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ABSTRACT The intermittency of the instantaneous concentration of a turbulent chemical plume is a
fundamental cue for estimating the chemical source distance using chemical sensors. Such estimate is useful
in applications such as environmental monitoring or localization of fugitive gas emissions by mobile robots
or sensor networks. However, the inherent low-pass filtering of metal oxide (MOX) gas sensors—typically
used in odor-guided robots and dense sensor networks due to their low cost, weight and size—hinders the
quantification of concentration intermittency. In this paper, we design a digital differentiator to invert the
low-pass dynamics of the sensor response, thus obtaining a much faster signal from which the concentration
intermittency can be effectively computed. Using a fast photo-ionization detector as a reference instrument,
we demonstrate that the filtered signal is a good approximation of the instantaneous concentration in a
real turbulent plume. We then extract transient features from the filtered signal—the so-called ‘‘bouts’’—
to predict the chemical source distance, focusing on the optimization of the filter parameters and the noise
threshold to make the predictions robust against changing wind conditions. This represents an advantage over
previous bout-based models which require wind measurements—typically taken with expensive and bulky
anemometers—to produce accurate predictions. The proposedmethodology is demonstrated in a wind tunnel
scenario where a MOX sensor is placed at various distances downwind of an emitting chemical source and
the wind speed varies in the range 10-34 cm/s. The results demonstrate that models optimized with our
methodology can provide accurate source distance predictions at different wind speeds.

INDEX TERMS Gas detectors, chemical sensors, signal processing, machine learning, time series analysis.

I. INTRODUCTION
The detection of intermittent gas patches is key for rapid gas
source localization (GSL) in turbulent environments where
the ‘‘chemical plume’’ is a collection of gas patches rather
than a continuous trail [1], [2]. In turbulent conditions, the
instantaneous concentration is highly fluctuating and chaotic,
and smooth concentration gradients that could be exploited
by a mobile agent to reach the gas source are only observed
after long time-averaging (on the order of 5-10 minutes [3]).
It is known that some flying insects such as the male moth—
which are excellent plume trackers—rely on the frequency of
‘‘odor hits’’ to efficiently navigate along turbulent plumes to
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find distant mates or food [4]. An odor hit is declared when
themeasured concentration (typically of pheromone) exceeds
the limit of detection of the olfactory receptor [1]. Inspired
by these animals, researchers have developed reactive plume
tracking algorithms for mobile robots to autonomously local-
ize explosives, drugs or gas leaks [5]. The limited success
of these algorithms is often attributed to the slow response
time of the metal oxide (MOX) gas sensors these robots are
typically equipped with due to their commercial availability,
low cost, high sensitivity to many gases and ease of use
[6], [7].

Detecting odor hits with a MOX sensor is very challenging
due to the low bandwidth of this technology (<0.1 Hz [1])
as compared to the bandwidth of chemical plumes (sev-
eral KHz [8]). Fig. 1 illustrates this problem. As can be
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FIGURE 1. Illustration of the slow dynamics of a MOX gas sensor exposed
to a turbulent plume. Data was captured in an open environment where a
MOX sensor (gray trace) and a fast photo-ionization detector with a
bandwidth of 330 Hz (blue trace) were placed close to each other in the
centerline of a turbulent plume (See more details in Section III-A).

observed, the sensor output (gray trace) cannot follow the
fast concentration fluctuations produced by strong turbulent
wind (blue trace). It is clear that comparing the raw sensor
output to a fixed threshold to detect individual odor hits [2],
[9]–[13] will not be effective. The response time of a MOX
sensor can be improved by different techniques: using novel
coatings, modulating the sensor temperature, combining the
response of multiple sensors hosted in independent gas cham-
bers or post-processing the sensor signals. Signal processing
methods are convenient because they can be directly applied
to commercial sensors without changing the recommended
operating mode and without adding extra components that
would increase the cost and weight of the system. For exam-
ple, if we assume that the dynamics of the MOX sensor
can be modelled as ‘‘leaky integration’’ of the instantaneous
concentration [14], a simple way to recover the (fast) stimulus
from the slow response is to compute the smoothed derivative
of the signal. Smoothing is necessary because differentiation
degrades the signal-to-noise ratio (SNR) [15]. According
to Schmuker et al. [16], the rising edges of the smoothed
derivative—the so-called ‘‘bouts’’—are features that can be
caused by individual odor filaments of the plume, so they
could be potentially used to detect odor hits.

