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ABSTRACT Electrochemical models of lithium-ion batteries are derived according to the laws of physics;
therefore, the parameters represent specific physical quantities such as lithium diffusivities, particle volume
fractions, and ion intercalation rates. It is important to estimate these parameters to identify the internal
states of a lithium-ion battery for efficient and safe management. Until now, parameter estimation algorithms
for electrochemical lithium-ion battery models have been developed without considering the unequal
identifiability among the target parameters. Thus, it is highly likely that existing algorithms exhibit inefficient
exploration and lead to a slow convergence rate and even large parameter estimation error. For more
accurate parameter estimation of an electrochemical lithium-ion battery model, we propose a new adaptive
exploration harmony search (AEHS) scheme that provides a wide search space for a longer period of time
when estimating parameters with low identifiability. The proposed algorithm is based on improved harmony
search; its bandwidth parameters for determining the level of exploration are adjusted according to the
individual and joint variabilities computed from the distributions of previously estimated parameters. Such
adaptive bandwidth parameters can reduce inefficient exploration and enable fast convergence, allowing
exploration that achieves global optimality. Simulation results show that the proposed parameter estimation
algorithm produces the highest convergence rate and the smallest parameter estimation error compared with
existing schemes. The performance of the proposed scheme is also validated using real data generated from
experiments.

INDEX TERMS Adaptive exploration harmony search, electrochemical model, lithium-ion battery,
meta-heuristic algorithm, parameter estimation, parameter identifiability.

I. INTRODUCTION
Lithium-ion batteries are a promising energy source as they
exhibit higher energy and power density than any other type
of energy storage device. However, they suffer from battery
life degradation and even safety problems such as ignition and
explosion. For efficient and safe management, lithium-ion
batteries must be handled carefully with constant observation
of their changing internal states. Some of the degradation
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mechanisms that occur inside a battery are strongly related to
its internal states. For example, the available capacity, power,
and energy in a lithium-ion battery is gradually reduced by
the accumulation of a solid electrolyte interface (SEI) layer
at the anode and undesired by-product at the cathode [1]–[3].
If these degradation mechanisms can be diagnosed over time,
it is highly possible to operate lithium-ion batteries efficiently
and safely.

Electrochemical models of lithium-ion batteries have been
employed to observe their internal physicochemical changes
by describing transport and diffusion phenomena at the
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micro-scale. As an electrochemical model is built by employ-
ing fundamental physical principles, its parameters repre-
sent specific physical quantities. For example, aging-relevant
parameters in the model, termed aging parameters in this
paper, are very helpful for determining the internal state of the
lithium-ion battery as their values change consistently with
the aging progress. However, it is difficult to estimate these
parameters from measured data because the electrochemical
lithium-ion battery model consists of several linked partial
differential equations (PDEs) over space and time, as well as
the required boundary conditions.

Various optimization algorithms have been employed to
estimate the parameters of an electrochemical lithium-ion
battery model; for example, the Gauss-Newton method,
a well-known Jacobian-based algorithm [4]. However,
an electrochemical lithium-ion battery model with several
PDEs and boundary conditions is highly nonlinear and com-
plicated; therefore, parameter estimation with a Jacobian-
based algorithm may fall into a local optimal solution [5].
Besides Jacobian-based algorithms, metaheuristic algorithms
such as the genetic algorithm (GA) [6]–[8], particle swarm
optimization (PSO) [9], and harmony search (HS) [10], [11]
have been used to research the fields of a lithium-ion battery
and a fuel cell. Although these metaheuristic algorithms have
relatively low convergence rates compared to Jacobian-based
algorithms, they are capable of finding the global optimum
without becoming stuck in a local optimum. Therefore, meta-
heuristic algorithms may be more appropriate for parameter
estimation of a full order, or non-approximated, electrochem-
ical lithium-ion battery model that may have multiple local
optima.

