IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 21, 2019, accepted August 10, 2019, date of current version September 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939870

CODDLE: Code-Injection Detection

With Deep Learning

STANISLAV ABAIMOV™ AND GIUSEPPE BIANCHI

University of Rome Tor Vergata, Rome, Italy

Corresponding author: Stanislav Abaimov (stas.abaimov @ gmail.com)

ABSTRACT Code Injection attacks such as SQL Injection and Cross-Site Scripting (XSS) are among
the major threats for today’s web applications and systems. This paper proposes CODDLE, a deep
learning-based intrusion detection systems against web-based code injection attacks. CODDLE’s main
novelty consists in adopting a Convolutional Deep Neural Network and in improving its effectiveness via
a tailored pre-processing stage which encodes SQL/XSS-related symbols into type/value pairs. Numerical
experiments performed on real-world datasets for both SQL and XSS attacks show that, with an identical
training and with a same neural network shape, CODDLE’s type/value encoding improves the detection rate
from a baseline of about 75% up to 95% accuracy, 99% precision, and a 92% recall value.

INDEX TERMS Deep learning, code injection, intrusion detection, supervised learning, SQL injection,

XSS, JavaScript.

I. INTRODUCTION
Inits yearly Top Ten List of Web Based Application Exploita-
tion, the Open Web Application Security Project (OWASP)
has often placed Code injection as the number one vulnera-
bility [1], i.e., as the main threat for web applications which
need to interact with back-end databases for their operation.
As a matter of fact, SQL Injection [2] and Cross-Site Script-
ing (XSS) vulnerabilities were found in more than half of
the web applications during a 2015-2016 scan conducted
by Acunetix [3]. Several notable breaches were based on
code injection techniques. An SQL Injection Attack (SQLIA)
was at the basis of the 2013 theft of 160 million credit
card credentials from NASDAQ, Dow Jones, and 14 other
high-level organizations, resulting in a 300 million USD
financial damage [4], [S]. The 2017 Equifax data breach [6]
exploited a vulnerability in Apache Struts and exposed over
143 million American consumers’ sensitive personal infor-
mation. In 2017 [7] and 2018 [8], the hosting provider Het-
zner was targeted by two cyber attacks, one of which was
an SQLIA with private customer information exposed. SQL
injections can even be found in monitoring software and
become publicly known vulnerabilities [9].

Public accessibility of web-based applications makes them
a popular target and one of the main channels to compro-
mise security of systems and networks. In addition, the wide

The associate editor coordinating the review of this manuscript and
approving it for publication was Ahmed M. Elmisery.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

installation base makes both web applications and host sys-
tems (virtual environments, PCs, servers, IoT devices, ICS)
a valuable target for computer and ICS malware that exploits
web-related vulnerabilities to spread itself across external and
internal networks. This applies to a variety of contexts, from
public websites to corporate networks to ICS/SCADA which
store command and control information in their databases,
and hence where an intrusion via a web interface may even
lead to the overall system control by the attacker [10].
Defending against a code injection attack is a challeng-
ing task due to a number of stealth techniques that attack-
ers have developed over time. Evasion techniques include,
for instance, script and code encapsulation to bypass static
filters (e.g., <scr<scr<script>ipt>ipt>), truncation [11],
encoding and decoding (base64, URL, etc.), usage of escape
and comment symbols which may evade processing, and in
more generality blind SQL injection with non-trivial syntax
to exploit web applications with hidden database feedback.
Moreover, detection is further complicated by syntax dif-
ferences in SQL implementations (MySQL, MSSQL, Post-
greSQL, Oracle, etc.). As a consequence, the effectiveness
of statically pre-programmed detection and filtering coun-
termeasures such as signatures or policies deployed into
web application firewalls [12] or intrusion detection sys-
tems further supporting web traffic analysis (e.g. suitably
programmed/configured SIEMs - security information and
event management systems) is at stake against constantly

128617

https://orcid.org/0000-0003-2441-4710

IEEE Access

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

evolving attack vectors and techniques. At the same time,
finding a static, one-size-fits-all, configuration, e.g. in the
form of a-priori defined primitives or filters for processing
HTTP/HTTPS requests, headers, and input field queries,
is challenging due to the configuration/implementation dif-
ferences in the underlying platforms deployed by multiple
third-party vendors.

Given the above, machine learning techniques have
recently emerged as a natural way to accommodate the diver-
sity of the specific deployments and the highly dynamic
nature of the threats. While their motivation - learn from each
specific deployment scenario - is indeed straightforward,
techniques and architectural details are not. As discussed
in the related work section, many state-of-the-art machine
learning solutions (deep neural networks, Bayesian networks,
decision forests, etc) have been duly adapted to cyber security
scenarios and integrated into Web Application Firewalls [13].
Still, performance largely depends on the amount of training,
and to the best of our knowledge, detection rate is often
well below the ideal 100 percent target for detection of code
injection attacks.