However, it is hard to validate that the detected bouts
correspond to true odor hits because these are very difficult
to observe or quantify. A proxy for such validation is the
prediction error obtained when the detected bouts are used
to predict the distance to the chemical source. If the detected
bouts correspond to true odor hits, the source distance shall
be estimated with high accuracy, according to previous exper-
iments carried out with fast photo-ionization detectors [17].
Accordingly, Schmuker et al. [16] used this proxy to validate
their algorithm in awind tunnel scenariowhere aMOX sensor
was placed in the centerline of a turbulent plume at different
distances (range 25-145 cm) to a chemical source. Under a
constant emission rate and wind speed, a linear regression
model relating the bout count during three minutes and the
source distance yielded a root mean squared error in cross-
validation (RMSECV) of only 18 cm.

Based on these results, they claim that the number of bouts
detected in a certain time interval is an accurate indicator of
the source distance. However, these values were not bench-
marked against traditional source proximity estimators, such
as the mean or variance of the response [18], which may also
perform well considering the long measurement windows
(3 minutes). Additionally, when experiments were repeated
at a higher wind speed, the parameters of the bout-based
models changed considerably. This sensitivity to the wind
speed implies that models trained at a certain wind speed
are only accurate when the wind speed during future oper-
ation of the system is the same as in training, an unrealistic
assumption in most scenarios. Although incorporating wind
measurements into the predictivemodels could partially solve
this issue, it limits the practical applicability of the algorithm
because anemometers are expensive and heavy instruments
that cannot be installed in robots with limited payload and
are useless in indoor environments due to weak airflow.

To obtain low prediction errors, low-amplitude bouts that
may be produced by noise or by insufficient smoothing of
the derivative must be filtered out. For that, Schmuker et
al. used a noise threshold (bthr) computed as the mean plus
three standard deviations of the amplitude of bouts detected
in the sensor baseline (i.e., in the absence of gas). This rule of
thumb, known as the three-sigma rule [19], says that 99.73%
of the data in a normal distribution lie within three stan-
dard deviations from the mean, so it is empirically used by
Schmuker et al. to treat 99.73% as near certainty that all bouts
detected in the absence of gas will be filtered out. In other
words, it is a way to minimize the number of false positives. It
should be noted that this way of estimating the noise threshold
implicitly assumes that (i) the bout amplitudes in the sensor
baseline are normally distributed, (ii) a false positive (FP)
is more important than a false negative (FN), and (iii) the
measurement noise is additive.

The first assumption (normality) is questionable because
the bout amplitude is strictly positive by definition [16].
Indeed, in a previous work [20] we empirically observed that
the amplitudes of bouts detected in the sensor baseline are not
normally distributed. The second assumption (FPs are more
important than FNs) arises when the cut-off threshold of a
binary classifier is estimated using exclusively data from the
null hypothesis. If we were able to observe the distribution of
bout amplitudes at different distances of the chemical source
(Fig. 2), we would observe that the overlapping between the
alternative hypothesis (presence of gas) and the null hypothe-
sis (absence of gas) increases as the sensor moves away from
the source. Far from the source, when gas concentration is
very low, the amplitudes of the detected bouts are similar to
the amplitudes of bouts detected in clean air. In this situation,
it is very important to set the threshold of the detector as
low as possible to increase the sensitivity of the system (i.e.,
to correctly identify low-amplitude bouts truly produced by
the plume). A threshold determined solely from the null
hypothesis, such as the three-sigma threshold, can achieve
very high specificity (low number of FPs) at the cost of
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FIGURE 2. Simulated distributions of the bout amplitude in clean air (null
hypothesis, blue curve) and at different distances to an emitting gas
source (alternative hypothesis, red and yellow curves). The figure shows
that the number of false negatives increase with distance to the source
whereas the number of false positives remain constant. The distributions
were generated using a log-normal function ln

(
X

)
∼ N

(
µ, σ2

)
with

µ = 0 (blue curve), µ = 4 (red curve), µ = 5 (yellow curve) and σ2 = 1 (all
cases).

FIGURE 3. Flow diagram of the bout detection algorithm proposed by
Schmuker et al. [16]. The meaning of each symbol is given in the text.

reduced sensitivity (high number of FNs). Regarding the third
assumption (additive noise), we shall be aware that electronic
noise can be additive but other sources of noise that also affect
the sensor signal (e.g., chemo-transduction noise) usually
depend on the chemical concentration [21]. This means that
the noise level in clean air may not be representative of the
noise level during gas exposure.