Despite the aforementioned advantage for finding the
global optimal solution, existing metaheuristic algorithms
have an inherent limitation in that they explore the offline
predetermined search space without considering the con-
sistently directional effects of the target parameters when
optimizing an objective function. Such a limitation may be
significant in the parameter estimation of an electrochemical
lithium-ion battery model. The consistently directional effect
of the target parameter; i.e., how consistently the parameter
converges in a direction towards the global optimum, is called
the identifiability. In fact, each target parameter has a differ-
ent identifiability [7], [12]–[15]; therefore, the search space
may be too large or too small if determined equally. As a
result, it is more efficient to adaptively determine the search
space size according to the identifiability of a parameter.
As strongly identifiable parameters tend to converge rapidly
towards true values due to their consistently directional effect
when optimizing an objective function, it is advantageous
to specify a small search space in order to avoid inefficient
exploration and ensure a rapid convergence rate. Conversely,
weakly identifiable target parameters require a relatively long
time to explore true values. Hence, it is advantageous for
them to have a large search space for a longer period of
time to facilitate finding a better solution. Thus, fast and

accurate parameter estimation requires the development of a
metaheuristic algorithm that determines the level of
exploration for each target parameter according to its
identifiability.

With the goal of more accurate parameter estimation of
an electrochemical lithium-ion battery model, we develop a
novel metaheuristic algorithm based on HS, which effectively
determines the search space size by considering parameter
identifiability. The adopted HS is generally acknowledged
to have a faster convergence rate than other metaheuristic
algorithms such as GA and PSO because it does not handle
many candidate parameter sets [16]–[19]. In the same way
musicians may search for a perfect harmony by impro-
vising pitches using their memories, HS seeks an optimal
solution through a potential combination of components of
all available candidate parameter sets in its memory [16].
This differs to GA, which generates new solution vectors
from only two of the existing vectors, called parents. Thus,
HS generates widely explored parameter sets despite the
small number of candidate parameter sets in its memory and
exhibits a fast convergence rate [20]. In summary, HS has
strong exploration ability with an easily implemented simple
structure.

This study proposes a novel HS-based parameter esti-
mation scheme, called adaptive exploration harmony search
(AEHS), to provide effective exploration by considering the
unequal identifiability among the parameters to be estimated.
For more accurate estimation of electrochemical lithium-
ion battery models, parameters with low identifiability are
explored in a wide search space for a longer period of time
than those with relatively high identifiability. To this end,
the matrix, called the past best memory (PBM), is constructed
as a superset of the existing harmony memory (HM), which
stores a given number of the superior candidate parame-
ter sets generated up to the current iteration. The proposed
AEHS scheme computes the variability of each parameter in
the PBM then provides a wider search space when estimat-
ing parameters with large variability or low identifiability.
Specially, the bandwidth parameters of HS employed for the
proposed AEHS scheme are adjusted to determine the level
of exploration by computing the individual and joint variabili-
ties from the distributions of previously estimated parameters.
Such adaptive bandwidth parameters can reduce inefficient
exploration for more rapid convergence and enable explo-
ration that achieves global optimality. Moreover, we perform
simulations and use real data generated from experiments to
validate the performance of the proposed scheme.

This paper is organized as follows: Section 2 describes
the electrochemical lithium-ion battery model and introduces
the target aging parameters to be estimated. In Section 3,
a detailed description of the proposed AEHS scheme
is provided together with a brief introduction to HS.
Section 4 presents the validation results of our proposed
AEHS using both simulations and real data. The conclusions
are presented in Section 5.
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FIGURE 1. Electrochemical reactions inside a lithium-ion battery during the charging process, showing lithium-ion
concentration over pseudo two-dimensional space (x, r) at a certain time, t.

II. ELECTROCHEMICAL MODEL AND PARAMETER
DESCRIPTION
A. PSEUDO TWO-DIMENSIONAL MODEL
The electrochemical lithium-ion batterymodel is a systematic
and realistic model for representing the internal states of a
lithium-ion battery, as shown in Fig. 1, because it is derived
from physical phenomena such as the transport and diffusion
of charges and lithium-ions.

We employ a continuum model obtained by the volume
averaging method as a practical electrochemical model
because a micro-scale model is hard to handle [21]. To reduce
the computational burden, a pseudo two-dimensional (P2D)
model is often adopted by reducing the dimensions of the
continuum model by only considering the x-axis (lithium-ion
flow direction) and pseudo r-axis (radial direction in solid
particles). Because model reduction is implemented while
preserving the electrochemical properties of the lithium-ion
battery, the P2D model has been widely used in battery sim-
ulations. As seen in Table 1 and 2, this model consists of five
governing equations with dozens of parameters; i.e. charge
and mass (lithium) conservation in solid particles, charge and
mass (lithium) conservation in the electrolyte, and the rate
of lithium intercalation at the interface of the particles and
electrolyte [22], [23]. A thermal model is included in the
simulation to improve the model accuracy because tempera-
ture changes may affect some parameter values. Additionally,
the model for SEI layer formation which is directly relative
to aging phenomena, is combined with the existing model in
order to handle the aging information inside the batteries [24].

