
Received July 19, 2019, accepted August 25, 2019, date of publication September 13, 2019, date of current version September 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941429

A Time and Space-Efficient Compositional
Method for Prime and Test Paths Generation
EBRAHIM FAZLI AND MOHSEN AFSHARCHI
Department of Computer Engineering, University of Zanjan, Zanjan 45371-38891, Iran

Corresponding author: Ebrahim Fazli (efazli@znu.ac.ir)

ABSTRACT This paper investigates the problem of prime and test paths generation, which is an important
problem in ensuring path coverage in software testing. Most existing methods for prime/test paths generation
have little success in generating the set of all prime/test paths of structurally complex programs with
high Npath complexity. This paper puts forward two novel methods for the generation of prime and test
paths of highly complex programs, namely a vertex-based algorithm and a compositional method. The
proposed vertex-basedmethod enables a time-efficient approach for the generation of all prime paths, and the
compositional method provides a highly time and space-efficient method for the generation of prime and test
paths in cyclic control flow graphs with extremely large Npath complexity. We also implement the proposed
algorithms as a software toolset for the generation of prime and test paths. Our experimental results on a
set of complex programs indicate that the proposed approaches significantly outperform existing methods,
especially for large and structurally complex programs.

INDEX TERMS Software testing, structural testing, prime path coverage.

I. INTRODUCTION
Prime Paths (PPs) generation is an important problem in soft-
ware testing as PPs subsume other structural testing criteria
such as edge and branch coverage as well as enabling test
data generation through generating Test Paths (TPs). A prime
path is a maximal simple path in a directed graph; i.e., a
simple path that cannot be extended further without breaking
its simplicity property. In PPs generation, researchers [3],
[4], [9] consider the Control Flow Graph (CFG) of the Pro-
gram Under Test (PUT), where each node/vertex captures a
block of assignments often ending in a conditional statement,
and each arc (b1, b2) represents the transfer of control from a
block b1 to another block b2. This paper enhances the state-
of-the-art in PPs and TPs generation for large and structurally
complex programs through a compositional method.

Most existing methods for PPs/TPs generation have had
little success in developing algorithms and tools that can
generate PPs/TPs in a highly time/space efficient fashion
for complex and large programs. For example, Ntafos and
Hakimi [16] study the minimum path cover problem in a
graph-theoretic setting where they show that finding the
minimum number of test paths that cover all vertices and
branches is NP-hard. Ammann and Offutt [3] define the PPs

The associate editor coordinating the review of this manuscript and
approving it for publication was Hui Liu.

generation problem and propose a dynamic programming
algorithm that can generate all PPs. Their approach extends
each path as long as there is an edge that can be included
while preserving the simplicity property of the path; i.e., an
edge-based method. They also implement their approach as
a web-based tool [4]. Aho and Lee [2] leverage minimum
flow algorithms towards generating minimum number of test
paths that ensure node coverage. Li et al. [12] investigate
minimum TPs generation as a shortest superstring problem,
which is an NP-complete problem, and present some polyno-
mial approximation algorithms. Dwarakanath and Jankiti [9]
exploit Max-Flow/Min-Cut algorithms [10] to generate min-
imum number of TPs. Bures and Ahmed [8] formulate TPs
generation in a broader and more abstract setting where
they take a model of PUT, a coverage criterion (e.g., prime
path), the priority of each component in PUT, and the opti-
mality criterion (e.g., minimum number of paths). Then,
they generate a test set that meets the optimality criterion.
Search-based methods exploit heuristic search techniques
to generate PPs/TPs. For instance, Hoseini and Jalili [11]
present a model by means of Genetic Algorithm (GA) to
generate PPs/TPs of CFGs extracted from sequence dia-
grams. Sayyari and Emadi [17] utilize ant colony optimiza-
tion to generate TPs. Srivastava et al. [18] take a Markov
Chain model of PUT and generate optimized test sequences.
Bidgoli et al. [6] exploit swarm intelligence algorithms along

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 134399

https://orcid.org/0000-0001-6920-3824


E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

with a normalized fitness function to ensure prime paths
coverage. Lin and Yeh [13] and Bueno and Jino [7] present
GA-based methods for prime paths coverage.

What the aforementionedmethods have in common is their
limited power in generating PPs/TPs of structurally complex
programswith extremely large Npath complexity (in the scale
of a few hundreds of billions) [15], where Npath complexity
captures the number of execution paths while limiting the
loops to at most one iteration. There are several reasons
behind this deficiency. First, the number of PPs could still be
extremely large even in small programs with loops. Second,
time and space efficiency may sometimes be conflicting
goals. Third, space cost of existing methods is significant
mostly due to inefficient data structures andmemorymanage-
ment methods used in such methods. Fourth, most existing
methods do little to reuse the information produced during
PPs generation for TPs generation, thereby increasing costs.

This paper presents a compositional method for PPs/TPs
generation in a highly time and space-efficient fashion that
significantly outperforms existing methods. The proposed
method first generates the component graph of the input CFG
and processes each node of the component graph (i.e., each
SCC of the CFG) in isolation.1 Wefirst present a vertex-based
PPs generation algorithm that we run on each SCC. Our
vertex-based algorithm associates a list of partial paths to
each vertex and keeps extending those paths while preserv-
ing simplicity. Upon termination, the list associated to each
vertex v contains the PPs ending in v. In each iteration of the
algorithm, the list of v is expanded by extending the PPs in v’s
predecessors, and eliminating redundant paths in the list of v.
The proposed vertex-based algorithm is more time-efficient
than Ammann and Offutt’s algorithm [3], nonetheless, it is
less space efficient due to the cumulative propagation of
partial paths in the lists associated to vertices. To manage this
space inefficiency, we prune the vertex lists after each update,
and in a modular fashion, apply our vertex-based algorithm
on individual SCCs. For each SCC, we generate different
types of PPs (e.g., PPs ending in exit vertices of an SCC),
which we use in the merging phase of the proposed method.
In order to generate the PPs of the input CFG, the proposed
merging method combines partial PPs of individual SCCs on
each prime path of the CFG’s component graph. To enable
a highly space-efficient merging method, we generate the
resulting PPs on the secondary memory.