In this paper, we propose an optimization method for
the parameters of the bout detection algorithm (smoothing
factor and noise threshold) that instead of relying on unre-
alistic assumptions such as constant wind speed or normal
distribution of the bout amplitudes, performs a multivariate
grid search by varying all parameters simultaneously. The
goal is to find the combination of parameters and predictive
models (linear and non-linear) that provide the lowest pre-
diction errors across different wind speeds. We then bench-
mark the results of the optimum bout-based models against
the mean, maximum and variance of the response, and also
against other bout-based features, such as the mean bout
amplitude [29].

II. THE BOUT COMPUTATION ALGORITHM
To compute the bouts of a signal, Schmuker et al. [16] pro-
pose the signal processing pipeline (Equations 1-5 in [16])
illustrated in Fig. 3.

The sensor response x is first smoothed using a Gaussian
low-pass filter [22] (with standard deviation σs s) to remove
high-frequency noise. The smoothed response (xs) goes
through an EMAα filter (with half-life time τh s) that produces
the smoothed derivative (x

′

s) where the bouts are computed.

A. THE EMAα DIGITAL FILTER
The EMAα digital filter [14] is an approximation for a linear
inverse filter of the dynamics of the MOX sensor response.
At time t = nTs, (being Ts the sampling interval) the output
of the filter y[n] is found by computing

y[n] = (1− α) · y[n− 1]+ α · (x [n]− x [n− 1]) (1)

where x[n] is the sensor response at time t = nTs, y[n − 1]
is the previous output of the filter, and α is the smoothing
factor (0 < α ≤ 1). The EMAα filter can be seen as the
concatenation of two operations: first, taking the derivative of
the input signal, i.e. (x [n]−x [n− 1]); second, smoothing the
derivative using an exponentially weighted moving average
(EWMA) filter [23]. The smoothing factor α governs a trade-
off between response time and SNR. As α increases, the
closer is the filtered signal to the derivative and the faster is
the response. However, being close to the derivative means
also higher noise. A meaningful way to specify α is by the
half-life time (s), τh, of the exponential decay, which is the
time at which the exponential weight (1− α)k decays by one
half

α = 1−
(
1
2

) 1
τh·fs

(2)

where τh is the half-life time (s) and fs is the sampling
frequency of x (Hz).

B. THE DETECTION OF BOUTS
The bouts are the rising edges of the smoothed derivative, x

′

s,
which are delimited by two consecutive zero-crossings of the
positive derivative of x

′

s, i.e. x
′′

s > 0. A bout is characterized
by two parameters: amplitude and duration. The amplitude
of a bout is defined as x

′

s at the end of the respective bout
segment minus x

′

s at the start of the same bout segment. The
duration of a bout is defined as t at the end of the respective
bout segment minus t at the start of the same bout segment. To
remove low-amplitude bouts produced by noise, Schmuker et
al. define the amplitude threshold

bthr = µ+ 3σ (3)

where µ and σ are the mean and standard deviation, respec-
tively, of the amplitudes of bouts detected in the sensor base-
line (i.e. in clean air) since these are surely produced by noise.
All bouts with amplitude lower than bthr are thus removed.
If the underlying distribution follows a Gaussian shape, this
threshold guarantees a specificity 99.73%.

C. OPTIMIZATION OF THE ALGORITHM PARAMETERS
The bout algorithm has three parameters to optimize (σs,
τh and bthr). The first two parameters (σs and τh) are cou-
pled and they control the smoothness of the filtered signal.
Schmuker et al. studied the influence of these two parameters
on the relationship between the bout count and the source
distance assuming that bthr defined by (3) is an optimum
threshold. They found that small values of σs and τh (i.e.,
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FIGURE 4. Sketch of the proposed optimization method. The bout
frequency is computed at several downwind distances using different
algorithm parameters (red and black crosses) leading to different
functional relationships between the bout frequency and the source
distance (red and black curves). The best model is the one that minimizes
the prediction error in external validation samples (open circles).

high bandwidth of the derivative filter) resolve better the
short bouts encountered close to the source but fail to resolve
the long bouts that occur further away, leading to a convex
relationship between bout count and source distance. On the
other hand, high smoothing (i.e. low-pass filtering) produces
a concave behavior in which the sensitivity, i.e. the slope of
the regression, is high far from the source and small near the
source. They concluded that σs = 0.3s and τh = 0.4 s are
optimum values in their experimental dataset but no specific
methodology to compute these values was provided. After the
values of these two parameters are fixed, the value of the third
parameter (bthr) is computed through (3), which is not optimal
due to the reasons mentioned in the introductory section.