B. TARGET PARAMETER SELECTION
As mentioned earlier, the P2D model contains dozens of
parameters that represent specific physical quantities. As the
internal dynamics of the lithium-ion battery vary with the

aging progress, the parameter values also change according
to continual aging mechanisms. For example, the porosity;
i.e. the volume fraction of the electrolyte, decreases gradually
with battery usage because the electrolyte material is reduced
by growth of the SEI layer on the solid particles [25]–[27].
As well as porosity, the solid particle diffusivity and reaction
rate exhibit a regular decrease with time [4], [9]. It is very
important to estimate the aging parameters that are highly
affected by degradation mechanisms; thus, we estimate the
following eight parameters: three porosities (cathode, anode,
separator), two reaction rates (cathode, anode), two solid
particle diffusivities (cathode, anode), and resistance of SEI
layer. The target parameters to be estimated are denoted by X
as follows:

X = [εp, εs, εn,Dsp,D
s
n, kp, kn,RSEI ]. (1)

where all parameters are defined in Table 2.

III. ADAPTIVE EXPLORATION HARMONY SEARCH
A. BASIC HARMONY SEARCH
HS has been widely employed in energy related fields such
as battery or energy storage system (ESS) due to its superior
performance [10], [11], [16], [17], [20], [28], [29]. Basic
HS was inspired by the improvisation of musical harmony,
which is a combination of sounds [16]. In the same way
that musicians seek the optimal harmony from an aesthetic
perspective, HS finds an optimal solution determined from an
objective function evaluation. The improvisation process is a
key idea of HS, and HS imitates the process for the heuristic
optimization.
HS uses a memory called harmony memory (HM). Each

row of the HM represents one harmony, which is a candidate
parameter set for the globally optimal solution, and each col-
umn of the HM represents values of the pitch, or a parameter,
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TABLE 1. Governing equations and boundary conditions for electrochemical, thermal, and SEI layer formation lithium battery models.

FIGURE 2. Structure of the HM and its superset, PBM.

of the harmonies (Fig. 2). The number of rows in the HM is
called the harmonymemory size (HMS), which represents the
number of harmonies stored in the HM. Prior to improvisa-
tion, the HM is initialized using randomly generated values
between the upper and lower bounds of the pitches. Then,
a new harmony, or new candidate parameter set, is generated

from the HM according to the HS design parameters: har-
mony memory considering rate (HMCR), pitch adjustment
rate (PAR), and bandwidth. The range of the adjustment for
new harmony’s variation is randomly determined from the
following bandwidth parameters:

X̂newi (itr) = X̌i(itr)+ θi(itr) · bwi(itr). (2)

where θi(itr) is independently identically distributed (i.i.d.)
over the iteration and uniformly distributed over the interval
[0,1], X̂newi (itr) is the i-th pitch, or parameter of the new
harmony generated in the itr-th iteration, X̌i(itr) is the i-th
pitch that remains according to the HMCR probability, and
bwi(itr) is the value of the i-th bandwidth corresponding to
the i-th pitch.

B. PARAMETER IDENTIFIABILITY
Each pitch of the harmony, which represents a target param-
eter to be estimated, has a different effect on the objective
function. A strongly identifiable parameter has a consistently
directional effect on optimizing the objective function, and its
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TABLE 2. List of parameter symbols and descriptions in the P2D model.

convergence tends to be fast and steady. Conversely, a weakly
identifiable parameter has an inconsistent and non-directional
effect on optimizing the objective function, and its conver-
gence tends to be slow and even difficult to achieve. In fact,
each parameter of the P2D model has a different effect on the
voltage and temperature profiles [7], [12]–[15]; thus, those
parameters have different identifiabilities when the objective
function involves these profiles. As the convergence rates
of the parameters depend significantly on their identifiabil-
ities, a suitable search space size should be determined for
estimating the parameters more efficiently and accurately.
For a strongly identifiable target parameter, a small search
space is helpful to avoid inefficient exploration and provide
fast convergence. For a weakly identifiable target parameter,
a large search space is more appropriate for ensuring that a
better solution is found. In HS, the search space size can be

adjusted using the bandwidth. Although it uses the adjusted
PAR and bandwidth for a rapid convergence rate, it does not
consider the unequal identifiability between the parameters
to be estimated. Hence, we develop an HS-based efficient
parameter estimation algorithm that employs an adaptive
bandwidth according to the identifiability of the parameters.