In order to validate the proposed algorithms, we have
implemented them as a toolset and have compared their time
and space efficiency with respect to the state-of-the-art in
PPs generation. Moreover, we have conducted several experi-
ments on two classes of programs. The first category includes
five CFGs (adopted from [5]), which represent five pro-
grams in the Apache Commons library. The maximum Npath
complexity amongst the first five CFGs is almost 33500.
The second category includes three synthetic CFGs that we

1Throughout this paper the terms compositional and SCC-based are used
interchangeably

have manually generated by including cycles and condition-
als in them. The Npath complexity of these programs is up to
612 billion. Our experimental results on these eight programs
indicate that the proposed SCC-based approach significantly
outperforms existing methods and our vertex-based method
in terms of both time and space efficiency (see Section VII
for details). Wherever existing methods fail to generate the
prime paths of some programs (amongst these 8 programs),
the proposed compositional method succeeds.

Organization. Section II introduces some basic con-
cepts related to directed graphs, prime paths and test paths.
Section III states the problem of prime paths generation.
Section IV presents a vertex-based algorithm for PPs gen-
eration. Subsequently, Section V puts forward a highly time
and space-efficient method for compositional generation of
PPs. Section VI presents an efficient method for TPs gen-
eration. Section VII talks about our experimental results.
Finally, Section VIII makes concluding remarks and dis-
cusses future work.

II. PRELIMINARIES
This section presents some graph-theoretic concepts that we
rely on throughout this paper. A directed graph G = (V ,A)
contains a set of vertices V and a set of arcs (v, v′) ∈ A,
where v, v′ ∈ V . A simple path p in G is a sequence of
vertices v1, · · · , vk , where each arc (vi, vi+1) belongs to A for
1 ≤ i < k and k > 0, and no vertex appears more than once
in p unless v1 = vk . A vertex v′ is reachable from another
vertex v iff (if and only if) there is a simple path starting at v
and ending in v′. A Strongly Connected Component (SCC)
in G is a sub-graph Gc = (V ′,A′), where V ′ ⊆ V and
A′ ⊆ A, and for any pair of vertices vs, vd ∈ V ′, vs and vd are
reachable from each other. Tarjan [19] presents a method for
identifying the SCCs of graphs and constructing their compo-
nent graph, which is a Directed Acyclic Graph (DAG) whose
every vertex is an SCC. We now present some definitions
related to the focus of this work; i.e., prime and test paths
generation. The Control Flow Graph (CFG) of a program is a
directed graph whose vertices are blocks of statements ending
in conditionals and branches, and its arcs capture the transfer
of control between two statement blocks. A CFG often has
a start vertex that captures the block of statement starting
with the first instruction of the program, and has some end
vertices representing the blocks of statements that end in a
halt/exit/return instruction. For example, Figure 1 illustrates
the CFGs (adopted from [5]) of two methods of a class in the
Apache Commons library.
Definition 1 (Prime Path): A prime path is a maximal

simple path in a directed graph; i.e., a simple path that cannot
be extended further without breaking its simplicity property
(e.g., prime path 〈2, 4, 5, 7, 2〉 in Figure 1(b)).
Definition 2 (Complete Prime Path): A prime path that

emanates from the start vertex and terminates at some end ver-
tex (e.g., prime path 〈Start, 1, 2, 4, 6, 8, End〉 in Figure 1(b)).
Definition 3 (Component Graph of CFGs): The compo-

nent graph of a CFG G = (V ,A), called CCFG, is a DAG

134400 VOLUME 7, 2019



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

FIGURE 1. CFGs for two open source methods.

FIGURE 2. SCC and CCFG extracted from CFG Fig.1(b).

whose vertices are the SCCs of G, and any arc (vi, vj) ∈ A
starts in an SCCi and ends in SCCj (see Fig 2(b)).
In the following definitions, let G = (V ,A) be a CFG and

C = (Vc,Ac) be an SCC in the CCFG of G; i.e., C is a vertex
in CCFG of G,
Definition 4 (SccEntryVertex): A vertex ve ∈ Vc is an

SccEntryVertex of C iff ∃v : v ∈ V ∧ v 6∈ Vc : (v, ve) ∈ A.
(e.g., Vertex 2 in Fig 2(a)).
Definition 5 (SccExitVertex): A vertex ve ∈ Vc is an

SccExitVertex of C iff ∃v : v ∈ V ∧ v 6∈ Vc : (ve, v) ∈ A.
(e.g., Vertices 2 and 6 in Fig 2(a)).
Definition 6 (SccEntryExitPath): An SccEntryExitPath is

an acyclic simple path from vs ∈ Vc to vt ∈ Vc, where vs is an
SccEntryVertex and vt is an SccExitVertex of C . (e.g., path
〈2〉 and 〈2, 4, 6〉 in Fig 2(a)).
Definition 7 (SccExitPath): An exit path of C is a simple

path that starts in vs ∈ Vc and ends in vt ∈ Vc, where vs
is not an SccEntryVertex but vt is an SccExitVertex of C .