To overcome these problems, we propose a specific
methodology to optimize the bout algorithm parameters,
sketched in Fig. 4. First, the bout frequency is computed at
different distances to the source using different combinations
of σs, τh and bthr. The bout frequency (bouts/minute) is
simply the number of bouts detected in a certain time interval
divided by the length of such interval. For each parameter
combination, the model (linear or non-linear) that bests fit
the functional relationship between bout frequency (depen-
dent variable) and source distance (independent variable) is
selected via cross-validation (CV). In CV, a portion of the
data is used to fit the models and the remaining data is used to
evaluate the performance of the model in predicting samples
not seen during model training. The goodness of the models
is determined by the root mean squared error (RMSE)

RMSE =

√∑n
i=1

(
ŷi − yi

)2
n

(4)

where ŷi is the distance (m) predicted by the model, yi is the
true distance (m) and n is the number of validation samples.
The performance of the model for different combinations
of parameters can be assessed by computing the RMSE in
external validation samples (RMSEP), which are samples
reserved exclusively for validation purposes (i.e., excluded

FIGURE 5. Generator of turbulent plumes in an open environment. A
pressurized air outlet (6.3 mm radius, 20 L/min) placed 50 cm behind a
beaker (5 cm radius) filled with 200 mL of ethanol created the plume. A
custom sensing board containing a naked MOX sensor and a fast
photo-ionization detector was placed in the centerline of the plume, at
105 cm of distance to the gas source.

from model fitting and optimization). Thus, the classification
problem is converted into a regression problem that only
requires knowing the distance at which measurement were
taken.

III. EXPERIMENTAL
We used two experimental datasets in this work: (i) the open
environment dataset [24] and (ii) the wind tunnel dataset [25].
The first one contains a small set of measurements per-
formed with a MOX sensor and a fast Photo-Ionization
Detector (PID) in an open environment. We use it to verify
that the smoothed derivative of the MOX sensor response
can be a good approximation of ground truth (PID signal).
The second dataset contains a large collection of measure-
ments performed with multiple MOX sensors (no PID in
this case) inside a small wind tunnel. This comprehensive
dataset, which is the same used by Schmuker et al. in their
experiments, is used to test the proposed optimization of the
bout detection algorithm. Data analysis was performed using
Python (version 3.6.2) and the scikit-learn package (version
0.19.1) [26]. Some graphics were generated using MATLAB
R2019a (The Mathworks, Nattick, USA).

A. OPEN ENVIRONMENT DATASET
A turbulent plume is generated in an open environment by
passing an air flow stream over a beaker filled with ethanol
(Fig. 5). A custom sensing board containing a naked (i.e.,
without cap) MOX sensor (TGS 2602, Figaro Engineering,
Japan) and a fast PID (miniPID 201A, Aurora Scientific,
Canada) with a bandwidth of 330 Hz were placed in the
centerline of the plume at 105 cm distance to the gas source.

To ensure that both sensors are exposed to the same gas
flow, the MOX sensor is hosted inside a miniaturized gas
chamber (volume of 0.325 mL) and the inlet of the PID is
connected to the exhaust port of the gas chamber (see more
details in [24]). The PID is used both as reference device
and to draw the sample inside the gas chamber (it has a
pump with a flow rate of 1 L/min). The heater of the MOX
sensor is powered at 5 V and the sensor output is acquired
during 5 minutes at a sampling frequency of 1 kHz using a
voltage divider (RL = 10 k�) and a USB-6002 datalogger
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FIGURE 6. Schematic representation of the wind tunnel (2.5 m × 1.25 m).
The five downwind measuring locations used in this work are indicated
by black squares. A chemical plume has been outlined for illustration
purposes (the actual plume might differ from that).

(National Instruments, USA). The PID output was sampled
also at 1 kHz.

The smoothed derivative is computed through the convolu-
tion of the sensor response and a low-pass differentiator filter.
For simplicity, this filter is defined as the convolution of a
derivative kernel of the form [1, −1] and a moving average
filter with a window size of 20 ms.

B. WIND TUNNEL DATASET
The wind tunnel dataset [25] contains recordings from nine
gas sensor arrays exposed to turbulent gas mixtures inside
a small wind tunnel. We used a portion of this dataset cor-
responding to the measurements acquired by the gas sensor
array #5 (placed in the plume centerline). Figure 6 shows
a simplified schematic of the wind tunnel. Turbulent gas
plumes of different gases were created by injecting pres-
surized gas into one end of the tunnel and dragging it with
an exhaust fan from the other end of the tunnel. Different
wind speeds (range 10-34 cm/s) were created by varying the
rotational speed of the exhaust fan. The sensor array–which
contains 8 MOX sensors–was sequentially placed at five
downwind distances to the gas source (range 25 - 145 cm).
Each sensor array integrates eight MOX sensors (Several
TGS models: 2600 (2x), 2602 (1x), 2610 (1x), 2611 (1x),
2612 (1x) and 2620 (2x), from Figaro Engineering Inc.)
operated at the same, constant heater voltage (range 4.0-6.0
V). The sensor response was measured with a voltage divider
(10 k� load resistor) and sampled with a 12-bit ADC.

