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ABSTRACT Hybrid electric vehicles (HEVs) have proved a feasible option to reduce fuel consumption
and emissions. Furthermore, energy management strategies (EMSs) play a pivotal role in the performance
of HEVs. This paper presents a novel real-time EMS, namely fuzzy adaptive-equivalent consumption
minimization strategy (Fuzzy A-ECMS), for a parallel HEV. The proposed EMS is formulated by combining
the ECMS, which is derived from Pontryagin’s minimum principle (PMP), with a fuzzy logic controller
adjusting the equivalent factor (EF) based on the deviation between reference state of charge (SOC) and
actual SOC for a better SOC trajectory. Improved fuel economy and SOC charge sustainability are the main
control objectives. To test and verify the performance of the studied controller, comparative simulations of
the Fuzzy A-ECMS and rule-based EMS, conventional SOC-based A-ECMS together with standard ECMS
under different standard driving cycles and a real driving cycle are conducted via MATLAB/Simulink and
AVL CRUISE. The simulation results show the feasibility and effectiveness of Fuzzy A-ECMS, yielding
0.46% to 5.91% reduction of fuel consumption and more stable SOC charge sustainability compared with
the other three EMSs.

INDEX TERMS Hybrid electric vehicle (HEV), energy management strategy (EMS), equivalent
consumption minimization strategy (ECMS), fuzzy logic control, state of charge (SOC).

I. INTRODUCTION
The gradual decline in global crude oil sources and stringent
emissions rules have caused the urgent demand for vehi-
cles with better fuel economy along with less emissions [1].
HEVs are widely considered as one of the most promising
solutions to achieve the goals for their high efficiency and low
fuel consumption. The powertrain system of HEV generally
contains two different types of components, internal combus-
tion engine (ICE) and electric motor (EM), which makes it
operate more efficiently and effectively. EMSs are of great
significance as they determine the power split ratio between
two different power sources, engine and battery, which could
lead to a better fuel economy for HEVs compared to conven-
tional vehicles. Many EMSs have been proposed by previous
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researches. According to the method of algorithm implemen-
tation, EMSs are generally divided into two different cate-
gories: rule-based EMS and optimization-based EMS [2], [3].
Rule-based EMSs, including deterministic strategies [4]–[6]
and fuzzy logic strategies [7]–[9], have been widely adopted
in the HEV industry owing to their simplicity and capacity
to carry out in real time. For example, Peng et al. presented
an improved rule-based energy management algorithm by
employing the dynamic programming (DP) which chooses
the best actions for the engine in HEVs [5]. Montazeri et al.
developed a multi-input fuzzy logic controller to improve the
fuel economy for a power-split HEV and yielded reduced
fuel consumption compared to conventional rule-based con-
troller [8]. Denis et al. proposed a fuzzy logic-based blended
energymanagement strategy fed with driving condition infor-
mation and demonstrated the efficiency by simulations [9].
However, these strategies are developed based on the

133290 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-9869-9507


S. Wang et al.: Fuzzy A-ECMS for a Parallel HEV

engineering experience and specific driving cycles, which
makes it difficult to obtain near-optimal control outcome.

For the optimization-based EMS, it mainly focuses on
the optimization of the powertrain control in order to
achieve optimum performance. Considering the degree of
optimization, global optimization-based EMS and online
optimization-based EMS are the two main algorithms.
DP [10]–[13] is the most representative global optimization-
based EMS. It calculates the global optimum solution among
the whole driving cycle range based on Bellman’s princi-
ple [10]. Although it cannot be applied online due to its heavy
computational burden and strong dependence on the prior
knowledge of the driving cycle, it works as the benchmark of
other energy management strategies. An energy management
algorithm for HEV was optimized by DP, giving consider-
ation to energy losses and the efficiency during mode shift.
A case study proved its effectiveness [11].