We call p an SccExitPath iff p is a maximal exit path; i.e., p
is not a proper subpath of any other exit path in C . (e.g., path
〈4, 6, 9, 7, 2〉 in Fig 2(a))
Definition 8 (SccEntryPath): An entry path of C is a sim-

ple path that starts in vs ∈ Vc and ends in vt ∈ Vc, where
vs is an SccEntryVertex but vt is not an SccExitVertex of C .
We call p an SccEntryPath iff p is a maximal entry path; i.e., p
is not a proper subpath of any other entry path in C . (e.g.,
the path 〈2, 4, 5, 7〉 in Fig 2(a))
Definition 9 (SccInternalPrimePath): An SccInternal-

PrimePath p of C is a prime path starting in vs ∈ Vc
and ending at vt ∈ Vc. Moreover, if p is acyclic, then it
must not start at an SccEntryVertex in C or terminate in
some SccExitVertex in C . (e.g., the prime path 〈4, 5, 7, 2, 4〉
in Fig 2(a))
Definition 10 (SccExitPrimePath): Aprime path p from vs

to vt is an SccExitPrimePath iff vs ∈ Vc and vt ∈ V is an
End vertex of G. (e.g., the prime path 〈4, 6, 9, 7, 2, 3,End〉
in Fig 2(a))
Definition 11 (SccEntryPrimePath): A prime path p from

vs to vt is an SccEntryPrimePath iff vs is the Start vertex
of G and vt ∈ Vc. (e.g., the prime path 〈Start, 1, 2, 4, 5, 7〉
in Fig 2(a))
Definition 12 (CompletePrimePath): A prime path p from

vs to vt is a CompletePrimePath iff vs is the Start vertex
of G and vt is an End vertex in G. (e.g., the prime path
〈Start, 1, 2, 4, 6, 8,End〉 in Fig 2(a))

III. PROBLEM STATEMENT
The problem of generating PPs of a directed graph is an
important problem as even small graphs with a few cycles
may have a huge number of PPs. In addition to the algo-
rithmic importance of generating the set of PPs of a graph,
the practical implications are also significant as there is a
need for software tools that can generate all PPs of programs
with high Npath complexity in a time and space-efficient
manner. We formulate the problem of generating PPs in a
graph-theoretic setting as follows:
Problem 1 (Prime Paths Generation):

• Input: A graph G = (V ,A) that represents the CFG of
a given program, and a start vertex s ∈ V .

• Output: The set of prime paths to each vertex v ∈ V .

Ammann and Offutt’s state-of-the-art edge-based algo-
rithm [3] for PPs generation starts from each vertex v ∈ V ,
and expands the candidate prime paths emanating from v by
including outgoing arcs that preserve the simplicity of the
paths. That is, for any vertex v and an arc (v,w), the vertex w
is added to the path ending in v if the resulting path remains
simple or forms a cycle. If w has no outgoing arcs, then there
will not be further expansion. This process continues until no
path can be extended further without breaking the simplicity
property. Table 1 demonstrates an execution of Ammann
and Offutt’s algorithm on the CFG in Figure 1(a). Notice
that while the number of paths per vertices is manageable,
the number of iterations of this algorithm could be as large

VOLUME 7, 2019 134401



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

TABLE 1. Running the edge-based algorithm [3] on CFG in Figure 1(a).

as | V |, which negatively impacts the time efficiency of
their algorithm. Thus, it is desirable to devise algorithms that
can tackle this deficiency while preserving (and preferably
improving) space efficiency.

IV. VERTEX-BASED ALGORITHM
This section presents a time-efficient algorithm (i.e., a solu-
tion for Problem 1) that computes the set of all prime paths
reaching a vertex in a given CFG. Algorithm 1 takes a digraph
G(V ,A) (representing the CFG of a program) and a start
vertex s ∈ V , and then generates the set of all prime paths
reaching each vertex vi ∈ V in a list associated to v, denoted
vi.list. Initially, the prime paths list of each vertex contains
only the vertex itself, and the start vertex s and its immediate
successors are inserted in a queue Q. Algorithm 1 performs
two kinds of processing on vi.list: (1) extending the paths in
the lists of all predecessor vertices of vi (Lines 6 to 16), and
(2) pruning the redundant paths (Lines 17 to 20) in vi.list.
A redundant path in vi.list is an acyclic path that (i) is read by
both successors of vi, and (ii) is either extended by at least one
successor or covered by another path in vi.list. Each vertex
vi undergoes these processing steps after extraction from Q
(Line 2). Algorithm 1 then propagates the wave of updates to
the successors of vi by inserting them in Q (Lines 21 to 23).
After exiting the while loop, Algorithm 1 will prune the list
of paths in each end vertex of the input CFG (Lines 24 to 27).

Table 2 illustrates the vi.list of each vertex vi and the con-
tents of the queue Q upon executing Algorithm 1 on the CFG
in Figure 1(a). The ‘Queue’ column illustrates the contents
of Q as vertices are inserted in it starting from Vertex 0 (i.e.,
the Start vertex). Each column contains the paths that are
inserted in the list of each vertex vi throughout the execution
of Algorithm 1. Each list vi.list (e.g., list of 7) is initialized by
{vi} (e.g., {7}). Then, as the wave of reading reaches vi, the list
of vi is updated by extending the paths in its predecessor

(e.g., the predecessor 4 in arc (4, 7)). For example, when the
paths in the list of Vertex 4 are read by Vertex 7, each path
is extended by the new vertex 7, creating a longer path that
ends in 7. The number of paths in each list demonstrates
the memory requirements of Algorithm 1. The list of paths
belonging to Vertex 8 becomes the largest list as it reads and
extends the paths in the lists of vertices 2, 5, 6 and 7. The last
entry in Column 8 represens the pruned list of Vertex 8 where
no path is subsumed by another.
Lemma 1: Let (vj, vi) be an arc in A and q be an acyclic

path in vj.list . The condition of the if statement on Line 8
evaluates to true for q and vi no more than once. That is, each
acyclic path q ∈ vj.list is read by vi at most once.