C. BANDWIDTH PARAMETERS FOR ADAPTIVE
EXPLORATION
Here, the unequal identifiability of the parameters is consid-
ered to ensure efficient estimation. Quantitatively, the identi-
fiability of a parameter is obtained from its variability, which
is computed either individually or jointly from the distribu-
tion of previously estimated parameters. To calculate these
variabilities, a memory of candidate parameter sets (PBM) is
employed, as shown in Fig. 2, which is a superset of the cur-
rent HM and stores a given number of the superior candidate
parameter sets generated up to the current iteration. Each row
and column of PBM represents one harmony and the values of
a pitch, or parameter, of the harmonies, respectively. The past
best memory size (PBMS) indicates the number of harmonies
stored in the PBM. The individual and joint variabilities
of each parameter in the PBM are determined from their
independent and correlated distributions, respectively. From
these variabilities, the proposed AEHS employs two types
of bandwidth parameters, which is not the case for existing
HS algorithms. These bandwidth parameters obtained from
individual and joint variabilities are denoted as bwidv(itr) and
bwjnt (itr), respectively.
Individual variabilities of parameters provide a hyper-

rectangular region where a sample point, or a bwidv(itr),
is selected with uniform probability. Each edge of this hyper-
rectangular region has a length proportional to the standard
deviation of the distribution of the corresponding parameter,
as seen in Fig. 3. Joint variabilities of harmonies in the
PBM provide the hyper-ellipsoidal region where a sample
point, or bwjnt (itr), is selected with uniform probability. Each
semi-axis of the hyper-ellipsoid is proportional to the corre-
sponding eigenvector computed from the joint variabilities of
harmonies in the PBM, as seen in Fig. 4. In Fig. 3 and 4,
a proportional coefficient is denoted by α.

FIGURE 3. Determination of bandwidth parameters, bwidv (itr ), according
to the individual variability computed from the distributions of past
estimated parameters.
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FIGURE 4. Determination of bandwidth parameters, bwjnt (itr ), according
to the joint variability computed from the distributions of past estimated
parameters.

At every iteration, either bwidv(itr) or bwjnt (itr) is
employed when generating a new harmony. In the early iter-
ation steps, bwidv(itr) is more frequently adopted as a band-
width parameter because correlations between the parameters
are not clear; hence, it is desirable to not consider them
for more effective exploration. As the iteration proceeds,
bwjnt (itr) is more frequently selected than bwidv(itr) because
the correlations between parameters become clear; hence,
it becomes efficient to consider them. The probability for
choosing between bwidv(itr) and bwjnt (itr) is given as:

Pchoice(itr) = min
[ (ε + 1)

itr
δ·itrmax − 1
ε

, 1
]
. (3)

Finally, the bandwidth is obtained as follows:

bw(itr) =

{
bwjnt (itr). with Prob. Pchoice(itr)
bwidv(itr). with Prob. 1− Pchoice(itr)

(4)

If the iteration number is lower than δ · itrmax , we obtain
Pchoice(itr) = 1

ε
((ε + 1)

itr
δ·itrmax − 1). Otherwise, we obtain

Pchoice(itr) = 1. The selecting ratio can be modified by
adjusting the positive-value ε and δ ∈ (0, 1].
As the algorithm progresses, the parameter distribution of

the PBM gradually converges to the global optimum. There-
fore, the search space for parameter estimation shrinks around
the global optimum with the convergence of bwidv(itr) and
bwjnt (itr), as seen in Fig. 5. The overall scheme of AEHS is
shown in Fig. 6, together with the proposed strategies (in light
shading).

