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ABSTRACT The great success of the Internet has promoted the development of digital industries
and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and
vehicle networks require fast bandwidth speed and increase network connection density, respectively.
High-bandwidth and high-density parallel communication drive the rapid development of network virtualiza-
tion and 5G/6G technology. In a network virtualization environment, this new demand also brings new link
resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper
proposes a virtual network embedding algorithm via diffusionwavelet (VNE_DW), which is an unsupervised
structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection
density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link
mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success
rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth
and density.

INDEX TERMS Virtual network embedding, diffusion wavelet, topology structure, link bandwidth,
connection density.

I. INTRODUCTION
Network virtualization is a promising network architecture
that can effectively solve network impasse problems [1].
Presently, network virtualization is an integral component
of 5G core and data center networks. This architecture is a
prerequisite for network slicing, which provides an oppor-
tunity for Internet service providers (ISPs) to integrate their
devices with standardized high-capacity components [2].
Virtual network embedding (VNE) is an important step in
network slice generation, which effectively enhances the flex-
ibility of the network and greatly reduces operating costs
while meeting the needs of customized services.

With the advent of the 5G era and the increasing
enrichment of cloud services, large video applications
have greatly increased the demand for network bandwidth,
such as ultrahigh-definition video (e.g., Douyin [3] and
YouTube [4]), augmented reality, and virtual reality [5].
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These business requirements have led to virtual network
requests (VNRs) with different communication intensities
and connection densities [6] and introduced new challenges
to the deployment of virtual links. The existing VNE algo-
rithm deploys virtual nodes through topology and resource
attributes without considering structural characteristics, link
volume, and connection density among the nodes. Therefore,
the mapping success rate of the link, as well as the overall rev-
enue of the ISP, is reduced especially in the business scenario
of high connection density and bandwidth requirements.

Traditional VNE maximizes ISPs’ revenue using a two-
stage mapping algorithm. After the node mapping ends, the
corresponding substrate nodes are connected through a multi-
hop link. Therefore, the success rate of the VNE depends
on the success rate of the node and link mapping. Selecting
an appropriate node position is critical because the mapped
node position in the substrate network determines the range
of the link mapping. Many researchers are attempting to
solve the node mapping scheme in polynomial time using
different heuristic algorithms. The metaheuristic algorithm
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is used to solve the VNE problem [7]–[10], and the virtual
network mapping scheme is often solved by setting differ-
ent optimization targets and multiple iterations, which incur
a certain time overhead. The heuristic algorithm considers
node resource and topology attributes [11]–[13] (e.g., node
CPU, node strength, node degree, centrality, etc.) to obtain
an approximate optimal mapping scheme through a greedy
selection.

Our paper considers structural features, communication
capability, and connection density among nodes and focuses
on optimizing the scheme of node mapping to facilitate the
success rate of link mapping. To analyze structural features,
such as connection density, link volume, and closeness among
nodes, a virtual network embedding algorithm via diffu-
sion wavelet (VNE_DW) is proposed, which is inspired by
spectral theory that treats the diffusion wavelet as the main
idea [14], [15].

The main contributions of this paper are as follows.
1. A novel node-ranking algorithm is proposed based on

spectral theory, which is extensively used in network presen-
tations and machine learning research spheres. The proposed
algorithm is effective in analyzing communication capabil-
ities of a node, communication volume in node pairs, and
intimacy among nodes. The algorithm focuses on improving
the success rate of link mapping by optimizing the mapping
scheme of nodes and obtaining affluent revenue.

2. To make better use of the topology information of nodes,
VNE_DW divides the virtual nodes and substrate nodes into
different sets according to the mapping state of a node, and
determines the mapping scheme of the node by considering
the topology relationship between the sets. In addition, this
paper considers the multiple topology attributes of the node,
and measures the comprehensive effect of these attributes
on the nodes through the diffusion wavelet, thus better than
evaluating multiple attributes using ordinary mathematical
operations. In the link mapping phase, the link mapping
success rate is further improved by tailoring links that do not
satisfy the bandwidth.

3. Connection density and link volume among nodes
are considered in the process of mapping the nodes. The
VNE_DW algorithm is better than other traditional algo-
rithms in terms of request acceptance rate and revenue-cost
ratio, thereby improving ISPs’ total revenue, especially in
cases of business requirements with high bandwidth and
connection density.

The remainder of this paper is organized as follows.
Section 2 presents the current state of research on VNE
and graph machine learning algorithms. Section 3 describes
and analyzes the VNE problem. Section 4 discusses the
VNE_DW algorithm. Section 5 presents the experimental
environment and performance evaluation of VNE_DW.
Section 6 lists the conclusions.

II. RELATED WORKS
Given that the VNE is an NP-hard problem [16], the algo-
rithms for VNE can be divided into exact-like and heuristic.

In the next part, we will divide the algorithms into two parts
to detail the research background. In addition, virtual net-
works have important relationships with graph-related learn-
ing algorithms in other fields. Thus, an overview of related
research in the field of spectral theory and machine learning
is provided.