Online optimization-based EMSs divide the global
optimization problems into a series of local optimization
problems in order to reduce the computational effort. The
dispensability of future driving conditionmakes themwork in
real time [14]. The most popular techniques among them are
PMP and ECMS. Model predictive control (MPC) [15], [16]
and machine learning (ML) [17]–[19] also gradually attract
more attention and are applied to more researches in
real-time energy management today. PMP minimizes a
Hamiltonian function instantaneously throughout the driv-
ing cycle [20]–[22]. Stocker et al. utilized PMP to solve
local optimization problems generated from a global optimal
control problem, to minimize CO2 emissions produced by
vehicles [22]. MPC enables to work out the power-split
ratio over the prediction horizon. Furthermore, in some
specific driving conditions, with proper prediction settings,
it is possible to achieve the fuel economy similar to DP by
MPC-based EMS [15]. ML, one of the core technologies in
artificial intelligence (AI) field, is a novel method emerged
in EMS in recent years. Liu et al. proposed a reinforcement
learning-based EMS for a hybrid electric tracked vehicle [17].
Wu et al. employed Q learning, a famous ML algorithm,
to their EMS for a hybrid electric bus. Results demonstrated
the achievement in fuel economy under unknown driving
condition by comparing with DP-based strategy [18].

ECMS is a more practical approach to implement online
as it solves instantaneous minimization problems about cost
index, which is represented as the cost function weighted by
equivalent factors (EF). ECMS converts electricity consump-
tion to equivalent fuel consumption calculated by EF, and the
objective is to minimize the equivalent fuel consumption in
every step [23]. Since ECMS shows its sensitivity to EF and
fixed EF is unable to adapt to complex real driving conditions,
many researchers have proposed adaptive ECMS (A-ECMS)
based on the tuning of EF. According to the form of adjust-
ment algorithm, the A-ECMS could be basically divided
into three categories: the driving conditions prediction-
based A-ECMS, the driving pattern recognition-based
A-ECMS and the SOC-based A-ECMS. The concept of

FIGURE 1. Structure of the parallel HEV.

A-ECMS was first proposed by Musardo, and the EF adjust-
ment algorithm is based on driving condition prediction [24].
Zhang et al. used chaining neural network to introduce a
new velocity forecasting method, which was subsequently
adopted for EF adaptation [25]. For the driving pattern
recognition-based A-ECMS [26], [27], a number of typical
driving patterns are derived from numerous historical driv-
ing data, and then the optimal EF for each typical driving
pattern is calculated. During the actual driving conditions,
the EF is adjusted along with the typical driving pattern being
periodically recognized by the past driving data. SOC-based
A-ECMS tunes the EF according to the deviation between
actual SOC and reference SOC, to keep SOC near the refer-
ence value [28], [29]. However, the previous EF adaptation
approaches based on SOC feedback show weak robustness to
sustain SOC under different driving conditions.

Themain contribution of this paper is that a novel A-ECMS
combined with fuzzy logic control, called Fuzzy A-ECMS,
is presented to implement real-time energy management.
It utilizes a new approach to tune the EF with the fuzzy logic
controller, leading to a better SOC trajectory and stronger
robustness as well as better fuel economy. The proposed
Fuzzy A-ECMS is applied to a parallel HEV and is veri-
fied by the comparison with rule-based EMS, conventional
SOC-based A-ECMS and standard ECMS under the driv-
ing cycle of the Worldwide Harmonized Light Vehicles Test
Procedure (WLTC) and the New European Driving Cycle
(NEDC) as well as a real driving cycle called Beihang Cam-
pus Shuttle Bus Driving Cycle (BCSBDC) with two different
initial EF settings.

The remainders of this paper are organized as follows.
Section II establishes a parallel HEV model with detailed
information about the main components. Section III gives the
implementation of the proposed Fuzzy A-ECMS as the real-
time energy management strategy for parallel HEV. Then,
the simulation is presented and the comparison results are
analyzed in section IV. Finally, section V illustrates the
conclusions.

II. HEV MODELING
In this section, the parallel hybrid powertrain configuration
of the target HEV is displayed in Fig. 1, where the engine,
electric motor(EM), clutch, transmission and battery can be
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TABLE 1. Vehicle parameters.

TABLE 2. Engine parameters.

TABLE 3. Electric motor parameters.

TABLE 4. Gear ratio of transmissions.

seen intuitively. The engine is a 4.5L four-cylinder diesel
engine. The EM can work as both motor and generator, which
makes mode switching more flexible. A dry clutch, in order
to realize power splitting, is equipped between the engine and
the EM, to determine which power is engaged. In the studied
configuration, the AMT is located on the main drive shaft,
providing a gear reduction to both the engine and the EM,
which implies where the torque coupling occurs. Accord-
ing to the proposed powertrain configuration, five different
working modes can be applied, which are: EM driving mode,
engine driving mode, hybrid driving mode, driving charge
mode and regenerative braking mode. Energy management
strategies determine the torque split between the engine and
the EM as the working mode switches, to realize better fuel
economy. The basic parameters of the examined HEV are
listed in Table 1 to Table 5.