A total of 900 distinct experiments were performed by
varying the distance to source (6 possible), gas (10 possible),
sensor temperature (5 possible) and wind speed (3 possible).
Each experiment was repeated 20 times. In each experiment,
the following procedure was performed: (i)Measure the base-
line response of the sensors for 20 s in the absence of gas,
(ii) Release the selected gas for 3minutes, (iii) Circulate clean
air for 1 minute to record the sensor recovery and (iv) Purge
the wind tunnel by setting the fan at maximum speed. Even
though the gas release started at time t = 20 s, the recorded
signals show a transient behavior between t = 30s and
t = 90 s because the gas requires some time to travel through
the tunnel. The time to reach a stable mean response depends
on the distance to the source (sensors closer to the source
stabilize faster) and the wind speed (signals stabilize faster
in experiments performed at high wind speeds). A common

FIGURE 7. Frequency response of the low pass differentiator filter used
to process the MOX sensor signal in the open environment dataset. The
response of an ideal differentiator is displayed as a reference.

time frame where all signals are stable is t = [100, 200] s.
We denote this period as the ‘‘stable gas release’’.

We use the following data from the wind tunnel dataset:
board #5 (located in the plume centerline), sensor #4 (TGS
2600), heater voltage of 6.0 V and Acetaldehyde gas. We
selected the same board used by Schmuker et al. in their
experiments to compare our results to their results. The choice
of sensor, heater voltage and gas were arbitrary, and analyzing
the influence of these parameters in the results is out of the
scope of this study. For the selected configuration, sensor
recordings are available at 6 distances, 3 wind speeds and
20 trials per distance/wind combination (360 experiments).
To find the optimum parameters of the algorithm, the bouts of
the 360 experiments are extracted using different values of σs,
τh and bthr. We perform a grid search: σs = {0.05, 0.3, 1.6} s,
τh = {0.05, 0.4, 1.6} s and bthr = {µ+ σ,µ+ 3σ,µ+ 5σ },
where the center values of each parameter match those used
by Schmuker et al.

For each combination of these parameters (27 possible)
and wind speeds (3 possible), we select the model that best
fits the relationship between bout frequency and distance
to the source, using a cross-validation scheme on the bouts
extracted from the stable gas release period of the first 10 tri-
als. Due to the limited number of values of the independent
variable (6 distances), we use simple models such as linear,
polynomial (up to order 3) and single-term exponential. The
optimum models are then used to predict the distance to the
source from the bouts extracted in the last 10 trials (unseen
during model fitting/optimization).

IV. RESULTS AND DISCUSSION
We first visualize the signals in the open environment dataset
and then proceed to analyze in detail the wind tunnel dataset.

A. OPEN ENVIRONMENT DATASET
Fig. 7 shows the frequency response of the low-pass differ-
entiator filter described in Section III-A. As can be observed,
the derivative is computed only at low frequencies (cut-off
frequency of approximately 20 Hz) while high-frequency
noise is attenuated. The result of filtering the MOX signal
with this filter is shown in Fig. 8. The smoothed derivative

140464 VOLUME 7, 2019



J. Burgués, S. Marco: Wind-Independent Estimation of Gas Source Distance From Transient Features of MOX Sensor Signals

FIGURE 8. Comparison between the dynamics of the MOX sensor, the PID
and the smoothed derivative of the MOX signal in the open environment
dataset. The sensor and the PID were placed at 105 cm distance of the
gas source. The figure illustrates that the smoothed derivative can follow
the fluctuations of the instantaneous concentration.

FIGURE 9. Raw signals captured by sensor #4 (TGS 2600) of board #5
(plume centerline) in trial #1 at different downwind distances (coded by
line transparency) and wind speed (coded by line color). The figure shows
how the m ean amplitude and variability of the signals decrease with
increasing downwind distance and wind speed.

is a much better reconstruction of ground truth, effectively
improving the response time of the sensor.