A. EXACT-LIKE ALGORITHMS
The authors in [17] proposed a VNE algorithm based on
mixed integer programming. It is for this reason that the
complexity of solving this type of problem is exponential,
the authors verified the energy-saving effect of the method
on a substrate network with a small number of nodes. In [18],
a multidomain VNE algorithm was proposed. The algo-
rithm initially divides the virtual network into multiple sub-
topologies using the max-flow min-cut algorithm and then
maps these sub-topologies in the substrate network through
an integer programming in a manner that will minimize
the mapping cost. Based on column generation, the authors
in [19] proposed a one-shot, unsplittable VNE solution,
wherein the problemwas modeled as a path-based mathemat-
ical program called ‘‘primal.’’ The authors created an initial
set of paths to solve a dual problem and then solved the primal
problem to obtain a final solution. Similar to [19], the authors
in [20] presented a method that adopts a compact path-based
integer line program, which is solved by leveraging a branch-
and-price framework that embeds a column generation pro-
cess. The idea of column generation is to start with a small
set of paths and incrementally incorporate new paths until the
optimal path set is contained. Consequently, the complexity
of this method exponentially increases with the increase in
the number of links.

From the above literature, path-based or mixed integer
program solutions are not suitable for solving large-scale
or high-link density problems. In addition, the validity of
the constructed model determines the effectiveness of the
algorithm’s solution. Therefore, our work does not consider
the virtual network problem of the exact solution but explores
the use of heuristic methods in solving the problem.

B. HEURISTIC ALGORITHMS
VNE is a process of finding the logical topology of a vir-
tual network in the substrate network topology, and thus
considering topology information will be advantageous in
the node mapping phase. Most heuristic algorithms focus on
topological attributes to evaluate nodes. The author of [21]
proposed a method that simultaneously embeds nodes and
links, which is based on subgraph isomorphism detection.
Similarly, [22] solved the problem of VNE in a federated
cloud environment on the basis of subgraph isomorphism
detection. However, the two methods increase the amount of
back-trace exploration when resources are insufficient or link
connection density is high. Based on the neighborhood
method, in which a recursive search is conducted by neigh-
boring nodes on previous nodes, [23] proposed a new gen-
eral constrained shortest path mapping approach without
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considering the node mapping problem. In [24], a node-
ranking algorithm that takes into account multiple attributes
was proposed. The algorithm utilizes Newton’s law of grav-
ity, which combines Euclidean distances among nodes, delay,
and resource attributes, to qualitatively evaluate the inter-
action among nodes. Substrate nodes are sorted using the
PageRank algorithm. The virtual node is greedily mapped to
the substrate node with the highest ranking to satisfy mapping
constraints. The authors of [25] coordinated the advantages
of centralized and distributed mapping to formulate a coor-
dinated virtual network mapping algorithm. According to the
historical mapping’s successful VNRs, the more frequently
a substrate node is mapped, the higher the node’s priority
will be. However, the mapping priority of the virtual node
is determined according to the CPU’s resource requirement;
hence, the neighbor relationship among nodes is ignored. The
authors of [26] proposed a virtual networkmapping algorithm
based on breadth-first search, which ranks nodes according to
node degree and clustering coefficient information. When the
virtual node is mapped, the substrate node hosting the parent
node of the virtual node is determined, and its neighboring
nodes are used as candidate nodes. The node that satisfies
the constraint in hosting the virtual node is contained in the
candidate nodes to reduce link utilization and improve the
revenue-cost ratio. The authors of [27] proposed a dynamic
virtual network mapping algorithm that solves the problem of
allowing the user to dynamically change the virtual network
resource requirements and structure after the virtual network
is embedded. The algorithm consists of a migration and
remapping process. By selecting a node with consideration
of the resource utilization but without consideration of the
connection state among nodes, it is not conducive to finding
a link mapping scheme that satisfies the mapping constraint.
The authors of [28] proposed the Monte Carlo tree search
algorithm to find the node by considering the connection
relationship between the nodes. However, the connection
relationship is related to the parent node of the mapping node,
and the update of the reward value is determined by the final
state, which does not evaluate a better state in the middle.

The aboveworks utilize topologies as heuristic information
for node selection while ineffectually incorporating struc-
tural features. Moreover, the mapping success rate of the
link depends on structural features, such as link connection
density, link volume, and closeness among nodes. Link map-
ping is effectively facilitated when a node that satisfies the
resource constraints with a better structure feature is selected.

C. SPECTRAL GRAPH THEORY AND MACHINE LEARNING
With the emergence of graph structure data, such as social,
gene regulatory, and brain function networks, the success
of deep learning in various applications has prompted
researchers to extend machine learning models to non-
Euclidean data fields. Consequently, the use of machine
learning to analyze geometric topologies is becoming a hot
topic. In a supervised learning task, the authors of [29]
introduced a new spectral domain convolution structure for

deep learning of graphs. The core element of the model is
a new class of parametric rational complex functions. Such
complex functions can effectively calculate the spectral filter
on the graph that specializes in the frequency band of interest,
thereby solving the problems of node classification and
community detection. Supervised graph structure learning
not only requires a large number of manual annotations
of data, but the trained model may also have a certain
dependence on the data. Therefore, unsupervised structural
learning algorithms are urgently needed. The authors of [30]
proposed a method for characterizing a node structure as a
vector. The similarity of different scales is measured using a
hierarchy without nodes or edge attributes and constructing
a multilayer graph to encode structural similarity. Then,
a structural context of the node is generated. The authors
of [31] modified the spectral domain analysis method to
analyze the structure through the diffusion wavelet. The
nodes in different positions in the graph may have a similar
structure. The wavelet coefficient of the node is regarded as
the probability, and a characteristic function is used to classify
node structures by probability distribution.

This paper utilizes the diffusion wavelet to: (1) learn node
structures; (2) analyze connection density, link volume, and
closeness among nodes; and (3) select nodes that facilitate
link mapping that improves the overall performance of the
VNE algorithm.