A. ENGINE MODEL
In this paper, the complex engine system is simplified to
a static model based on experimental data and dynamic
functions, since the research focus is not the dynamic
characteristics of the engine. The engine fuel consumption

TABLE 5. Battery parameters.

FIGURE 2. Engine fuel consumption contour map.

FIGURE 3. EM efficiency map.

contour map is shown in Fig. 2. The transient engine fuel
consumption rate can be demonstrated by (1), a function of
engine speed and torque. The engine torque is determined
by (2).

ṁf (t) = f (Te (t) , ne (t)) (1)

Te = pe · Vh · i−1 · π−1 (2)

where ṁf (t) is the engine fuel consumption rate, Te(t) is the
engine torque, ne(t) is the engine rotational speed, pe is the
effective piston pressure, Vh is the engine displacement and
i is the strokes.

B. ELECTRIC MOTOR MODEL
The static EM model, based on the EM efficiency contour
map (Fig. 3), is of great importance to the energymanagement
strategies. The power consumption of EM can be expressed
as a function of EM torque, rotational speed and efficiency,
which is formulated in (3) and (4), for motor and generator
use respectively.

Pem (t) =
Tem (t) · nem (t)
9550ηm (t)

(3)

pem (t) =
Tem (t) · nem (t) · ηg (t)

9550
(4)
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FIGURE 4. The equivalent electrical circuit of the battery.

where Pem(t) is the EM power, Tem(t) is the output torque
of EM, nem(t) is the EM rotational speed, ηm(t) and
ηg(t) are the EM efficiency at the current speed and torque
when EM operates as a motor and a generator respectively,
which can be obtained by look-up table.

C. BATTERY MODEL
It is difficult to build a precise model of the power bat-
tery due to the influence of temperature, voltage, resistance,
SOC, etc. In this paper, the Rint model, a widely applied
internal resistance model, is adopted to simplify the battery
model [30]. The equivalent electrical circuit is shown
in Fig. 4. The power equation of the battery can be described
in (5).

Pbat (t) = Pb (t)+ Rin (t) · I (t)2 (5)

Uoc (t) = Ut (t)+ Rin (t) · I (t) (6)

where Pbat (t) is the internal battery power, Pb(t) is the output
power of the battery, I is the current, Rin is the equivalent
internal resistance, Uoc is the open-circuit voltage, Ut (t) is
the terminal voltage.

In the battery, SOC is a significant indicator of power con-
sumption and can be calculated by (7) based on Kirchhoff’s
voltage law.

SOĊ (t) = −
Uoc (t)−

√
Uoc (t)2 − 4Pb (t) · Rin (t)
2Qmax · Rin (t)

(7)

where Qmax is the nominal battery charging capacity.

D. TRANSMISSION MODLE
The studied HEV is equipped with a fifth-gear automatic
transmission, which is closely linked to the fuel economy and
driving comfort [31], [32]. Here, neglecting the torsional and
lateral vibration, the output torque and wheel rotational speed
are formulated as:

Tout (t) = Tin (t) · ηt · it · if (8)

nw =
ne
it · if

(9)

where Tout (t) and Tin(t) are the output torque and input
torque of the transmission, respectively, ηt is the transmission
efficiency, it and if are the gear ratio of the transmission and
final drive, respectively, nω is the wheel rotational speed.

E. VEHICLE LONGITUDINAL DYNAMIC MODEL
Since fuel economy is the main focus for energy management
in this paper, only the longitudinal dynamics of the studied

HEV are considered, ignoring the lateral dynamics, steering
dynamics, etc. Therefore, firstly, the equation between the
applied torque acting on wheels and the output torque of the
engine, EM and brakes can be written as:

Tw = ηt · it · if (Te + Tem)+ Tb (10)

where Tw, Te, Tem, Tb, are the applied torque acting on
wheels, engine torque, EM torque and braking torque,
respectively. Tw can also be derived from (11) according
to the longitudinal dynamics, assuming the HEV runs on a
horizontal road [33].

Tw =
(
Fair + Frolling + Finertia

)
· r

Fair =
1
2
CDρdAv2

Frolling = mgfr

Finertia = δm
dv
dt

(11)

where Fair , Frolling, Finertia are the air resistance, the rolling
resistance and the acceleration resistance, respectively. CD is
the aerodynamic drag coefficient, ρd is the air density,A is the
frontal area, v is the vehicle velocity, m is the vehicle mass,
fr is the rolling resistance coefficient and δ is the correction
coefficient of rotating mass.