B. WIND TUNNEL DATASET
The signals recorded in the plume centerline (Fig. 9) are
characterized by a stable plateau concentration, due to gas
accumulation within the wind tunnel, modulated by some
fluctuations due to turbulence. The wind speed has a strong
influence on the mean intensity and fluctuations of the sig-
nals, with lower wind speeds yielding signals with higher
intensity and variability (remember that the wind speed is
related to the ventilation efficiency of the tunnel).

The mean and standard deviation of the sensor signals
are two straightforward features that can be used to pre-
dict the source distance. However, predictive models built
using these features exhibit undesirable properties such as
non-monotonicity and low sensitivity far from the source
(Fig. 10), leading to relatively high RMSEP values of
21-28 cm. In the case of the mean response, these errors are
partly produced by the non-monotonic behavior observed in
the mean response at d = 50cm. This anomalous behaviour
could be related to the high variance of the wind speed at that
location (see Fig. 3b in [25]) probably owing to the geometry
of the wind tunnel and the location of the exhaust fan. In
the case of the standard deviation, the high scattering among

FIGURE 10. Mean and standard deviation of the response of sensor #4
(board #5) at different downwind distances and wind speeds
(color-coded). The solid lines represent the optimum model for the fitting
samples (trials 1-10, solid circles), whereas the RMSEP (see legend) is
computed on the external validation samples (trials 11-20, open circles).

FIGURE 11. Frequency response of the low pass differentiator filters used
to process the MOX sensor signal in the wind tunnel dataset. The filter
with default parameters is highlighted. The response of an ideal
differentiator is displayed as a reference.

different trials seems to indicate that a 3-minute measurement
window may be too short to obtain a reliable estimate of this
feature in the type of plume generated in the wind tunnel.

Based on this first analysis, it seems that the mean and the
standard deviation of the response are not reliable features
for predicting the distance to the source and this motivates
studyingwhether bout-based features can improve the results.
The frequency response of the low-pass differentiator filters
obtained with different combinations of σ s and τh are shown
in Fig. 11. As can be seen, the shape of the filter is mostly
governed by σ s whereas the effect of τh is to change the
cut-off frequency. For example, for a fixed value of τh filters
with higher σ s attenuate faster the signal (narrower transition
band). The impact of τh in the frequency response increases
with decreasing values of σ s. For instance, at σ s = 1.6s
filters with different values of τh are quite similar whereas the
differences are much larger at σ s = 0.05s. The combination
σ s = 0.3 s and τh = 0.4s (optimum according to Schmuker
et al.) produces a filter with a moderate transition band and a
cut-off frequency of approximately 0.5 Hz.
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FIGURE 12. EMAα-filtered signals (σs = 0.3 s, τh = 0.4 s) during the
stable gas exposure of the first trial of various distance/wind
combinations (indicated above each subplot). All detected bouts
(bthr = 0) are marked in red.

Examples of filtered signals at different distances to the
source using this combination of parameters are shown in
Fig. 12. The first thing that can be observed is that dif-
ferentiation removed the plateau previously observed in the
raw signals of Fig. 9. The amplitude and frequency of the
detected bouts decrease with increasing distance to the source
or increasing wind speed. As the sensor moves away from
the source, the signals become weaker and low-amplitude
bouts comparable to those detected in the sensor baseline
becomemore frequent. At a certain distance, it will be hard to
distinguish bouts induced by the plume from those produced
by noise.

The bout frequency (BF) computed with bthr = µ + 3σ
produces a quasi-linear behaviour across the studied distance
range and wind speeds (Fig. 13). The RMSEP decreases
with increasing wind speed and is always lower than the one
obtained for the mean and standard deviation of the response
(Fig. 10). This is probably related to the fact that the variance
of the wind speed in the wind tunnel decreases with increas-
ing rotational speed of the exhaust fan (see Fig. 3 in [25]).
Although the obtained RMSEP values may seem sufficiently
small, it should be remained that they only represent the
performance of the system when training and test wind speed
is the same. From the graphic it is obvious that the prediction
error will increase if, for example, the model is trained at
10 cm/s (red line) and tested at 34 cm/s (blue samples).

On the other hand, the mean bout amplitude (MBA) shows
an exponentially increasing behavior at every wind speed
(Fig. 13). The RMSEP increases with increasing wind speed
due to the very low sensitivity of the exponential models far

FIGURE 13. Bout frequency and mean bout amplitude computed on
sensor #4 (board #5) at different downwind distances and wind speeds
(color-coded). The bout algorithm parameters were σs = 0.3 s, τh = 0.4 s
and bthr = µ+ 3σ. The solid lines represent the optimum model for the
fitting samples (trials 1-10), whereas the RMSEP (see legend) is computed
on external validation samples (trials 11-20).