proof 1: Suppose Algorithm 1 has already entered the if
statement on Line 8 for some q and vi. This means that q has
been labeled as ’read by vi’. Thus, next time Algorithm 1 gets
to check if q is read by vi, the condition on Line 8 evaluates
to false.
Lemma 2: For any vertex vj that has an outgoing arc

(vj, vi), each acyclic path q in vj.list will eventually be labeled
‘read by vi’.

proof 2: Initially, each vertex vj includes {vj} as the only
path, and this path is not read yet. The for-loop in Line 6
iterates through all incoming arcs of each vertex vi ∈ V and
will eventually get to (vj, vi). As a result, any path q ∈ vj.list
will be labeled on Line 9 because initially all paths are not
read and are acyclic. If new paths are imported in vj.list from
its predecessors in subsequent iterations of the algorithm,
then such paths will be labeled as ‘read by vi’ unless they
form a cycle.
Lemma 3: For each vertex vi ∈ V , at some finite point

in time, vi.updateFlag will become false and will remain
false.

proof 3: Lemmas 1 and 2 imply that all acyclic paths
in the predecessors of vi will eventually be labeled as ‘read

134402 VOLUME 7, 2019



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

Algorithm 1 Vertex-Based Prime Paths Generation
Input: G(V ,A) with an outdegree 2; Start vertex s ∈ V
Output: The set of prime paths ending in each vertex

v ∈ V .
Initialize: ∀vi ∈ V , vi.list = {vi}, vi.updateFlag =

false, and queue Q with s.

1: while (Q is non-empty) do
2: Extract vi from Q;
3: vi.updateFlag = false;
4: if vi = s then
5: Insert the immediate successors of vi in Q;
6: for each vj where (vj, vi) ∈ A do
7: for each acyclic path q ∈ vj.list do
8: if q is not read by vi then
9: Label q as read by vi;
10: if vi does not appear in q or vi is the first

vertex of q then
11: r = q+ vi;
12: Label q as an extended path;
13: if vi is the first vertex of q then
14: Label r as a cycle.
15: Add r to vi.list;
16: vi.updateFlag = true;
17: if All successors of vj have read vj.list then
18: for each acyclic path p ∈ vj.list do
19: if (p is an extended path) or (p is covered

by some path p′ ∈ vj.list) then
20: remove p;
21: if vi.updateFlag = true then
22: for each vk where (vi, vk ) ∈ A do
23: Insert vk in Q.
24: for each end vertex vi ∈ V do
25: for each acyclic path p ∈ vi.list do
26: if (p is an extended path) or (p is covered by some

path p′ ∈ vi.list) then
27: remove p;
28: for each vi ∈ V do
29: return vi.list;

by vi’, and will keep their status of being ‘read’. As such,
the condition on Line 8 will never become true again when
processing arc (vj, vi). Therefore, Algorithm 1 will no longer
get to Line 16; i.e., vi.updateFlag will become false (on
Line 3) and will never become true again.
Theorem 1: Algorithm 1 will eventually terminate.
proof 4: Lemma 3 implies that at some finite point in

time, the condition in Line 21 will become false for each
vi ∈ V and will remain false. Thus, Algorithm 1 will even-
tually stop inserting vertices in Q. Moreover, the remaining
vertices in Q are extracted on Line 2 in subsequent iterations
of the while-loop. Thus, Q will eventually become empty;
i.e., Algorithm 1 exits the while loop.

FIGURE 3. Overview of the SCC-based approach.

V. A COMPOSITIONAL METHOD FOR PRIME
PATHS GENERATION
In order to scale up PPs generation, this section presents a
compositional method that provides better time and space
efficiency in comparison with existing methods for PPs gen-
eration. The basic idea behind our compositional method is
to (1) compute the component graph of a given CFG, denoted
CCFG; (2) calculate the set of prime paths of CCFG and the
set of prime paths of each individual SCC in CCFG (genera-
tion phase); (3) generate different types of prime paths (path
extraction), and (4) merge the prime paths of SCCs towards
generating all prime paths of the original CFG. Figure 3
illustrates the steps of our SCC-based compositional method
as well as different types of prime paths we generate. Our
proposedmethod distinguishes four types of prime paths. The
first type, called CompletePrimePaths (Definition 12), are
those paths that emanate from the start vertex and terminate
in an end vertex. The second type includes those PPs whose
start and end vertices lie in the same SCC, called SccInter-
nalPrimePaths (Definition 9). The third type contains SccEx-
itPrimePaths (Definition 10) that start from an SCC and end
in an end vertex. The fourth type contains those PPs that
end in an SCC but start in the start vertex, called SccEn-
tryPrimePaths (Definition 11). Subsection V-A discusses the
activities of the preprocessing phase in Figure 3. Subsec-
tion V-B focuses on the generation of InternalPrimePaths in
each SCC and the PPs of CCFG. Subsection V-C presents
algorithms for the extraction of incomplete PPs, namely
SccEntryExitPaths, SccExitPaths and SccEntryPaths. Finally,
Subsection V-D puts forwards a novel and highly efficient
method for compositional generation of complete PPs from
incomplete PPs.

VOLUME 7, 2019 134403



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

TABLE 2. The status of the queue Q and the list of paths of each vertex when running algorithm 1 on the CFG in Figure 1(a). Vertices 0 and 8 respectively
denote the Start and the End vertices.

A. PREPROCESSING
This phase identifies the set of all SCCs of an input CFG
G = (V ,A) and constructs the Component Control Flow
Graph (CCFG) based on the extracted SCCs and the arcs
between them. There are several candidate algorithms such as
Kosaraju’s algorithm [1] and Tarjan’s algorithm [19] that can
be used to find all SCCs of a given digraph. We use Tarjan’s
algorithm [19] that takes a digraph (in this context, a CFG) as
an input and produces its component graphwhose vertices are
SCCs. Each vertex of the input CFG belongs to exactly one
SCC. Moreover, any vertex which does not lie on any cycle
forms an independent SCC by itself. Figures 2(a) and 2(b)
respectively illustrate the result of applying Tarjan’s algo-
rithm [19] on the CFG of Figure 1(b).