F. DRIVER MODEL
To better implement the simulation of the studied EMS,
a driver model, that determines acceleration and deceleration
during driving, is formulated by the proportional-integral (PI)
controller [34], as shown in (12) and (13).

α (t) = Kp ·1v (t)+ Ki

∫
1v (t) dt (12)

1v (t) = vdesired − vactual (13)

where α(t) is the opening of the pedal, with a positive value
representing acceleration and a negative value representing
braking, Kp and Ki are the proportional and integral coeffi-
cient, respectively, vdesired is the current target velocity, vactual
is the actual velocity.

G. PHYSICAL MODEL
In order to obtain simulation results close to real driv-
ing condition, in this paper, a physical model with high
fidelity is established in the AVL CRUISE software, which is
known as an authentic vehicle simulation platform. The final
HEV model is shown in Fig. 5.

III. FUZZY ADAPTIVE-EQUIVALENT CONSUMPTION
MINIMIZATION STRATEGY
A. ENERGY MANAGEMENT PROBLEM FORMULATION
Energy management problems are regarded as optimal con-
trol problems, of which the focus is the optimal power dis-
tribution between the engine and EM, getting the minimum
value of cost function and achieving the best fuel economy,
with the satisfaction of a number of constraints. The cost
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FIGURE 5. Physical model of the parallel HEV.

function Je of energy management problems is formulated
as:

Je =
∫ tf

t0
ṁf (Te (t) , t) dt + f

(
SOC

(
tf
))

(14)

where t0 and tf are the start and end time of the driving
cycle, respectively, ṁf (Te (t) , t) is the actual engine fuel
consumption rate and f(SOC(tf )) is a penalty function related
to the final SOC.

Taking the actual operating characteristics of HEVs into
consideration, the control variables and state variables of
the optimal control problems should satisfy the following
constraints.

Te_min (ne (t)) ≤ Te (t) ≤ Te_max (ne (t))
ne_min ≤ ne (t) ≤ ne_max

Tem_min (nem (t)) ≤ Tem (t) ≤ Tem_max (nem (t))
nem_min ≤ nem (t) ≤ nem_max

SOCl ≤ SOC (t) ≤ SOCh

(15)

where Te_min(ne(t)) and Te_max(ne(t)) are the lower and upper
engine torque limits at current speed, respectively, ne_min is
the lower engine speed limit, ne_max is the upper engine speed
limit, Tem_min(nem(t)) and Tem_max(nem(t)) are the lower and
upper EM torque limits at current speed, respectively, nem_min
is the lower EM speed limit, nem_max is the upper EM speed
limit, SOCl and SOCh are the lower and upper battery
SOC limits, respectively.

B. EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGY
This paper presents a Fuzzy A-ECMS for real-time energy
management, which is developed based on a local opti-
mization control strategy, ECMS, an algorithm derived from
Pontryagin’s minimum principle (PMP), aiming to minimize

the instantaneous equivalent fuel consumption. According
to PMP, the optimal control decision u∗(t) meeting the min-
imization of the given Hamiltonian function H(x∗(t),u∗(t),
λ∗(t),t) is one of the necessary conditions to get the minimum
value of the cost function related to energy management
problems [35]. The Hamiltonian function is given by (16),
which can be expressed as the sum of actual fuel consumption
of the engine and the engine consumption converted from
electricity cost.

H (SOC(t),Te(t), λ(t), t)= ṁf (Te(t), t)+λ(t)SOĊ(t) (16)

where λ(t) is the co-state variable, which can be calculated
as (17) by the co-state dynamics.

λ̇ (t) =
∂H (SOC (t) ,Te (t) , λ (t) , t)

∂SOC
= −λ (t)

∂SOĊ (t)
∂SOC

(17)

The SOC dynamics can be written as:

SOĊ (t)=−
I

Qmax
= −

I · Uoc
Qmax · Uoc

=−
Pbat (t)

3.6Ebat (t)
(18)

whereEbat (t) is the battery energy. Substituting (18) into (16),
the Hamiltonian function is rewritten as:

H (SOC (t) ,Te (t) , λ (t) , t)
= ṁf (u (t) , t)

+λ (t) ·
(
−

Pbat (t) · Hlhv
3.6Ebat (t) · Hlhv

)
= ṁf (u (t) , t)+ S (t) ·

Pbat (t)
Hlhv

S (t) =
(
−

Hlhv
3.6Ebat (t)

)
· λ (t)

(19)

where Hlhv is the lower heating value of the fuel, S(t) repre-
sents the EF of the ECMS.