FIGURE 14. Histogram of bout amplitudes (sensor #4, board #5,
σs = 0.3 s, τh = 0.4 s) in clean air (red) and at various downwind
distances (blue, green, yellow) of an active chemical source. Wind speed
is 34 cm/s. The figure illustrates the high overlapping between the
histograms obtained at different distances. The y-axis is in logarithmic
units. The µ+ 3σ and 99.7% thresholds correspond to bout amplitudes of
0.06 and 0.11 MS, respectively.

from the source. Interestingly, at the lowest wind speed the
MBA provides the lowest RMSEP across all studied features
(10 cm). We also found that the MBA is less sensitive to
the value of bthr than the BF, which degrades its behaviour
if bthr is either too low or too high. It should be noted that
the BF counts bouts in a similar manner regardless of their
amplitude, so that a high-amplitude bout produced by the
plume is as important as a low-amplitude bout produced
by noise and not properly filtered out. On the other hand,
the MBA increases in proportion to the amplitude of each
detected bout, so the negative effect of low-amplitude bouts
is diluted.

1) IS THREE-SIGMA AN OPTIMUM THRESHOLD?
The µ+ 3σ threshold implicitly assumes that the amplitudes
of the bouts detected in the sensor baseline follow a Gaussian
distribution. This is obviously not correct because the bout
amplitude is a random variable bounded from zero (Fig. 14).
Resultingly, the µ + 3σ threshold represents a 98.1% per-
centile in this dataset, instead of the 99.87% corresponding to
a normal distribution. This is, approximately 1.9% (instead of
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FIGURE 15. Bout frequency vs. downwind distance for different algorithm
parameters. Wind speed is 21 cm/s. Each subplot represents a different
value of bthr (indicated above each subplot). The line color indicates the
value of σs (red: 0.05 s, green: 0.30 s, blue: 1.60 s) and the line style
indicates the value of τh: (-) 0.05 s, (–) 0.40 s, (:) 1.60 s.

0.13%) of the bouts detected in clean air will be incorrectly
declared as ‘‘true’’ bouts. One could be tempted to increase
the threshold to reach the 99.87 percentile and keep a low
number of false alarms; however, this will reduce the sensi-
tivity of the detector (increase the false negative rate) because
the positive and negative classes are highly overlapped (espe-
cially at high wind speeds and distant downwind measuring
locations).

2) GRID-SEARCH OPTIMIZATION OF ALGORITHM
PARAMETERS
We performed a multivariate optimization of the three algo-
rithm parameters (σs, τh and bthr) by varying all of them
simultaneously. We found that if the threshold is set too low
(e.g. bthr = 0) or too high (e.g. bthr = 1), there is no com-
bination of smoothing factors that produces a monotonically
increasing relationship between bout frequency and source
distance with enough sensitivity across the studied distance
range (Fig. 15). The desired behaviors are only found for
intermediate thresholds (e.g.µ+ 3σ ) and a subset of smooth-
ing parameters. For example, the combinations {σs = 0.05 s,
τh = 0.4 s} (red dashed line) and {σs = 0.3 s, τh = 0.05 s}
(green solid line) exhibit monotonic behaviors and high sen-
sitivity.

However, the optimum configuration should not only
achieve monotonicity and high sensitivity, but also small
scattering of the different trials around the regression line,
i.e. it must minimize the RMSEP. Computing the RMSEP
at different wind speeds (Table 1) confirmed that moderate
smoothing of the raw signal (σs = 0.3 s) combined with low
smoothing of the derivative (τh = 0.05 s) and low amplitude
threshold (bthr = µ + σ ) yields, in average, the best results.
Higher thresholds, such as µ + 3σ or µ+ 5σ , can produce
lower prediction errors when the wind conditions in training
and test are the same; however, the proposed combination
(σs = 0.3 s, τh = 0.05 s, bthr = µ+ σ ) is the most robust
when thewind conditions in training and test are different. For
example, if the training and test wind speed are both 10 cm/s,
Schmuker’s combination achieves 12% lower errors than the
proposed combination (21 cm versus 24 cm). However, if

TABLE 1. Prediction error (cm) of the bout frequency models under
several combinations of smoothing factors (rows), amplitude thresholds
(blocks) and test wind speeds (columns). The training wind speed is (A)
10 cm/s; (b) 21 cm/s; (c) 34 cm/s.

the test wind speed increases to 0.34 m/s while keeping the
training speed at 0.10 m/s (worst case scenario in this dataset)
the error in Schmuker’s combination (71 cm) is 58% higher
than in the proposed combination (45 cm).