III. PROBLEM DESCRIPTION AND ANALYSIS
In the network virtualization environment, the infrastructure
provider (InP) is responsible for maintaining the substrate
network (Fig. 1). The service provider (SP) formulates the
corresponding virtual network request based on customer
needs and requests the InP to lease resources. The InP benefits
from deploying VNRs to the substrate network.

FIGURE 1. Network model.

A. SUBSTRATE NETWORK
The substrate network is represented by an undirected graph
Gs = (V s,Ls,Cs,Bs), where V s and Ls represent a set
of substrate nodes and links, respectively, and Cs and Bs

represent the resource capabilities of the substrate nodes and
links, respectively.
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B. VIRTUAL NETWORK
The virtual network is a topology generated by the network
operator according to customer needs. The node and link
attributes express a customer’s demand for service func-
tions and resources. The virtual network topology is repre-
sented by an undirected graph Gv = (V v,Lv,Cv,Bv), where
V v and Lv represent virtual node and link sets, respectively,
and Cv and Bv represent the requirements of virtual node
processing and link transmission capabilities, respectively.

C. VNE
The VNE process consists of the node- and link-mapping
phases. In the node-mapping phase, candidate nodes that
satisfy the virtual node constraint are first identified from the
substrate node set. Then, the final substrate node is selected
from the candidate nodes using the node-mapping algorithm.
In the link-mapping phase, the virtual nodes to which the vir-
tual link is connected are initially determined before select-
ing the substrate node that hosts the virtual nodes. Then,
the substrate link is selected from the substrate nodes that
meet the virtual link bandwidth requirement. The virtual
node-mapping process follows the scheme (Fig. 1): {a→ A,
b→ B, c→ C}, whereas the link-mapping process has
the following sequence: {(a, b)→ (A,B), (b, c)→ (B,C),
(a, c)→ (A,C)}

D. ANALYSIS OF NETWORK TRAFFIC AND VNE
In two-stage VNE algorithms, considering only the node
computing capacity may hinder link mapping due to the low
communication capability of the substrate node. Hence, most
algorithms adopt the following formula (1) or the improved
evaluation to metric the node’s communication capability:

H (n) = CPU (n)×
∑

l∈adjacency(n)

BW (l). (1)

The value of the node may be high due to its high comput-
ing capability or the adjacent link’s high bandwidth capabil-
ity, especially when the computing and bandwidth require-
ments are extremely unbalanced. Moreover, the ability to
communicate between nodes is not well measured. According
to this formula, improper nodes will be selected, resulting
in a lower acceptance ratio in the long run. To maximize
the acceptance ratio, VNE algorithms do not greedily select
the node with the largest metric value but instead select a
node that satisfies the computing resource constraint by this
priority. However, this discrete node selection method may
waste link resources and affect the carrying capacity of the
substrate network. For the above factors, we analyze the
following five aspects to improve the overall performance of
the VNE using structural features of the nodes.

When virtual nodes V v
c and V v

b are respectively mapped to
substrate nodesV s

c andV
s
F , the value in the rectangle indicates

the computing resource (Fig. 2), whereas the value on the link
represents the bandwidth resource.Without loss of generality,
we analyze the mapping position of node V v

a .

FIGURE 2. Virtual network embedding process.

¬ When V v
a is mapped to node V s

A, link L
v
ab is mapped

to the path AGF, and link Lvac is mapped to the path AC.
Path AC is a one-hop link that satisfies the Lvac resource
requirement. The mapped path of Lvab needs to be bridged
by node V s

G, thereby consuming unnecessary link bandwidth
and computing resources of V s

G. This scenario may cause
a shortage of resources around intermediate nodes spanned
by the substrate path and reduce the carrying capacity of
the substrate network to the subsequently arriving virtual
network. To shorten the path hop, existing algorithms limit
the range of the feasible region for candidate node-mapping,
such as hop-limit VNE [32], subgraph isomorphism detection
VNE [21], and breadth-first search VNE [26]. However, this
process may affect the request acceptance rate to some extent
due to the limited node selection.

 When node V v
a is mapped to node V s

B, L
v
ac is mapped

to the path BC, and Lvab is mapped to the path BAGF. The
bandwidth of LsBA cannot meet the resource constraints of Lvab
due to the link congestion problem, which will cause link-
mapping failure. If the link is extremely long, then trans-
mission delay will increase. Therefore, node pairs that are
near each other have a lower probability of encountering link
congestion than distant ones. Even if the links among the
closer pairs of nodes do not meet the resource constraints,
they can communicate over longer paths.

® When node V v
a is mapped to node V s

D, L
v
ac is mapped to

the path DC, and Lvab is mapped to the path DEF. Although
both V s

D and V s
A can choose a one-hop link to meet the con-

straint of Lvac, the link bandwidth from V s
D to V s

C is not larger
than that from V s

A to V s
C . Therefore, in the node-mapping

stage, if V v
a is mapped to node V s

D, then the success rate of
VNE will be low.

¯ When node V v
a is mapped to node V s

E , L
v
ac is mapped

to the path EC, and Lvab is mapped to the path EF. V v
a is

close to V v
c and V v

b with the virtual link to be deployed;
therefore, a short path exists between the candidate node V s

E
and node V s

C , and between node V
s
E and node V s

F . Selecting a
node with such a structural feature will be advantageous for
improving the revenue-cost ratio.

° When node V v
a is mapped to node V s

G, L
v
ac is mapped to

the path GC, and Lvab is mapped to the path GF. V s
G and V s

E
have the same advantage in terms of revenue-cost ratio. If the
bandwidth of LsGC does not satisfy the resource constraint
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of Lvac, two long paths (paths GABC and GAC) will be
available between V s

G and V s
C . The link-mapping success rate

will increase if the connection density of V s
G to the mapped

node V s
C is high.