In order to maintain battery performance and extend bat-
tery life, SOC change is restricted to a small range, which
implies that the open-circuit voltage and internal resistance
remain basically unchanged. Consequently, λ̇ (t) can be con-
sidered as λ̇ (t) = 0. Therefore, λ(t) remains constant along
the optimal SOC trajectory. Meanwhile, the optimal EF (S(t))
could be obtained if the optimal co-state λ(t) is known.

This paper associates EF with SOC deviation from the
reference SOC for the sake of battery charge sustainabil-
ity [25], [36]. The value of EF could be approximated
by (20) [37], [38].

S (t) =
ηem

ηe
+ 2δ

Hlhv
Ebat (t)

1SOC (t) (20)

where ηem is the EM efficiency, ηe is the engine efficiency, δ
is the penalty factor and 1SOC(t)=SOCr -SOC(t), 1SOC(t)
is the deviation between the reference SOC (SOCr ) and actual
SOC (SOC(t)).

When the value of EF is determined, the optimal torque
distribution can be obtained by (21).[
Te_opt ,Tem_opt

]
= argmin {H (SOC (t) , S (t) , t)} (21)

where Te_opt and Tem_opt are the optimal torque of engine
and EM, respectively.
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FIGURE 6. Fuzzy logic rule system.

C. EF ADJUSTMENT ALGORITHM
The value of EF, determining the power split ratio between
the engine and the EM, is crucial to the optimization results
of ECMS. This paper uses the iterativemethod to calculate the
approximate optimal EF [39]. The prior knowledge of driving
conditions is necessary for the calculation and two standard
driving cycles are used for simulation.

With the optimal constant EF, an approximate global opti-
mal result can be obtained, based on the prior knowledge of
the driving cycle. However, in real-world conditions, it is not
feasible to get the optimum control with a constant EF, due
to the unpredictability of the driving conditions. In the previ-
ous researches, an adaptation law, which could be described
in (22), was adopted to adjust the EF, leading to an improved
fuel economy compared to constant EF.

S (k + 1) = S (k)+ kp (SOCr − SOC (t)) (22)

where S(k+1) presents the new value of EF in the next
iteration, S(k) is the current EF, kp is the proportional gain
of the feedback controller.

Furthermore, researchers use the PI controller to improve
the convergence of EF based on the aforementioned adapta-
tion law. However, the unsatisfactory SOC charge sustainabil-
ity is still a problem to the real-time control of HEV, which
means a significant deviation between the actual SOC and the
reference SOC still exists. Therefore, the EF adaptation law
with stronger robustness based on SOC deviation is necessary
to be employed to balance the battery SOC and enhance
robustness. In view of this, considering the strong robustness
of fuzzy controller, a new adjustment algorithm with fuzzy
logic controller modifying EF as well as sustaining SOC is
developed.

The fuzzy rule system shown in Fig. 6 is applied to
calculate the EF adjustment based on the identification of
current speed and SOC deviation. There are two inputs and
one output of the proposed fuzzy logic controller. One input
is 1SOC , the SOC deviation between the actual SOC and
reference SOC, defined by sevenmembership functions (Pos-
itive Large, Positive Medium, Positive Small, Zero, Negative
Small, Negative Medium and Negative Large). The other
one is the current rotational speed of the engine, defined by
five membership functions (High, Relatively High, Medium,
Relatively Low and Low). The output is the EF adjustment
based on the initial EF, which is defined by seven member-
ship functions as 1SOC . According to the characteristics of
the EF, more fuel energy will be consumed by increasing
the value of EF, resulting in the growth of battery SOC.
Conversely, more battery power will be consumedwith a drop

FIGURE 7. Membership functions for inputs and output.

FIGURE 8. Output surface for the fuzzy inference system.

of SOC if the value of EF is reduced. And in the light of
engine fuel consumption contour map, the engine worksmore
efficiently in the mid-speed range, while less efficiently in
the low-speed range and high-speed range. Consequently, the
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FIGURE 9. The framework of the Fuzzy A-ECMS for a parallel HEV.

FIGURE 10. Torque distribution in NEDC.