C. OVERALL PERFORMANCE
A comparison of the prediction error of different signal fea-
tures is presented in Table 2. The general trend is that most
estimators achieve low RMSEP when the wind speeds in
training and test are the same but degrade otherwise. In the
case of matching wind speeds, the variance of the ema filtered
signal and the BF with Schmuker’s parameters achieve the
lowest fitting errors (13-21 cm). The low end of this range
corresponds to training and testing at 34 cm/s, whereas the
highest errors are obtained when training and testing are both
performed at 10 cm/s. In the case of non-matching wind
speeds, the proposed method (outlined with a green box)
seems to greatly improve the other estimators. For example,
in the worst-case scenario (training at 10 cm/s and testing at
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TABLE 2. Prediction error (cm) of several signal features, for various
training wind speeds (indicated on the top of each block) and test wind
speeds (indicated on the bottom of each column).

34 cm/s) it achieves a RMSEP of 45 cm whereas the BF with
Schmuker’s parameters (second best estimator) achieves an
RMSEP of 71 cm (58% difference). A similar thing happens
when training at 34 cm/s and testing at 10 cm/s. In the case
of training at medium wind speed (21 cm/s), the proposed
method keeps the RMSEP in the range 25-30 cm regardless
of the wind speed while the other estimators degrade the
RMSEP by at least a factor of two.

V. CONCLUSION
We have experimentally demonstrated that multivariate opti-
mization of the parameters of the bout detection algorithm
can improve the robustness of the algorithm output under
changing wind conditions. The optimum configuration that
we found applies moderate smoothing to the raw signal, low
smoothing to the derivative and low noise threshold. The
latter fact suggests that high sensitivity is more important than
high specificity for accurately predicting the distance to a gas
source in this dataset, although this shall be further validated
using other sensors and gases available in the dataset. Even
if a certain application requires high specificity, applying the
µ+3σ threshold may produce unexpected results because the
distribution of amplitudes of baseline bouts does not follow
a Gaussian distribution. In this case, empirically estimating
the threshold corresponding to the desired percentile of the
negative class seems a more reliable approach.

An additional advantage of lower thresholds is the lower
detection delay and the higher number of bouts detected per
minute, which theoretically allows for shorter measurement
windows. Indeed, the 2-minute measurement windows that
we used in this work may be considered too long for a real
GSL application. Future work may explore the influence of
the measurement window in the results, by analyzing chunks
of measurements of different size. In this context, it makes
sense that the robot reacts in real-time to each detected bout
instead of performing static measurements at fixed locations.
A straightforward approach could be to use the bouts as a
replacement of odor hits in GSL algorithms such as Info-
taxis [2] or Pang and Farrell’s algorithm [13]. Thewind tunnel
dataset already contains a 2D grid measurements in which

the viability of this approach could be simulated prior to
performing experiments with a robot in a real scenario.

A second question addressed by this work is whether the
bout frequency outperforms other estimators of source prox-
imity such as the mean and variance of the response or the
bout amplitude. Although most estimators worked reason-
ably well in the wind tunnel dataset if the training and test
wind speed were equal, the bout frequency with optimized
parameters was the best estimator when considering all wind
conditions. Specifically, the optimized models achieved a
maximum prediction error of 45 cm (over a distance range
of 1.45 m) in the worst-case scenario where the models are
fit at wind speed of 10 cm/s and tested at 34 cm/s. In similar
conditions, the optimum model reported by Schmuker et al.
and the variance of the response (a typical measure of inter-
mittency) yieldedmaximum errors of 71 cm (58% difference)
and 92 cm (104% difference), respectively. The reason for the
good performance of the bout frequency may be the linear
relationship with the distance to the source, as compared to
the polynomial and exponential behaviours observed in other
signal features. The response variance, which some authors
consider a reliable estimator of source proximity, did not
work well in our experiments. In the likely case that the test
wind conditions are unknown, our results suggest that lower
prediction errors will be obtained if the models are trained at
medium wind speed.

In follow-up works we plan to exploit the relationship
between bout amplitude and bout duration to improve the
classification of bouts. One problem of fixed amplitude
thresholds is that bouts with high amplitude and high duration
that appear in the baseline are often classified as true bouts.
Linear classifiers such as support vector machines (SVM) or
non-linear ones such as random forests or k-nearest neigh-
bours (KNN) could generate decision regions that overcome
this issue.
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