B. COMPOSITIONAL PRIME PATHS GENERATION
In this phase, we use the vertex-based algorithm of Section IV
to separately generate the prime paths of all extracted SCCs
and the constructed CCFG. We consider the SCCs with
more than one vertex. Running the vertex-based algorithm
on the constructed CCFG in Figure 2(b) yields two prime
paths demonstrated in the first column of Table 3. Moreover,
the second column of Table 3 illustrates the prime paths

we generate by applying the vertex-based algorithm on the
SCC of Figure 2(a). According to the definition of SccIn-
ternalPrimePaths, some generated prime paths of the SCCs
may not necessarily belong to the main CFG’s prime paths.
We eliminate these paths. The second column of Table 4
illustrates the remaining paths.

C. PATH EXTRACTION
This phase involves three tasks including the extrac-
tion of SccEntryExitPaths (Definition 6), SccExitPaths
(Definition 7) and SccEntryPaths (Definition 8) using
Algorithms 2, 3, and 4. We run Algorithm 2 on each SCC
of the CFG. Algorithm 2 takes all internal prime paths (com-
puted by Algorithm 1) of a given SCC along with a speci-
fied entry vertex ven and an exit vertex vex (Lines 4 to 9).
Algorithm 2 then produces a set of paths starting from ven
and ending at vex . If an entry vertex coincides with the exit
one, this vertex itself is reported as an entry-exit path. If there
is a path that is a subpath of another path, then Algorithm 2
removes it (Lines 10 to 13). The SCC-based approach applies
Algorithm 2 on all pairs of the entry and the exit vertices of
the given SCC. The third column of Table 3 illustrates the
output of this algorithm when it takes the SCC in Figure 2(a).

134404 VOLUME 7, 2019



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

Algorithm 2 SccEntryExitPath Extraction
Input: SccInternalPrimePaths, SccEntryVertex ven,

SccExitVertex vex
Output: SccEntryExitPath(ven, vex)
Initialize: L = ∅;

1: if ven is equal to vex then
2: return ven;
3: else
4: for each path p ∈ SccInternalPrimePaths do
5: if p includes ven and vex then
6: indexS = position of ven in p;
7: indexE = position of vex in p;
8: q = subpath p from indexS to indexE ;
9: append q to list L;
10: for each path p ∈ L do
11: for each path k ∈ L do
12: if k is a subpath of p then
13: remove k;
14: return L;

We devise Algorithm 3 to list the set of prime paths that
terminate at an exit vertex in some SCC. This algorithm takes
all the internal prime paths of the input SCC as well as a
specified exit vertex vex . Algorithm 3 first creates a list L
of longest acyclic simple paths that (1) end at vex , and (2)
are extracted from each internal prime path that includes vex
(Lines 1 to 5). Then, it removes from L any path covered by
another path in L (Lines 6 to 9). The fourth column of Table 3
demonstrates the result of applying this algorithm on the SCC
of Figure 2(a).

Similar to the SccExitPath extraction, the SCC-based
approach employs Algorithm 4 to generate all prime paths
in a given SCC starting at an entry vertex ven. The inputs of
this algorithm include the set of all internal prime paths of the
given SCC and ven. Algorithm 4 first creates a list L of longest
acyclic simple paths that start at ven and are extracted from
some internal prime path of the SCC (Lines 1 to 5). Then,
it removes from L any path that is a subpath of another path
(Lines 6 to 9). We use Algorithm 4 for all entry vertices of
each SCC to generate all SccEntryPaths. The fifth column of
Table 3 illustrates the results of applying Algorithm 4 on the
SCC in Figure 2(a).

D. MERGING
The purpose of this phase is to generate all prime paths of the
input CFG without processing the CFG as a whole; i.e., com-
positional PPs generation. The merging phase takes all gen-
erated prime paths of the CCFG as well as selected paths in
the previous step. Then, it yields all CompletePrimePaths,
SccExitPrimePaths and SccEntryPrimePaths of the CFG
using Algorithms 5, 6, and 7 respectively. Algorithm 5
generates all CompletePrimePaths of the main CFG. This
algorithm takes all prime paths of the CCFG as well as
SccEntryExit paths of all SCCs and produces all complete

Algorithm 3 SccExitPath Extraction
Input: SccInternalPrimePaths, SccExitVertex vex
Output: SccExitPaths to vex
Initialize: L = ∅;

1: for each path p ∈ SccInternalPrimePaths do
2: if p includes vex and p is not a cycle started with vex

then
3: index = position of vex in p;
4: q = subpath p from the beginning to index;
5: append q to list L;
6: for each path p ∈ L do
7: for each path k ∈ L do
8: if k is a subpath of p then
9: remove k;
10: return L;

Algorithm 4 SccEntryPath Extraction
Input: SccInternalPrimePaths, SccEntryVertex ven
Output: SccEntryPaths from ven
Initialize: L = ∅;

1: for each path p ∈ SccInternalPrimePaths do
2: if p includes ven and p is not a cycle started by ven

then
3: index = position of ven in p;
4: q = subpath p from index to the end of p;
5: append q to list L;
6: for each path p ∈ L do
7: for each path k ∈ L do
8: if k is a subpath of p then
9: remove k;
10: return L;

prime paths of the CFG that run through these SCCs. For each
prime path p of CCFG, Algorithm 5 replaces any unexplored
SCC with all SccEntryExitPaths that can be toured with p
(Lines 1 to 6). Each replacement generates a new complete
prime path of the main CFG. The second column of Table 4
presents the result of applying Algorithm 5 on the first and
the third column of Table 3.