TABLE 6. The fuzzy rules.

fuzzy logic rules are formulated based on relevant heuristic
knowledge [40]. The basic control algorithm is that the engine
works in the high-efficiency range as much as possible. Addi-
tionally, the engine provides additional power to recharge the
battery when the SOC reaches its lower threshold. Further-
more, priority is given to motor drive when the vehicle is
starting or at low speed.

The membership functions for inputs and output are shown
in Fig. 7. Fig. 8 presents the output surface for the fuzzy
inference system. The fuzzy rules between output and inputs
are formulated in Table 6.

FIGURE 11. Torque distribution in WLTC.

D. REAL-TIME ENERGY MANAGEMENT STRATEGY
IMPLEMENTATION
Based on the aforementioned ECMS and EF adjustment algo-
rithm, the Fuzzy A-ECMS, of which the framework is pre-
sented in Fig. 9, is developed to implement real-time energy
management for the parallel HEV.

The vehicle speed information is transferred from the
HEV physical model to the driver model, and then the
acceleration or brake pedal signal can be obtained. A driver
intention recognitionmodule as described in (23) is utilized to
identify the overall torque demand of the transmission input
axle according to pedal signal and the current speed deviation
from target speed.

Tacc_dem=αacc_pedal ·
(
Te_max (ne (t))+Tem_max (nem (t))

)
(23)

where Tacc_dem is the demand torque on the transmission input
axle, αacc_pedal is the opening of the acceleration pedal and
Te_max(ne(t)) and Tem_max(nem(t)) are the maximum torque
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FIGURE 12. Operating points of engine and EM in NEDC.

FIGURE 13. Operating points of engine and EM in WLTC.

FIGURE 14. Driving cycle tracking in NEDC.

of the engine and the EM at the current rotational speed,
respectively.

Then, the proposed Fuzzy A-ECMS determines the instan-
taneous optimal torque split ratio based on the speed and
demand torque information, with the adjustment of EF, which
is the sum of the initial near optimal EF calculated by PMP
and the output of the fuzzy logic controller.

For the battery charge sustainability, a practical regener-
ative braking method is used to balance the brake torque
split to EM and mechanical brake. The EM works on regen-
erative braking mode while the brake pedal is depressed,
and the torque split to it and mechanical brakes are given
by (27).

Tb_dem = αb_pedal · Tb_max (24)

Tb_max = Tb_mec_max + Tem_max (nem (t)) · ηt · it · if (25)

ξ = Tb_dem − Tem_max (nem (t)) · ηt · it · if (26)Tem_reg (t) = Tem_max (nem (t)) Tb_mec (t)=ξ, if ξ > 0

Tem_reg (t) =
Tb_dem
ηt · it · if

Tb_mec (t)=0, if ξ ≤ 0

(27)

where Tb_dem is the demand brake torque, αb_pedal is the
opening of brake pedal, Tb_max is the maximum over-
all brake torque acting on wheels, Tem_max(nem(t)) is the
maximum torque of EM at the current rotational speed,
Tem_reg(t) and Tb_mec(t) are the torque output from the EM
and brake torque acting on wheels from mechanical brakes,
respectively.
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FIGURE 15. Driving cycle tracking in WLTC.

FIGURE 16. Battery SOC trajectory comparison of three EMSs in NEDC.

FIGURE 17. Battery SOC trajectory comparison of three EMSs in WLTC.

IV. SIMULATION VALIDATION AND RESULT ANALYSIS
After establishing the physical model of the parallel HEV
in AVL CRUISE software, the real-time energy management
controller, Fuzzy A-ECMS, which includes the basic ECMS
module and a fuzzy logic controller to regulate the EF based
on the SOC deviation, is formulated in MATLAB/Simulink,
with the AVL CRUISE interface connecting it to the physical
HEV model.

A. COMPARATIVE SIMULATION TEST
To evaluate the optimization performance of the studied
control algorithm, simulations under two driving cycles of
NEDC and WLTC are carried out. Fig.10. and Fig.11. show
the torque distribution between engine and EM in two driv-
ing cycles, from which it can be observed that EM works
more in starting condition and outputs torque to optimize
the engine operating points. The engine works in a relatively

FIGURE 18. EF comparison of three EMSs in NEDC.