IV. RESULTS AND DISCUSSION
A. ALGORITHM IMPLEMENTATION
For the P2D model simulation, LIONSIMBA is employed,
which is a set of fully customizable Matlab functions suitable
for simulating the dynamic behavior of lithium-ion batter-
ies [22]. The values of the design parameters for AEHS are set
as follows : HMS= 8, PBMS= 35, HMCR= 0.95,PARmin=
0.3, PARmax = 0.99, itrmax = 10000, δ = 0.8, ε = 10, and α is
an appropriate function of the iteration number that decreases
exponentially from 3 to 2. At each iteration, AEHS generates
a new harmony. This new parameter set is entered into the

FIGURE 5. Gradually shrinking search space with a decreasing bandwidth
parameter that becomes increasingly dependent on the joint variability
due to the increase in Pchoice(itr ) and hence makes bwjnt (itr ) be selected
more than bwidv (itr ).

FIGURE 6. Flow chart of the AEHS used in this study.

P2D model simulator, which computes the corresponding
voltage and temperature profiles. Then, the objective function
value for evaluating a new parameter set is obtained from
the simulated profiles (Fig. 7). The objective function used

FIGURE 7. Application of AEHS to parameter estimation based on a
P2D model.
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here is the sum of the squares of the normalized voltage and
temperature error, which is given as follows:
tf∑
t=1

[(Vref (t)−V̂sim(X̂ , t)
Vmax
ref

)2
+

(Tref (t)−T̂sim(X̂ , t)
Tmaxref

)2]
. (5)

where X̂ represents the generated parameter set, Vref (·),
V̂sim(·), Tref (·), and T̂sim(·) represent the reference and simula-
tion profiles of the terminal voltage and internal temperature,
Vmax
ref and Tmaxref are the maximum, or peak values of the

reference terminal voltage and internal temperature profiles,
and tf represents the length of the profiles. This process
repeats until the iteration number reaches a predetermined
maximum, itrmax . During the estimation, the parameter set
corresponding to the voltage and temperature profiles most
similar to the Vref (·) and Tref (·) is taken as the best parameter
set.

B. VALIDATION OF PARAMETER ESTIMATION
In order to validate the parameter estimation performance
of the proposed AEHS, a simulation is carried out using
three porosities (cathode, separator, anode), two solid particle
diffusivities (cathode, anode), two reaction rates (cathode,
anode), and SEI layer resistance as unknown parameters
to be estimated. The discharging and charging operation of
one cycle is set using predetermined conditions: 5C-rate dis-
charge for 200 s with an initial state-of-charge (SOC) of 95%,
rest for 100 s, 3C-rate charge with a cut-off voltage of 4.17 V,
and charge in constant voltage (CV) mode until a total
one-cycle operation time of 500 s.

The bandwidth parameter of the proposed AEHS is deter-
mined to achieve the appropriate search space size accord-
ing to the identifiability of parameters. The magnitudes of
the bandwidth parameters for three estimated parameters are
shown in Fig. 8. Each trajectory is normalized and smoothed
using a 20-point order moving average filter to identify the
differences in the trends of the bandwidth parameters. As the
anode porosity is strongly identifiable, its bandwidth param-
eter rapidly converges to zero. This means that the estimation
of anode porosity is effective with short duration exploration

FIGURE 8. The trajectories of the bandwidths according to the parameter
identifiability.

and long duration fine-tuning. On the other hand, the anode
solid particle diffusivity has a relatively large bandwidth
parameter due to its weak identifiability. This means that the
estimation of anode solid particle diffusivity is effective with
long duration exploration. In summary, the proposed AEHS
provides an efficient search space size in accordance with
parameter identifiability.

Five existing metaheuristic algorithms: IHS, SGHS, IGHS,
GA, and PSO, were employed to compare the performance
of the convergence rate and parameter estimation error.
HS based algorithms including the proposed one set the
HS parameters such as memory size, HMCR, PARmin, and
PARmax identically for fair comparison. For GA, the num-
ber of population is set as 25, and the number of particle
is set as 2500 for PSO. The objective function values and
their corresponding normalized parameter errors are shown
in Fig. 9 and 10, respectively. In Fig. 9, all results are
obtained by averaging the results simulated five times in
the identical condition. We observe that the proposed AEHS
has the fastest convergence rate. In terms of the objective
function (5), the AEHS has a 0.0073 times lower objective
function value than the second best algorithm. As in Fig. 9,
all results shown in Fig. 10 are obtained by averaging the
results simulated five times in the identical condition. AEHS
has the lowest parameter estimation error of 1.20%. The
second best algorithm, GA, has a parameter estimation error
of 7.98%.

