0 and 1 as shown in Equation 22.

x ′ =
x − xmin

xmax − xmin
(22)

B. PARAMETERS OF THE MODEL
In the hydrology forecasting model based on the proposed
CRML, the most important parameter is the number of the

convolution coefficients. According to the analysis in the
section II, the number of the convolution coefficients repre-
sents the duration of unit hourly rainfall influences to flow
changes. However, the time at which the flow changes in
different region are affected by rainfall is also different. Thats
because the flow changes in a river is not only affected by
rainfall, but also related to the underlying surface conditions
of the basin [37] such as basin topography, size, shape, slope,
and vegetation conditions. Through the correlation analy-
sis [38], the relationship between the rainfall process and the
flow process of a certain basin is obtained. The correlation
coefficient is a statistical indicator designed by statistician
Carl Pearson and is the amount of linear correlation between
the variables [39], as shown in Equation 23.

r(δ) =

∑
i
[(Wi+δ −W ) ∗ (Ri − R)]√∑

i
(Wi+δ −W )

2
∗

√∑
i
(Ri − R)

2
(23)

where W is the flow data, W is the average value of the flow
data; R is the rainfall data,R is the average value of the rainfall
data; δ is the time interval between the rainfall data and the
flow data which means the rainfall process is δ hours earlier
than flow process. The trend of the correlation coefficient
between rainfall and flow within different time interval of
Xixian basin as shown in Figure 5.

FIGURE 5. Correlation coefficient between rainfall and flow.

The Figure 5 shows that the effect of unit hourly rainfall
on flow changes is raising at first and then lower for nearly
200 hours and at the 40th hour reaches the maximum, at the
175th hour, reaches the local minimum. In other words, unit
hourly rainfall can effectively affect the future flow changes
for 175 hours in Xixian basin, which means the number of
convolution coefficients can be set as 175. The other param-
eters of the algorithm 1 are based on multiple experiments,
and the settings can be shown in Table 4.

Where the learning rate η is 0.005, the attenuation coeffi-
cient α is 0.95, the decay_steps is set as 10 while the total
iterations are set as 200, and the minimum decline error
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TABLE 4. Convolution regression algorithm parameter table.

FIGURE 6. The effect of the flood process selection algorithm in 2010 of
Xixian basin.

FIGURE 7. The convolution coefficients obtained by training.

is 0.000001. In the algorithm 2, the historical average stream-
flow of the Xixian basin was 84.97m3/s, and the size of the
sliding window was 175. The effect of the algorithm 2 can be
shown in Figure 6, the curve covered by the green rectangle
is the selected flood processes.

C. DISCUSS THE RESULTS
In this subsection, we discussed the results of the experiment
and analyzed the effects of the model. After training by
using the parameters given in subsection B, the convolution
coefficients as shown in Figure 7 can be obtained.

According to the Figure 7, the trend of convolution coeffi-
cients is in line with the above analysis that the unit hourly
rainfall effects on the change of flow are first increased
and then decreased. Using the trained influence coefficient,

FIGURE 8. Comparison of observed and calculated flow for Xixian in 2018.

TABLE 5. The mode based CRML performance statistics for Xixian.

the model was validated using the data of 2018 in Xixian
basin as shown in Figure 8 and performance statistics
in Table 5.

As can be seen from the Figure 8 and Table 5, the coef-
ficient of determination between observed and calculated
values is 0.71, and the relative errors (the ratio of the absolute
error to the observed) of estimated maximum peak flow is
4.2% and its arrive time error is 18 hours.

To better illustrate the effects of the model, we extracted
10 flood processes to verify the effectiveness of the model.
The results are shown in Table 6 and Figure 9.

According to Standard for hydrological information and
hydrological forecasting [40], the permissible error of the
flood peak forecast is 20% of the measured flood peak flow;
the permissible error of the flood peak arrive time is 30% of
the interval from the start of the forecast to the time when the
peak of the measured flood peak appears. According to the
results shown in Table 6 and Figure 9, the model proposed
in this paper can accurately predict the trend of floods. The
qualified rate of flood peak flow is 90%, and the qualified
rate of peak time is 100%, which are in line with hydrology
forecasting claim.

D. DISCUSS THE FORECAST ERRORS
The error of the hydrology forecasting model based on con-
volution regression algorithm proposed in this paper mainly
consists of three aspects: (1) human factors such as flow
changes caused by reservoir storage; (2) weather forecast
errors, especially rainfall forecast error; (3) Model error
caused by data processing. Among them, the error caused
by human factors has the greatest impact, because the pro-
cess of humanitys participation cannot be reflected in the
data; and the model studies the influence of rainfall on the
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TABLE 6. Performance statistics on 10 historical floods by using the proposed model.

FIGURE 9. Validating the model by using the 10 historical flood events.

FIGURE 10. Three datasets of abnormal flooding.

flow changes. If the flow changes is independent of rainfall,
it will greatly affect the accuracy of the model. As shown in
Figure 10, it can be noted that the corresponding rainfall is
not enough to cause the flow changes of this scale. Therefore,
during these time periods, the flow change is influenced
by other unidentified stronger factors than rainfall such as
reservoirs storage or release of water.

V. CONCLUSION
In summary, this paper designs a novel convolution regression
algorithm, which introduces the convolution function into the
regression problem, and gives the closed-form solution for the
convolution coefficient and the gradient-based, exponential-
based iterative solution step of attenuation. Because of the
characteristics of convolution function, the output of the
algorithm is a series of data rather than a single value.
This means that we can predict the flood process, especially
the peak value of the flood and its arrival time which are
most important in hydrology forecasting. On the other hand,
the samples used for training are not necessary to satisfy
the consistency. We can extract flood processes with dif-
ferent durations for training models without any other data
segmentation.

In order to apply the proposed CRML to hydrology fore-
casting, a flood process selection algorithm based on the
sliding window was proposed in this paper. After using this
algorithm, a set of samples consisting of flood processes
was generated. The convolution coefficients are obtained
after several rounds of iterations with reasonable parameters.
Finally, the hydrology forecasting model based on the CRML
was verified by 10 flood events, the result shows that it has
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high accuracy in flood peak and its arrival time, and complies
with the requirements of hydrology forecasting.

The hydrology forecasting model based on CRML can
effectively predict short and long lead-time floods due to its
physical meaning. The key difference of the proposed model
to previous work is that this model does not need to calibrate
complex parameters compared with the traditional hydrolog-
ical forecasting models, but only needs to learn convolution
coefficients from historical data . This greatly simplifies the
flood forecasting work and improves the forecasting effi-
ciency. Meanwhile, this model has the ability to predict flood
process directly by using the rainfall data and the trained
convolution coefficients without more complex calculations
and has good effect in long lead-time flood forecasting.

In addition to uncontrollable factors such as manual
intervention, rainfall forecasting errors, etc., data process-
ing methods such as quadratic interpolation, smoothing and
other model errors, etc. will affect the result of the model.
Therefore, further work needs to be done in the processing
and extraction of data. Future work will start with quantitative
analysis of historical data, design more scientific and effec-
tive experimental methods, and determine the parameters of
the model. Our future work will also investigate the combina-
tion of advanced communication technology [41]–[45] with
artificial intelligence [46]–[48], to introduce real-time flood-
ing measurement monitoring, intelligent parameters filtering
and adaptive model selection, into the flooding forecasting as
well as controlling.
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