FIGURE 19. EF comparison of three EMSs in WLTC.

small torque range and charges the battery while SOC is low,
which contributes to the fuel economy and SOC sustainabil-
ity. As we can see from Fig.12. and Fig. 13., which represent
operating points of engine and EM under different driving
cycles, in the whole simulation period, the engine basically
works in low fuel consumption rate areas, with the majority
of the brake specific fuel consumption lower than 205 g/kwh,
while EM works more frequently and more scattered, with
most of the efficiency higher than 0.8. The low engine fuel
consumption rate and high EMefficiency guarantee reduction
in total fuel consumption of the hybrid powertrain system.

For comparison purpose, the comparative simulation of
the Fuzzy A-ECMS and other three real-time controllers,
SOC-based A-ECMS, standard ECMS and rule-based EMS,
is made under the driving cycles of NEDC and WLTC.
Tomaintain a good performance of the electric power battery,
the initial value of SOC is chosen as 0.6. The approximate
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FIGURE 20. Comparison of four EMSs in NEDC.

FIGURE 21. Comparison of four EMSs in WLTC.

optimal values of EF for ECMS, which are also determined as
the initial EF for Fuzzy A-ECMS and SOC-based A-ECMS,
are set as 2.9 and 2.84 in NEDC and WLTC, respectively,
using iterative method. In real driving conditions, the initial
EF can be selected as ηem/ηe [38] according to (20).

It can be seen in Fig. 14. and Fig. 15., the actual veloc-
ity follows the target velocity well, with maximum veloc-
ity deviation of about 1.2 m/s for NEDC and 1.05 m/s for
WLTC. Fig. 16. and Fig. 17 show the battery SOC trajec-
tories obtained by the three different EMSs under different
driving cycles. In NEDC, the final SOC deviation of Fuzzy
A-ECMS is 0.0019, which is slightly larger than the value
of ECMS, 0.0003, but smaller than that of SOC-based A-
ECMS, 0.0037. Themaximum deviation between actual SOC
and reference SOC of SOC-based A-ECMS among the entire
driving cycle is 0.0259, followed by Fuzzy A-ECMS with
the value of 0.0221, while ECMS generates the minimum
value, 0.0167. The near optimal SOC trajectory of ECMS is
based on the prior knowledge of driving cycle, while Fuzzy
A-ECMS presents better performance in SOC charge sustain-
ability, maintaining SOC deviation within a smaller range,
compared with SOC-based A-ECMS.

In WLTC, Fuzzy A-ECMS presents a value of 0.0021 for
the final SOC deviation, and the value of ECMS and SOC-
based A-ECMS are 0.0001 and 0.0041, respectively. The
maximum SOC deviation of Fuzzy A-ECMS throughout
the driving cycle is 0.0213, which is the smallest value
in the meanwhile, followed by that of ECMS and SOC-
based A-ECMS, which are 0.0261 and 0.0333, respectively.

FIGURE 22. GPS route of Beihang campus shuttle bus.

The results substantiate the robustness of Fuzzy A-ECMS
compared to conventional SOC-based A-ECMS with a more
stable SOC trajectory, verifying the performance in improv-
ing SOC charge sustainability.

Fig. 18. and Fig. 19. illustrate the EF adaptation behavior
of the three EMSs under two driving cycles. It is clear that the
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FIGURE 23. Beihang campus shuttle bus driving cycle.

FIGURE 24. Driving cycle tracking in BCSBDC.

FIGURE 25. Battery SOC trajectory comparison of three EMSs in BCSBDC.

EF of fuzzy A-ECMS fluctuates more frequently than that of
SOC- based A-ECMS. This can be explained by the differ-
ence of EF adjustment algorithm – in other words, the EF of
Fuzzy A-ECMS is adjusted according to the real-time SOC
deviation and engine velocity, while the EF of SOC-based A-
ECMS is modified periodically and based on the value of the
previous step. For Fuzzy A-ECMS, when the value of SOC is
larger than reference SOC, the EF decreases a certain range so
that more electricity will be consumed to make SOC closer to
reference SOC. Conversely, if SOC is below reference SOC,
the EF increases to make more charge behavior. For SOC-
based A-ECMS, the EF is tuned after a short period and
based on the previous value, which causes a certain lag for
the adjustment. According to the EF adjustment performance
and data analysis, it can be concluded that the EF adaptation

FIGURE 26. EF comparison of three EMSs in BCSBDC.

law of Fuzzy A-ECMS is more robust to adjust EF flexibly
and achieves better SOC charge sustainability.