FIGURE 9. Average objective function values against iteration number.

Table 3 summarizes the magnitudes of the parameter esti-
mation errors and the normalized standard deviations of
the estimated parameters obtained through five simulations.
The normalized standard deviations reveal the reliability of
the corresponding estimated values. The proposed AEHS
shows small parameter estimation errors with high reliability.
The computation time of each algorithm including AEHS is
shown in Table 4. Since all algorithms in Table 4 carry out
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TABLE 3. Estimated parameter values and their normalized standard deviations.

FIGURE 10. Average parameter estimation errors against iteration
number.

the time-consuming electrochemical model computation in
common, there is no big difference among their computation
times.

C. VALIDATION USING REAL MEASURED DATA
To validate the robustness of the proposed algorithm,
the additional experiments are conducted with two batteries
having totally different aging states. The parameter informa-
tion of the battery adopted for the experiment is partially
given; therefore, more parameters are estimated to determine
the dynamics of the reference profile than in the simula-
tion validation. As well as the eight predetermined target
parameters specified in (1), two solid particle surface areas

TABLE 4. Comparison of computation time.

FIGURE 11. A battery testing system with a battery cycler, a data logger,
and a chamber.

(cathode, anode), one current collector conductivity (anode),
two solid particle conductivity (cathode, anode), one elec-
trolyte diffusivity, two solid particle radii (cathode, anode),
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and the initial state of charge (SOC) are additionally esti-
mated. The objective function for this estimation only consid-
ers the square normalized voltage error, which has the form
of (5) without the temperature related term. The employed
current in the experiments is basically GITT (Galvanostatic
Intermittent Titration Technique) profiles composed of
1C-rate discharge for 5% SOC decrease and 30 minutes rest.
It is observed that the mean errors between the measured
profile and the one simulated from the estimated parameters
reach 1.6 mV for battery #1, and 1.7mV for battery #2.

In Fig. 12 and 13, first 5,000 seconds of the measured
data are used for estimating the parameters with the pro-
posed algorithm, AEHS, and then, total 8,000 seconds of the
measured data are compared with the simulated profiles to
validate the estimated parameters. The dashed line represents
the simulated voltage profile obtained from the estimated
parameters and the solid line designates the measured voltage
profile. The mean voltage errors between the two profiles are

FIGURE 12. Comparison between the measured and simulated voltage
profiles of battery#1.

FIGURE 13. Comparison between the measured and simulated voltage
profiles of battery#2.

only 2.1mV for battery #1 and 2.5mV for battery#2. It is
observed that the simulated profiles accurately follow the
measured ones even for the different operation conditions
from those for parameter estimation. In this sense, it could be
said that the proposed method works well for various types
of batteries.

V. CONCLUSION
This study proposed a new adaptive exploration strategy
based on HS, called AEHS, that considers the unequal
identifiabilities among the parameters of an electrochemi-
cal lithium-ion battery model. For more efficient estimation,
a parameter with low identifiability is estimated by explor-
ing a wide search space for a longer period of time com-
pared with a parameter with high identifiability. The degree
of identifiability is predicted from the individual and joint
variabilities computed from the distributions of previously
estimated parameters, and reflected by the bandwidth param-
eters of the proposed AEHS. A numerical validation with
eight parameters related to the aging process of a lithium-
ion battery showed that the proposed AEHS reduced inef-
ficient exploration to ensure rapid convergence and enabled
exploration that can achieve global optimality. The optimized
objective function value ofAEHS amounted to approximately
one hundredth of the value of the second best algorithm
analyzed in this study. This resulted in the smallest parameter
estimation error of 1.20%, whereas the second best algorithm
achieved a value of 7.98%. Moreover, the voltage profiles
simulated using 17 parameters estimated from real data were
very close to the real measured profiles, with the average
differences between them only 2.1mV and 2.5mV for each
battery, respectively.

In conclusion, we suggest that our proposed AEHS scheme
is a good choice for recovering the internal physical param-
eters of a lithium-ion battery to ensure more efficient and
safe management of the battery. We believe that the proposed
AEHS has many other applications for the monitoring, man-
agement, and diagnosis of lithium-ion batteries in terms of
extending their lifespan and preventing accidents.
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