In summary, if the greedy choice satisfies node comput-
ing resource constraints, then the success rate of the virtual
network request-mapping will depend on the link-mapping
phase. The success rate of link-mapping depends on the
following viewpoints: (1) structural features of the nodes,
which evaluate the communication capacity to other nodes;
(2) link volume among the nodes; (3) connection density
among the nodes; and (4) topological closeness among the
nodes.Wewill use the proposed algorithm to implement these
viewpoints.

E. DIFFUSION WAVELETS AND NODE STRUCTURE
The network topology graph G = (V ,E,A,D), where
|V | = n vertices, |E| = m edges, and A indicates the
adjacency matrix of G. If an edge exists between nodes Vi
and Vj, then the value of Aij is the weight of the edge, which
is defined as follows:

Aij =

{
B(lij), if lij ∈ E
0 , else,

(2)

where B(lij) indicates the available bandwidth of link lij,
D indicates the degree matrix of G, and Dii =

∑n
j Aij. In the

energy diffusion equation (Eq. 3), L indicates the Laplacian
matrix of G, the node is the diffusion source, ϕ = {ϕ1 · · ·ϕi}
is the intensity distribution of the diffusion sources in G,
ϕi is the energy intensity of the node Vi, and the energy
transfer between nodes Vi andVj is set according to Newton’s
law of cooling [33]. The diffusion coefficient is denoted asK :

dφi
dt
= −K

n∑
j

Aij(φi − φj). (3)

The matrix form of Eq. (3) is as follows:

dφ
dt
= −K (D− A)φ = −KLφ. (4)

A large link bandwidth among nodes signifies more trans-
ferred energy per unit time, whereas a high number of neigh-
boring nodes indicates high node energy diffusion per unit
time. In short, the diffusion capacity of a node is positively
related to connection density, communication capability, and
hops of the path among nodes. Subsequently, the above dif-
ferential equation is solved, and the solution is presented in
Eq. (5):

φ(t) = φ(0) ·8

8 = U ·

 e
−kh0t · · · 0
...

. . .
...

0 · · · e−khnt

 · UT

 , (5)

where 8 is the diffusion matrix, φ(0) represents the energy
distribution of nodes of G at time t = 0, φ(t) indicates the
energy distribution of nodes at time t , hi represents the ith

eigenvector of L, and 8 reflects the diffusion capacity of the
node.8ij represents the energy that Vi diffuses toward Vj, and
the ith row distribution of 8 reflects the structural feature of
the node. The time of energy diffusion is expressed as t . The
smaller the value of t is, the more concentrated the energy
distribution is (near the node). The structural feature of a node
is defined in Eq. (6):

Si = [8i1 · · ·8in], (6)

where 8ii = 0 and Si represent the energy that Vi diffuses to
other nodes throughmultiple paths within time t . A high num-
ber of paths and communication capabilities indicates high
total energy diffusion. Therefore, the structural metric (SM)
of a node can be represented as the total energy diffused to
other nodes, which is defined as follows:

SMi =
1

n− 1

∑
j∈Si,j 6=i

Sij, (7)

SM i presents the structural feature of node i. For a more
visual analysis of the structure, a well-known topology gen-
eration tool (GT-ITM) is used to generate a rand graph with
13 nodes [34]. The SM of the nodes in the graph is visualized
by Fig. 3 (t = 10 and K = 1).

FIGURE 3. Graph SM and S of nodes.

The thickness of the link indicates the currently available
bandwidth. The SM of a node is indicated by the depth
of the node’s color. High diffused energy corresponds to
high SM. A node that is equipped with a high SM value is
automatically equipped with a good structural feature which
metrics communication capacity to other nodes. When the
link volume and connection density between node pairs are
large, the energy diffusion between node pairs is also large.
As indicated by the S distribution of node V12 (Fig. 3),
the energy value received by node V9 is greater than that
received by node V8, with the same shortest hops to V12.
On the one hand, the larger the node value is, the closer it
is to the node V12 that acts as the diffusion source (e.g., nodes
V11 and V1 are closer to V12 than V9). On the other hand,
the topological closeness of V10 is relatively close to V12,
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but because the multiple paths between V12 and V10 contain
links with low volume and communication capability, V10 is
not as good as other nodes (e.g.,V9). Therefore, the S ofV10 is
relatively low compared to that of V9.
Thus, wavelet diffusion is a multi-attribute fusion evalua-

tion algorithm rather than a simple multi-attribute for basic
mathematical operations (e.g., +, −, and ×). In the next
section, the structure of the relationship between a node pair
is explored and leveraged to the mapped and candidate nodes.