Furthermore, in order to evaluate the fuel economy of the
proposed Fuzzy A-ECMS, a comparison with three other
EMSs is presented in Fig.20. and Fig. 21. The SOC com-
pensated fuel consumption is employed to make a fair com-
parative study. As we can see, in NEDC, the compensated
fuel consumptions for Fuzzy A-ECMS, rule-based EMS and
SOC-based A-ECMS are 12.583, 13.374 and 12.726, respec-
tively. That is to say, FuzzyA-ECMS shows 5.91% and 1.12%
improvements in fuel economy over rule-based EMS and
SOC-based A-ECMS, respectively. In WLTC, for the four
EMSs mentioned above, the compensated fuel consumptions
are 12.623, 13.396 and 12.88, respectively. The proposed
Fuzzy A-ECMS improves fuel economy by 5.77% and 1.20%
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FIGURE 27. Comparison of four EMSs in BCSBDC.

compared with rule-based EMS and SOC-based A-ECMS.
In both standard driving cycles, the optimal ECMS works as
the benchmark.

B. SIMULATION TEST UNDER A REAL DRIVING CYCLE
To verify the effectiveness of the proposed EMS under real
driving cycles, the driving data on a real road condition is
collected and fitted to a driving cycle. The route of Beihang
Campus Shuttle Bus is chosen to be the target driving cycle
taking into account the typicality of the driving conditions
it contains, including typical suburban condition, highway
condition and urban condition. Fig. 23 shows the final real
driving cycle, namely Beihang Campus Shuttle Bus Driving
Cycle (BCSBDC).

To better simulate the actual driving conditions, the
initial EF is selected as 2.23 according to (20), in which the
ηem is 87% and the ηe is 39%. The initial value of SOC is
chosen as 0.6.

It can be seen in Fig. 24., the actual velocity follows the tar-
get velocity well, with maximum velocity deviation of about
0.86m/s. Fig. 25. shows the battery SOC trajectories obtained
by the three different EMSs. The final SOC deviation of
Fuzzy A-ECMS is 0.0039, which is slightly smaller than the
value of SOC-based A-ECMS, 0.0049, and much smaller
than that of ECMS, 0.0157. The maximum deviation between
actual SOC and reference SOC of Fuzzy A-ECMS among
the entire driving cycle is 0.0169, followed by SOC-based
A-ECMS with the value of 0.0218, and ECMS generates the
maximum value, 0.031. It is clear that ECMS cannot generate
near optimal SOC trajectory when the initial EF is not set
based on driving cycles. On the contrary, Fuzzy A-ECMS
still presents better performance in SOC charge sustainability,
maintaining SOC deviation within a smaller range, compared
with SOC-based A-ECMS and ECMS. Fig. 26. illustrates the
EF adaptation behavior of the three EMSs under BCSBDC.
It shows similar performance as in NEDC and WLTC.

Furthermore, as we can see, in Fig. 27., the compen-
sated fuel consumptions for Fuzzy A-ECMS, rule-based
EMS, ECMS and SOC-based A-ECMS are 12.864, 13.316,
13.208 and 12.923, respectively. In other words, Fuzzy
A-ECMS shows 3.39%, 2.60% and 0.46% improvements in
fuel economy over rule-based EMS, ECMS and SOC-based
A-ECMS in real driving conditions, respectively.

V. CONCLUSION
This article aims to improve the fuel economy and the
SOC charge sustainability of the parallel HEV, with the pro-
posal of a novel real-time EMS, namely, Fuzzy A-ECMS.
In this study, the ECMS, which is derived from PMP algo-
rithm, is adopted in order to gain approximate optimal fuel
economy under real-time driving conditions. For the SOC
charge sustainability, an EF adaptation law is developed
by utilizing fuzzy logic controller based on SOC deviation.
Compared to rule-based EMS and conventional SOC-based
A-ECMS, Fuzzy A-ECMS improves the fuel economy from
1.12% to 5.91% under NEDC andWLTCwhen the initial EFs
are set as the optimal EF for ECMS, as well as shows stronger
robustness in the SOC charge sustainability. Further, under
real driving cycle, the proposed Fuzzy A-ECMS presents
0.46% to 3.39% improvements in fuel economy when the
initial EF is not set based on prior knowledge of driving
cycle, verifying the feasibility and effectiveness of the pro-
posed Fuzzy A-ECMS under different conditions. In future
research, we would like to explore the influence of driver
factors and velocity prediction on the performance of energy
management strategies.
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