Algorithm 6 generates all prime paths that exit SCCs of the
CFG. The inputs of this algorithm include the SccExitPaths
of all SCCs and the CompletePrimePaths of the CFG. The
resulting output contains all prime paths that exit SCCs and
finish at an end vertex of the CFG. When a complete prime
path p enters into an SCCi and leaves it through an exit
vertex vex , Algorithm 6 extracts a subpath starting from vex
to the end vertex of p (Lines 1 to 7). Then, it merges all exit
paths of SCCi that terminate at vex with the aforementioned
subpath of p (Line 8 and 9). Each merging results in a new
SccExitPrimePath (Line 9). At the end, all redundant paths
are removed (Line 10). Using Algorithm 6, we generate all
SccExitPrimePaths for the CFG of Figure 2(b), illustrated
in the second column of Table 4 and the fourth column of

VOLUME 7, 2019 134405



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

TABLE 3. All paths generated in multiple phases of the SCC-based approach using the CCFG in Figure 2(b). The start and end vertices are respectively
represented by 0 and 10.

TABLE 4. All prime paths of the CFG in Figure 1(b). The start and end vertices are respectively represented by 0 and 10.

Algorithm 5 CFG CompletePrimePath Generation
Input: SccEntryExitPaths, PrimePaths of the CCFG
Output: CompletePrimePaths of the CFG
Initialize: L = PrimePaths of the CCFG;

1: for each path p ∈ L do
2: for each unexplored SCC ∈ p do
3: for each path q ∈ SccEntryExitPaths do
4: if p can tour q then
5: r = replace SCC in p with q;
6: append r to L;
7: remove p from L;
8: return L;

Algorithm 6 SccExitPrimePath Generation
Input: SccExitPaths, CompletePrimePaths
Output: SccExitPrimePaths of the CFG
Initialize: L = ∅;

1: for each path p ∈ CompletePrimePaths do
2: for each SCC crossed by p do
3: for each path q ∈ SccExitPath do
4: vex = last vertex of q;
5: if p leaves SCC with vex then
6: index = position of vex in p;
7: r = subpath p from index to the end of p;
8: r = merge q and r ;
9: append r to L;
10: remove redundant paths in L;
11: return L;

Table 3. The result of this process is provided on the third
column of Table 4.

The prime paths that enter SCCs are the final type of
prime paths we generate. Algorithm 7 takes in the SccEntry-
Paths, the CompletePrimePaths, and the SccExitPrimePaths
obtained in previous steps. If a CompletePrimePath or
SccExitPrimePath p enters an SCCi with entry vertex ven,

Algorithm 7 SccEntryPrimePath Generation
Input: SccEntryPaths, CompletePrimePaths,

SccExitPrimePaths
Output: SccEntryPrimePaths of the CFG
Initialize: L = ∅;

1: for each path p ∈ (CompletePrimePaths or
SccExitPrimePath) do

2: for each SCC crossed by p do
3: for each path q ∈ SccEntryPath do
4: ven = first vertex of q;
5: if p entered SCC through ven then
6: index = position of ven in p;
7: r = subpath p from beginning to index;
8: r = merge r and q;
9: append r to L;
10: remove redundant paths in L;
11: return L;

Algorithm 7 extracts a subpath of p from the beginning
to ven (Lines 1 to 7). Then, it merges all ScciEntryPaths
starting from ven with the aforementioned subpath of p
(Line 8 and 9). At the end, we remove all redundant paths
(Line 10). Algorithm 7 generates SccEntryPrimePaths of all
SCCs for the CFG of Figure 2(b). In this case, the input of
Algorithm 7 includes the second and third columns of Table 4,
and the fifth column of the Table 3. The forth column of
Table 4 illustrates the resulting output.

VI. TEST PATHS GENERATION
Generating the set of test paths that cover all prime paths
of a given CFG requires each prime path to be a subpath
of at least one complete test path. Unlike the approach
proposed by [3], [4] where all incomplete prime path are
extended to reach the start and the end vertices, we devise
a new method based on merging, where we obtain a set
of complete test paths using all incomplete prime paths.
In each SCC, the SccIntenalPrimePaths, SccExitPrimePaths,

134406 VOLUME 7, 2019



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

TABLE 5. Test paths generated using the SCC-based approach.

TABLE 6. Graph structure and Generated PPs of the input CFGs.

Algorithm 8 SccInternalPrimePath to SccEntryExitPath
Conversion

Input: SccInternalPrimePaths, SccEntryPaths,
SccExitPaths

Output: SccEntryExitPaths covering all
SccInternalPrimePaths

Initialize: L = SccInternalPrimePaths;
1: for each path p(vs, vt ) ∈ L where p is not an
SccEntryExitPath do

2: if vs is not an SccEntryVertex then
3: find a path q ∈ SccEntryPaths that include vs
4: indexE = position of vs in q;
5: r = subpath q from the beginning to indexE ;
6: p = merge r and p ;
7: if vt is not an SccExitVertex then
8: find a path q ∈ SccExitPaths that include vt
9: indexS = position of vs in q;
10: r = subpath q from indexE to the end;
11: p = merge p and r ;
12: for each path k ∈ L do
13: if k is a subpath of p then
14: remove k;
15: return L;

and SccEntryPrimePaths are incomplete prime paths. While
we need just SccInternalPrimePaths for test paths generation,
we generate SccEntryPaths and SccExitPaths to produce all

prime paths of the input CFG, for the sake of generality and
completeness. Moreover, these paths will be useful for other
testing activities such as test data generation. First, we use
Algorithm 8 to generate a set of SccEntryExitPaths that cover
all SccInternalPrimePaths. Then, we apply Algorithm 5 to
merge these paths with CCFG’s complete paths, thereby
yielding complete test paths that cover all incomplete prime
paths.