IV. VNE_DW ALGORITHM DESIGN
The VNE_DW algorithm consists of two phases: the node-
and link-mapping algorithms.

A. NODE-EMBEDDING STAGE
A network node often includes multiple resource attributes,
such as computing capacity, storage volume, forwarding rate,
and so on. Most VNE algorithms evaluate nodes by referenc-
ing the amount of computation, determining the priority of
candidate nodes according to the proposed node evaluation
metric, and following this priority in selecting a node that sat-
isfies resource constraints. However, if the simple summation
operation is performed in the multi-attribute comprehensive
metric of nodes, ISPs’ revenue can be affected in the long
term due to the multi-attribute imbalance phenomenon. The
proposed algorithm in our paper focuses on optimizing the
transmission task, in which node-mapping is directed toward
facilitating the success of link-mapping. To adapt to the
multi-resource attribute scenario, an evaluation formula for
eliminating the imbalance phenomenon is proposed, which is
expressed as follows:

P(asr , a
v
r ) =

(
1+ exp

(
−
(
asr − a

v
r
)
/avr
))−1

, (8)

where asr represents the available resource r of substrate
node s and avr represents the resource demand of virtual node v
for resource r . The horizontal s axis in Fig. 4 represents
the value of asr , whereas the vertical axis is the evaluation
value P. The vertical line v is the value of avr . When asr is close
to avr , P rapidly increases. However, when asr is extremely
large, the function is nearly flat. Therefore, the problem of
multi-attribute imbalance caused by a vast single attribute
is avoided. The node evaluation formula for asr and a

v
r is as

FIGURE 4. Attribute evaluation formula curve graph.

follows:

NRvs =
∏
r∈RA

sign(p(asr , a
v
r ))× p(a

s
r , a

v
r ), (9)

where ‘‘sign’’ is a symbolic function that returns 1 when the
argument is greater than 0.5 and 0 otherwise, and RA is a set
of resource attributes.

Eq. (9) is an extension for the multi-attribute node
evaluation. In the succeeding discussion, we will determine
the mapping order of the virtual nodes and the selection of
candidate nodes in a substrate network.
Step 1. Virtual Node Sequence: Different VNE algo-

rithms determine different virtual node embedding sequences
according to the specific heuristic information because the
embedding order of virtual nodes affects the bearing capacity
of the substrate network. For the same reason, our algorithm
emphasizes the purpose of improving the success rate of
link-embedding by optimizing node selection, along with the
consideration of the topological closeness and link volume
between the mapping and the mapped node.

First, the first virtual node is determined according to
Eq. (10), which has better structural features and higher
connectivity:

V v
i = argmax

i∈V v
(MSi) . (10)

Second, the remaining node sequences are determined
based on the diffusion distribution of the node V v

i , as defined
in Eq. (11):

V v
∗ = arg sort (Si) , (11)

where V v
∗ indicates the remaining nodes, which are sorted in

descending order according to the diffusion value. According
to the diffusion equation, the order of the virtual nodes
reflects the node’s closeness to V v

i . The mapping order of the
virtual nodes facilitates the increase in the revenue-cost ratio.
Step 2. Selection of the First Substrate Node:As the contin-

uously arriving virtual node is accepted by a substrate node,
which gradually degrades the communication capability, the
probability of mapping the node decreases. When the con-
sumed substrate node’s resources are released, the commu-
nication capability of the substrate node improves, thereby
increasing the probability of being selected again. According
to the above process, the first substrate node hosting the first
virtual node is selected according to the following heuristic
information.

(1) The proposed algorithm reduces the ISP’s cost, which
is caused by the reduction in the average mapping path
length. Therefore, the distribution of the mapped nodes is
concentrated in the local region of the substrate network. For
the convenience of the following description, we temporar-
ily refer to the nodes and links of the local region as the
mapping region. From the long-term perspective of running
the algorithm, the resource distribution status in the mapped
region will be consistent. If the resource status in the selected
mapping region is good, then the mapping success rate of
subsequent nodes will be improved.
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(2) A node with strong computing capability may carry a
relatively small number of virtual nodes, resulting in large
mapping potential. In the mapping region where the node
is located, the computing capacity of other nodes may be
relatively high due to the consistency of the resource status.

(3) A node with strong communication capability has a
relatively high bandwidth of communication paths. In the
mapping region, the nodes spanned by the communication
paths have strong communication capability in the mapping
region.

Considering the above heuristic information, the first can-
didate node V s

i is established by the following formula:

rank(i) = NRvi ×MSi, (12)

where rank(i) indicates the metric evaluation of V s
i , which

has a rich resource and structural feature.
Step 3. Substrate Candidate Nodes Sequence: In the exist-

ing node-ranking VNE algorithms, complex constraints in
the graph are converted into sequence-mapping relationships,
which simplify the difficulty of VNE but lose topological
information to some extent. To maximize the use of the
topological information, which concentrates the nodes in the
local region of the substrate network and facilitates the link-
mapping success rate, the virtual node-mapping sequence and
the substrate nodes are dynamically divided into four and
three sets, respectively. Moreover, the topological relation-
ships among nodes are leveraged to coordinate the relation-
ships among the sets and improve the mapping performance
of the algorithm. Fig. 5 illustrates the relations among node
sets in the mapping process. The line with an arrow indicates
the mapping process or the correspondence relation between
the sets of virtual and substrate nodes, whereas the dotted line
indicates the topology relationship among the sets.

FIGURE 5. Node sets’ relationship in the mapping process.

(1) R1 describes the topology relationship between the
mapping node and the set of neighboring nodes. The exis-
tence of R1 signifies that multiple virtual links must be
deployed between a candidate node and the set of host-
ing nodes H1. R1 determines the revenue–cost ratio. If the

selected candidate node is close to the set of hosting nodesH1,
and the connection density and communication bandwidth of
the links are large, then the immediate revenue-cost ratio and
the link-mapping rate will increase.

(2) R2 describes the relationship between the mapping
node and the set of non-neighboring nodes. Although no link
deployment requirement exists between the mapping node
and the set of hosting nodes H2, an R1 relationship may exist
between the waiting and non-neighboring nodes. Therefore,
maintaining closeness toH2 can improve the overall aggrega-
tion level of nodes and facilitate the improvement of the later
revenue-cost ratio.

(3) R3 describes the impact of the mapping node on the set
of waiting nodes. When a waiting node becomes the mapping
node, R1 and R2 will exist between the waiting nodes and the
set of mapped nodes. In this case, a candidate node with better
structural features should be selected, which is conducive to
communication with subsequent nodes.

Based on the above three items, the metric of the candidate
nodes is defined as follows:

CN = r0
1
|H1|

∑
i∈H1

Si + r1
1
|H2|

∑
i∈H2

Si + r2MS, (13)

where H1 indicates the substrate node set mapped by the
neighboring nodes of V v

i (mapping node i in Fig. 5) and
H2 indicates the set of hosting nodes mapped by the non-
neighboring nodes of V v

i . The summation operation is the
superposition of the intensity of wavelet diffusion. r0, r1, and
r2 are the weighting factors of R1, R2, and R3, respectively.
When r0 is large, the diffusion of the neighboring nodes has
a great influence on the selection of the candidate nodes, and
the selected candidate nodes will be close to the neighboring
nodes. The metric of the candidate node set CNmeasures the
topological closeness feature and structural features between
the candidate nodes and the mapped nodes.

Algorithm 1 Node-Embedding via Diffusion Wavelet
Input: graph Gv,Gs, time t
Output: node-embedding set

1: Sort the virtual nodes in nonincreasing order by using
Eq. (11);
2: Map the first virtual node to the substrate node with the
higher rank computed using Eq. (12);
3: For each vnode in unmapped virtual nodes:
4: Flag=FALSE;
5: Sort the substrate nodes in nonincreasing order by using
Eq. (13);
6: For each snode in ordered substrate nodes:
7: Mapping vnode→snode;
8: If constraint satisfaction: flag=TRUE; break;
9: If flag==FALSE: return node mapping fail;
10: Return node embedding set;
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B. LINK-EMBEDDING STAGE
Link-mapping is divided into single- and multipath map-
ping, depending on whether the substrate link supports split-
ting or not. For multipath mapping scenarios, a single set
of data flow is circulated over multiple paths. The methods
of multipath mapping can reduce mapping costs, reinforce
link security, balance the load, etc. Link-mapping between
a pair of nodes with high connection density and strong link
communication capability will exhibit a high link mapping
rate, regardless of whether it is single- or multipath mapping.
However, because router support for TCP split transmission
is not mature yet, this topic will not be discussed in this paper.
For single-path mapping, the shortest path algorithm is used
to solve the virtual network link-mapping. By cutting the link
that does not meet the bandwidth requirement, the speed in
the shortest path algorithm, as well as the success rate of link-
mapping, can be increased. The link-mapping algorithm is
described as follows.

Algorithm 2 Link-Embedding
Input: graph Gv,Gs

Output: edges embedding set

1: For each vedge in Gv:
2: Find nodei and j connected by vedge;
3: Find substrate node si and sj hosting i and j;
3: Cut the edge of Gs below vedge’s bandwidth;
4: Find the path between si and sj by the shortest path algo-
rithm;
5: If path = NULL: then return edges embedding fail;
6: Return edges embedding set;

C. TIME COMPLEXITY ANALYSIS
The numbers of virtual nodes and links are denoted by
|N v
| and |Lv|, respectively, whereas the numbers of substrate

nodes and links are respectively denoted by |N s
| and |Ls|.

VNE_DW includes two algorithms. The time complexity of
algorithm 1 is O(|N v|3+|N s|3+|N s

||N v
|), whereas the time

complexity of algorithm 2 is O(|Lv| |N s|2).

V. PERFORMANCE EVALUATION
In this section, the settings of the experimental environment
are described in detail, and then the evaluation criteria of the
algorithm are introduced. Finally, analyses of the experimen-
tal results are made in detail.

A. SIMULATION ENVIRONMENT
Similar to [38] and [39], our paper uses GT-ITM [34] to gen-
erate topological data required for the experiment. To com-
pare the impact of virtual link factors on the performance
of the algorithm, two different substrate environments were
set. Environments 1 and 2 explore the impact of link band-
width and link connection density on algorithm performance,
respectively. The results of the experiment are collected after
500 time units.

1) SUBSTRATE NETWORK SETTINGS
This article selects two sizes of networks according to
[38], [39]. As shown in Table 1, the resource distribution of
nodes and links is uniformly distributed. For the convenience
of description, two networks with different scales are named
S1 and S2, respectively.

TABLE 1. Substrate network settings.

2) VIRTUAL NETWORK SETTINGS
Virtual network settings are shown in Table 2 and 3. The
resource distribution of nodes and links follow the uniform
distribution. The arriving rate of the VNRs follows the Pois-
son distribution with an average of five VNRs per 500 time
units in substrate network S1, and the arriving rate with
an average of five VNRs per 1,000 time units in substrate
network S2. The duration of VNRs follow an exponential
distribution with an average of 1,000 time units.

TABLE 2. Bandwidth of VNR settings.

TABLE 3. Connection probability of VNR settings.

The remaining parameters are set as follows: r0 = 1,
r1 = 0.4, r1 = 0.1, substrate network diffusion time t = 8,
virtual network diffusion time t = 3, and K = 1.
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3) DESCRIPTIONS FOR THE VALIDATION STEP
To validate the performance of VNE_DW on virtual net-
work requests with different bandwidths and densities, first
VNE_DW is validated by using the virtual networks with
different bandwidths (Table 2) on the smaller-scale substrate
network (S1). Then validate again on the larger-scale sub-
strate network (S2). Second, VNE_DW is validated by using
virtual networks with different connection densities (Table 3)
on the smaller-scale substrate network (S1) and then validate
again on the larger-scale substrate network (S2).