The inputs of Algorithm 8 include SccInternalPrimePaths,
SccExitPaths, and SccEntryPaths of the given SCC. In each
iteration (Line 1), Algorithm 8 takes a non-EntryExitPath p,
and transforms it into an EntryExit path. If p does not start
from an entry vertex, Algorithm 8 determines an appropriate
SccEntryPath and merges it in p (Lines 2 to 6). Also, if p does
not finish at an exit vertex, then Algorithm 8 determines an
appropriate SccExitPath and merges it in p (Lines 7 to 11).
At the end of each iteration, all covered internal prime paths
are pruned (Lines 12 to 14). The first Column of Table 5
illustrates the result of applying Algorithm 8 on the generated
SccInternalPrimePaths of the SCC in Figure 1(b). The second
Column of Table 5 presents all test paths generated by Algo-
rithm 5 using the first column of Table 5 and the first column
of Table 3 as its inputs.

VII. EXPERIMENTAL RESULTS
This section evaluates the performance of the proposed
prime and test paths generation approaches. Our experimental
benchmark includes two sets of CFGs, the first of which

VOLUME 7, 2019 134407



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

TABLE 7. Execution time and memory consumption of the input CFGs.

FIGURE 4. Space costs of the vertex-based, edge-based and the SCC-based algorithms on the CFGs of
Table 6.

includes five CFGs adopted from PAC [5] (which are taken
from Apache Commons libraries). Rows 1 to 5 of Table 6
illustrate the structure of these five CFGs. The selected code
has a relatively complicated control structure because CFGs
with simple structure (e.g., DAGs) introduce fewer prime
paths and it is rather trivial to generate them. In the second
set, we synthetically modified three methods from some open
source projects by introducing nested loops, and additional
conditional statements. Rows 6 to 8 of Table 6 present the
structure of these three CFGs. We conduct a comparative
study by implementing the three prime paths generation
approaches, namely edge-based [3], [4], vertex-based, and
SCC-based in the C programming language. Then, we eval-
uate the time and space efficiency of these three methods on
the 8 CFGs introduced in Table 6. We ran all the experiments
on an Intel Core i7 machine with 3.6GHz X 8 processors
and 16 GB of memory running Ubuntu 17.01 with gcc
version 5.4.1.

Table 6 summarizes the structure of the input CFGs as
well as their corresponding number of prime paths generated
by our implementations. Columns 2 to 4 of Table 6 present
the number of nodes, edges, and SCCs of each CFG. The
total numbers of nodes and edges of all SCCs are denoted by
SccNodes and SccEdges, respectively. Cyclomatic Complex-
ity (CC) [14] and Npath complexity [15] are two well-known
metrics of the structural complexity of a program. The CC
determines the number of linearly independent complete
paths in a given CFG. Columns 7 and 8 provide the CC and
Npath complexities of the input CFGs. Columns 9 to 13 show
the number of prime paths for each one of the four types of
PPs described in the SCC-based approach. The Total column
captures the total number of prime paths in each CFG. The
last column presents the number of test paths produced with
the SCC-based approach.

Table 7 presents the average execution time and maxi-
mum memory consumption by the three approaches for each

134408 VOLUME 7, 2019



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

FIGURE 5. Time costs of the vertex-based, edge-based and the SCC-based algorithms on the CFGs of
Table 6.

subject CFG over five experiments. The WebApp column
in Table 7 indicates whether the web-based implementation
of the edge-based approach [4] was able to generate a solution
on the input CFGs.

For more insightful comparison of the approaches using
the values provided in Table 7, Fig. 4 and Fig. 5 depict
a graphical summary. The data in Table 7 reflects that
the edge-based approach has less memory requirements
than the vertex-based approach of Section IV. On aver-
age, the edge-based approach consumes 67% less memory
for the input CFGs. On the other hand, this approach’s
time costs are 64% more than that of the vertex-based
approach. As mentioned in Section IV, every round of the
vertex-based algorithm requires each vertex to save all sim-
ple inward paths and then remove the covered paths. This
process increases the memory consumption, especially for
CFGs with larger indegrees. Additionally, the lower pro-
cessing time of the vertex-based algorithm (compared to the
edge-based approach) is attributed to the rapid growth of the
paths.

Table 7 shows that the SCC-based approach outper-
forms both the vertex-based and the edge-based approaches
regarding space and time efficiency for the CFGs of
Table 6. On average, the SCC-based approach consumes
62% and 53% less memory than the vertex-based and the
edge-based approaches, respectively. Furthermore, the SCC-
based approach uses 54% and 83% less processing time than
vertex-based and edge-base approaches, respectively. These
reductions in memory consumption and processing time have
two reasons. First, the vertex-based algorithm as the core of
the SCC-based approach performs much better with smaller
CFGs. Second, the vertex-based approach generates most of
the prime paths (including the SccExit and SccEntry prime
paths) in the merging phase without running the main algo-
rithm on the entire CFG.

VIII. CONCLUSION AND FUTURE WORK
This paper proposed twomethods for time and space-efficient
generation of prime and test paths in structurally complex
programs. Specifically, we presented a vertex-based algo-
rithm that takes the Control Flow Graph (CFG) of a program
and generates all prime paths reaching each vertex of the
CFG. This algorithm outperforms the state-of-the-art in terms
of time efficiency; nonetheless, incurs a relatively high space
cost. To address this deficiency, we put forward a composi-
tional method for prime and test paths generation of programs
with extremely large Npath complexity [15]. The proposed
compositional method (i) computes the component graph of
the input CFG; (ii) calculates the set of prime paths of each
SCC in the component graph, and (iii) generates the set of
prime and test paths of the given CFG with very low time
and space costs. We implemented and evaluated the proposed
methods versus existing approaches, and our experimental
results show that the proposed methods significantly outper-
form the state-of-the-art in dealing with programs that have
extremely large Npath complexities (see Table 6).