B. VNE EVALUATION CRITERIA
The evaluation criteria used in this paper are represented by
Eqs. (14), (15), (16), (17), and (18):

AAR = lim
T→∞

T∑
t=0
VNRsuccess

T∑
t=0

VNRrequest

, (14)

where AAR describes the average acceptance rate of the VNE,
VNRsuccess indicates the number of successfully embedded
VNRs, VNRrequest indicates the total number of reached
VNRs, and T represents the algorithm runtime;

RCR = lim
T→∞

T∑
t=0

R(GV, t)

T∑
t=0

C(GV, t)

, (15)

where RCR indicates the revenue–cost ratio, R represents the
revenue of the mapping VNRs, and C represents the cost of
mapping VNRs;

LFR = lim
T→∞

T∑
t=0
VNRlink_fail

T∑
t=0

VNRnode_success

, (16)

where LFR indicates link-mapping failure rate, VNRlink_fail
indicates the number of VNRs with failed link mappings, and
VNRnode_success indicates the number of VNRs with success-
ful node mappings. The higher the LFR is, the higher the
failure rate of the link relative to the node mapping is. LFR
reveals the impact of link-mapping on the request acceptance
rate;

LLB =

√√√√ 1
|Ls|

|Ls|∑
i

(µ (li)− AL)2, (17)

where LLB indicates the link load balancing, µ indicates the
link resource utilization, and AL indicates the average link
resource utilization. The smaller LLB value reveals the link’s
ability to provide external services at the lowest cost and best
state, so that the link has the highest throughput and higher

performance; and

AMT = Mean

(
T∑
t=0

MT (VNRsuccess)

)
, (18)

where AMT indicates the average mapping time, MT is the
time required for virtual network mapping and Mean is the
average value. AMT reveals the resource deployment speed
of the VNRs.

C. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS
To assess the performance of our VNE_DW algorithm,
we choose three state-of-the-art algorithms for comparison:
(1) the Markov Chains with Rewards Ranking (MCRR)
method [35], which uses Markov random walk as the model
and computes the priority of candidate nodes through the
resources of neighbor nodes; (2) the Virtual Network Embed-
ding based on Elimination and Choice Expressing Reality
(ELECTRE_VNE) method [36], which is a multi-attribute
evaluation method that combines topological and resource
attributes to evaluate the priority of nodes; and (3) the Energy
Efficient, Concurrent and Topology-Aware virtual network
embedding (EE_CTA) method [37], which focuses on net-
work topology by assigning reachability rank to resources,
and adopts a genetic algorithm to solve the VNE scheme.

As shown in Fig. 6, with the distribution of link bandwidth
and density requested by the virtual network increasing,
the average resource requirement of each virtual network also
increases, and thus the link failure rate (LFR) of the five
algorithms increases. However, as shown in subpictures a
and b, the LFR of VNE_DW is lower than that of the other
three algorithms as the bandwidth increases. Especially in
HB, VNE_DW is 20.2% and 22.2% lower than the aver-
age value of the other three algorithms. Similarly, as shown
in subpictures c and d, when the density is HD, the LFR
of VNE_DW is 14.6% and 19.2% lower than the average

FIGURE 6. LFR over bandwidth and density.

VOLUME 7, 2019 134153



L. Zhuang et al.: VNE_DW

value of the other three algorithms. In terms of different
bandwidths and densities, VNE_DW has the lowest LFR
among the four. The main reason for this phenomenon is
that, when selecting a node that satisfies the resource con-
straint, the VNE_DW algorithm preferentially selects a node
that exhibits a neighborhood relationship with the mapped
node (i.e., in terms of path bandwidth and connection den-
sity among the nodes). Furthermore, VNE_DW considers
the impact of the current mapping node on the remaining
nodes and then selects a node with strong communication
capability to improve the success rate of link-mapping among
subsequent nodes. When all nodes are mapped, the LFR will
decrease. MCRR takes advantage of the topological attribute
to calculate the resource of the node. However, node selection
does not consider path bandwidth and the relationship among
nodes; hence, the LFR increases. ELECTRE_VNE considers
the node’s local resources and closeness among the nodes and
uses the shortest hops to evaluate the nodes. However, this
evaluation only reflects the closeness among nodes; the path
bandwidth between the candidate and the mapped nodes and
the link connection relationship of the virtual node are not
accounted for. Therefore, when the selected candidate node is
close to a mapped node, the virtual link is deployed between
the candidate and other mapped nodes with multiple hops,
thereby increasing the link-mapping failure rate. EE_CTA
uses reachability graphs to mark the reachability of nodes and
links. Nodes with the same reachability belong to the same
subgraph and are close to each other. EE_CTA improves the
degree of aggregation between mapped nodes by minimum
reachability. However, the distribution of nodes is concen-
trated and their communication capabilities may not be very
good, which is not conducive to reducing LFR.

As observed from Fig. 7, the revenue-cost ratio (RCR)
decreases with the increase in link bandwidth and connection
density of VNRs, because of the increasing mapping load of

FIGURE 7. RCR over bandwidth and density.

the link. As shown in subpictures a and b, when the distri-
bution of bandwidth is HB, VNE_DW is 22.4% and 27.6%
higher than the average value of the other three algorithms.
As shown in subpictures c and d, when the density of the link
is HD, VNE_DW is 18.7% and 23.1% higher than the average
value of the other three algorithms. The reason for this phe-
nomenon is because the VNE_DW algorithm preferentially
maps the nodes close to neighbors and reduces the hop count
of the substrate path. Moreover, the mapping position is close
to the mapped nodes, which aggregates the distribution of
the mapped nodes, consequently improving the RCR. The
MCRR algorithm selects a resource-rich node as a candidate
node. When the virtual and candidate nodes are sorted, the
number of path hops increase because the connection rela-
tionship among the nodes is not considered, thereby reducing
the RCR. The ELECTRE_VNE algorithm considers the path
hops between the candidate node and the mapped node set.
However, each selected substrate node is close to a node of
the mapped set. The virtual link will be deployed not between
the node pairs, but between other node pairs. When more
attributes are considered, the impact of the hop attribute on
the ranking may decline, resulting in a low RCR. EE_CTA is
amulti-objective optimization algorithm, andmultiple targets
of VNE tend to compete with each other. However, EE_CTA
does not combine topology informationwell to guide nodes to
adjust the mapping scheme. Instead, the nodes are randomly
adjusted. The final solution obtained by the nondominated
sorting algorithm is not necessarily the highest RCR.

The decline in average acceptance rate (AAR) as link
bandwidth and density increasing are depicted in Fig. 8.
Because the total resource of S1 is less than that of S2,
the AAR on S1 falls faster than the AAR on S2. As shown
in subpictures a and b, when the distribution of bandwidth is
HB, VNE_DW is 18.1% and 18.3% higher than the average
value of the other three algorithms. However, in subpictures c

FIGURE 8. AAR over bandwidth and density.
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and d, when the density of the link is HD, VNE_DW is 14.1%
and 16.6% higher than the average value of the other three
algorithms. For limited substrate resources, as the connection
density and bandwidth of the virtual link increase, the con-
sumption of the substrate resources continuously increases.
When the substrate resources cannot carry the VNR, the
AAR of all algorithms shows a downward trend. We consider
the link constraint between direct neighbors, indirect neigh-
bors, and subsequent unmapped nodes to reduce unnecessary
bandwidth consumption and improve the accommodation
of the substrate network. Unnecessary bandwidth resources
are consumed when the nodes are mapped using MCRR,
ELECTRE_VNE, and EE_CTA. Moreover, MCRR, ELEC-
TRE_VNE, and EE_CTA have a higher LFR, thereby result-
ing in a lower acceptance rate compared to VNE_DW. The
EE_CTA algorithm generates a new virtual network mapping
scheme through crossover and mutation operations, in which
the crossover operation is prone to infeasible solutions, such
that individuals in the population are eliminated during the
evolution process, thereby reducing the population richness.
which affects the AAR of the VNE in the long run.

Fig. 9 shows that link load balancing (LLB) presents
different tendencies with different bandwidths and densities
over network sizes. In the case of lower bandwidth and
lower density, the LLB of VNE_DW is poor. As shown in
subpictures a and b, when the distribution of bandwidth is LB,
VNE_DW is 0.049 and 0.078 higher than the average value of
the other three algorithms. However, when the distribution of
bandwidth is HB, VNE_DW is 0.047 and 0.045 lower than
the average value of the other three algorithms. As shown
in subpictures c and d, when the density of the link is LD,
VNE_DW is 0.039 and 0.065 higher than the average value of
the other three algorithms. However, when the density of link
is HD, VNE_DW is 0.023 and 0.041 lower than the average
value of the other three algorithms. In the lower density or
bandwidth environment, the VNE_DW has higher LLB than

FIGURE 9. LLB over bandwidth and density.

the other algorithms, but with the increase of bandwidth and
density, the LLB begins to decrease, the balance performance
improves, and the LLB of the other algorithms begins to
increase. The reason is that the substrate resources are rel-
atively sufficient, and the impact on the link is not enough to
change the mapping scheme of the nodes. Therefore, balance
performance is relatively poor. However, as the bandwidth
and density increase, VNE_DW actively searches for a node
with link resources sufficient for mapping, reducing the
load on low- resource links. Other algorithms, when select-
ing nodes, do not consider the communication capabilities
between nodes well, so the link bearer is unbalanced after
greedy selection of nodes.

In summary, VNE_DW exhibits higher AAR and RCR
compared with other algorithms, thereby improving the over-
all revenue of network operators.

Table 4 shows the average mapping time (AMT) of the
five algorithms. VNE_DW has a slightly higher AMT than
MCRR, but lower mapping time than ELECTRE_VNE and
EE_CTA. VNE_DW needs to solve the eigenvalues and
eigenvectors of the Laplacian matrix, based on the wavelet
diffusion coefficient matrix. The node structure is analyzed,
and the candidate order is determined. The MCRR needs to
obtain the smooth distribution of the nodes using the Markov
matrix and determine the mapping order by sorting the candi-
date nodes. The ELECTRE_VNE algorithm needs to calcu-
late multiple node attributes, and the hop count attribute of the
substrate network (to the mapping node) is necessary, when
selecting a candidate node for each virtual node. The attribute
of each candidate solution must be compared and analyzed,
which is a time-consuming process. EE_CTA requires mul-
tiple iterations of the population, and a large number of
mapping schemes need to be evolved or eliminated, so it takes
a long time.

TABLE 4. Average mapping time.

VI. CONCLUSION
This paper preferentially selected nodes with better structural
features to coordinate link-mapping in two-stage VNE algo-
rithms. Wavelet diffusion, which is an algorithm for unsuper-
vised learning node structure, is utilized. The results show
that the diffusion process can measure link bandwidth and
connection density among nodes. This method is suitable for
the needs of communication traffic with intensive services in
environments with poor communication links.
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