We are currently working on parallelizing the proposed
algorithms and scaling them up further through a GPU-based
implementation.Moreover, we are investigating the effective-
ness of our compositional method in test data generation by
decomposing prime paths into four types of partial prime
paths. Another extension of our work relates to developing
a benchmark for evaluating the effectiveness and efficiency
of algorithms for prime and test paths generation.

REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algo-

rithms, vol. 19. Reading, MA, USA: Addison-Wesley, 1983, no. 3, p. 3.
[2] A. V. Aho and D. Lee, ‘‘Efficient algorithms for constructing testing sets,

covering paths, and minimum flows,’’ AT&T Bell Lab., New York, NY,
USA, Tech. Rep. CSTR159, 1987, pp. 1–15.

[3] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge,
U.K.: Cambridge Univ. Press, 2016.

VOLUME 7, 2019 134409



E. Fazli, M. Afsharchi: Time and Space-Efficient Compositional Method for Prime and Test Paths Generation

[4] P. Ammann, J. Offutt, W. Xu, and N. Li. (2008). Graph Coverage
Web Applications. [Online]. Available: https://cs.gmu.edu:8443/offutt/
coverage/GraphCoverage

[5] L. Bang, A. Aydin, and T. Bultan, ‘‘Automatically computing path com-
plexity of programs,’’ inProc. 10th JointMeeting Found. Softw. Eng., 2015,
pp. 61–72.

[6] A. M. Bidgoli, H. Haghighi, T. Z. Nasab, and H. Sabouri, ‘‘Using
swarm intelligence to generate test data for covering prime paths,’’ in
Proc. Int. Conf. Fundam. Softw. Eng. Cham, Switzerland: Springer, 2017,
pp. 132–147.

[7] P. M. S. Bueno and M. Jino, ‘‘Automatic test data generation for program
paths using genetic algorithms,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 12,
no. 6, pp. 691–709, 2002.

[8] M. Bures and B. S. Ahmed, ‘‘Employment of multiple algorithms for opti-
mal path-based test selection strategy,’’ 2018, arXiv:1802.08005. [Online].
Available: https://arxiv.org/abs/1802.08005

[9] A. Dwarakanath and A. Jankiti, ‘‘Minimum number of test paths for prime
path and other structural coverage criteria,’’ in Proc. IFIP Int. Conf. Test.
Softw. Syst. Berlin, Germany: Springer, 2014, pp. 63–79.

[10] L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks. Princeton, NJ,
USA: Princeton Univ. Press, 2015.

[11] B. Hoseini and S. Jalili, ‘‘Automatic test path generation from sequence
diagram using genetic algorithm,’’ in Proc. 7th Int. Symp. Telecommun.,
Sep. 2014, pp. 106–111.

[12] N. Li, F. Li, and J. Offutt, ‘‘Better algorithms to minimize the cost of test
paths,’’ in Proc. IEEE 5th Int. Conf. Softw. Test., Verification Validation
(ICST), Apr. 2012, pp. 280–289.

[13] J.-C. Lin and P.-L. Yeh, ‘‘Automatic test data generation for path testing
using GAs,’’ Inf. Sci., vol. 131, nos. 1–4, pp. 47–64, 2001.

[14] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[15] B. A. Nejmeh, ‘‘NPATH: A measure of execution path complexity and its
applications,’’ Commun. ACM, vol. 31, no. 2, pp. 188–200, 1988.

[16] S. C. Ntafos and S. L. Hakimi, ‘‘On path cover problems in digraphs and
applications to program testing,’’ IEEE Trans. Softw. Eng., vol. SE-5, no. 5,
pp. 520–529, Sep. 1979.

[17] F. Sayyari and S. Emadi, ‘‘Automated generation of software testing path
based on ant colony,’’ in Proc. Int. Congr. Technol., Commun. Knowl.
(ICTCK), Nov. 2015, pp. 435–440.

[18] P. R. Srivastava, N. Jose, S. Barade, and D. Ghosh, ‘‘Optimized test
sequence generation from usage models using ant colony optimization,’’
Int. J. Softw. Eng. Appl., vol. 2, no. 2, pp. 14–28, 2010.

[19] R. Tarjan, ‘‘Depth-first search and linear graph algorithms,’’ SIAM J. Com-
put., vol. 1, no. 2, pp. 146–160, 1972.

EBRAHIM FAZLI received the bachelor’s and
master’s degrees, in 2003 and 2007, respectively.
He is currently pursuing the Ph.D. degree with
the Department of Computer Engineering, Univer-
sity of Zanjan. His research interests include soft-
ware testing, design of multicore/multithreaded
programs, formal methods, and dependable and
high assurance systems.

MOHSEN AFSHARCHI received the M.Sc.
degree in computer science from the Iran Uni-
versity of Science and Technology, in 1996, and
the Ph.D. degree in artificial intelligence from
the University of Calgary, Canada, in 2006. Since
2006, he has been with the Computer Engineering
Department, University of Zanjan, Iran, where he
leads the Multi-Agent Systems Lab (MASLab).
He is currently an Associate Professor with the
Computer Engineering Department, University of

Zanjan. His research interests include multi-agent learning, probabilistic
reasoning, distributed constraint optimization, and software testing.

134410 VOLUME 7, 2019


	INTRODUCTION
	PRELIMINARIES
	PROBLEM STATEMENT
	VERTEX-BASED ALGORITHM
	A COMPOSITIONAL METHOD FOR PRIME PATHS GENERATION
	PREPROCESSING
	COMPOSITIONAL PRIME PATHS GENERATION
	PATH EXTRACTION
	MERGING

	TEST PATHS GENERATION
	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	EBRAHIM FAZLI
	MOHSEN AFSHARCHI