In this paper we present an approach which relies on Deep
Neural Networks (more specifically, Convolutional Neural
Networks - CNN) for detection of code injection attacks.
We address the usually large training needs that character-
ize such types of networks, with a new data pre-processing
technique which allows to significantly reduce the time
(i.e. amount of data traffic) needed to configure and train
the CNN. During the pre-processing phase, we detect and
classify specific Code Injection sub-patterns. Based on this,
we remove the part of the original (noisy) data and encode the
remaining data comprising the query under analysis. Specif-
ically, for each SQL code instruction, we further add a label
indicating the type of command or symbol (e.g. Operator,
Expression, Escape) rather than just delivering to the CNN the
command or symbol itself. We then input the pre-processed
traffic pattern into the CNN (in both training and detection
phases). The proposed approach can be applied in generic
web applications, IoT, ICS/SCADA, and CBRNe equipment
that uses remote connection to webservices with the deployed
databases or web application frameworks.

In more details, the specific contribution of the paper is the
following:

« We propose and design CODDLE, a new approach for
code injection detection which combines i) dataset pre-
processing, which classifies and encodes sub-patterns,
with ii) a convolutional neural network. CODDLE’s key
idea is to use a tailored pre-processing phase to remove
unnecessary randomness in the data and add supple-
mentary semantic labels, thus improving both training
efficiency and detection accuracy.

o We further integrate in CODDLE local search tech-
niques to automate the optimization of the shape and
parameters of the employed Neural Network.

« We conduct experiments over two real world datasets
(SQL and XSS), which show that CODDLE’s original

128618

pre-processing approach is capable of significantly
improving detection accuracy: for a same small-size
training dataset, and with no changes in the CNN con-
figuration, we outperform our initial indicators of about
75% accuracy up to performance figures in the order
of 95% and more.
Finally, it is fair to remark that CODDLE’s improved detec-
tion performance, despite the very limited training require-
ments, does not come for free, but is achieved at the
expense of supplementary domain-specific semantic knowl-
edge, employed in the pre-processing stage. For this pur-
pose, we support the implementation of the CODDLE’s
pre-processing policies as plug-ins, which can then be
upgraded and/or replaced when dealing with different attack
flavors.

The paper is organised as follows. Section II discusses
related work. The necessary background information on
code injection detection using deep learning is provided in
section III. Section IV, the core of this paper, presents and
discusses the proposed approach. The evaluation methodol-
ogy is then described in section V, while numerical results
are discussed in section VI. Finally, conclusions are drawn
in section VIIL.

Il. RELATED WORK

Traditionally, code injection detection is done via static anal-
ysis and signature-based detection as well as design of the
web application, so as to [14]:

« Analyse and validate queries before transmitting them to

the back-end servers;

« Send users’ input to the server with minimal permission

privileges;

o Configure SQL Server software with the least necessary

privileges.

Recently, we have witnessed a boost in the proposal of
machine learning approaches for cyber security, mainly fos-
tered by the recent progresses in Deep Learning. Such tech-
niques are certainly not new, and have been applied for long
time in the fields of intrusion/anomaly detection. In what
follows we restrict our attention to works specifically related
to SQL/web attack detection, with special focus on those
employing machine learning approaches. For a more com-
prehensive survey of code vulnerability types, SQL injection
attack types and their detection methods and tools, including
detection of vulnerable code in applications, the reader is
encouraged to refer to one of the many recent surveys on
related topics, for instance the 2017 surveys [15] and [16].

A. MACHINE LEARNING FOR WEB ATTACK DETECTION

The early publications on SQL-specific research of Deep
Learning date back to 2005. William [17] outlined
AMNESIA tool, a method to detect SQLIA using Neural Net-
works was. Valeur et al. [18] proposed a method to identify
queries that did not match multiple models of typical queries
at runtime, including string model and data type-independent
model. Though it did not reach high accuracy, the method

VOLUME 7, 2019

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

IEEE Access

proved high potential of deep learning in malicious query
detection.

Cova et al. (2007) [19] presented Swaddler, an approach
for detection of attacks against web applications, specifically
against those developed using PHP. The proof-of-concept
analyses the internal state of a web application and learns
the relationships between the application’s critical execution
points and the application’s internal state.

As opposed to supervised learning, Bockermann et al.
(2009) [20] proposed an approach of using clustering (‘‘inter-
nal self organizing maps’’) for modelling SQL statements
to parse tree structure of SQL queries as features, e.g., for
correlating SQL queries with applications and distinguishing
malicious and non-malicious queries.

Cheon (2013) [21] introduced a method for SQLIA detec-
tion using Bayesian classifies as well as data set randomisa-
tion method for training purposes.

For evaluation and verification purposes Pan et al.
(2018) [22] presented a way to classify the feasibility of
using machine learning for web application intrusion detec-
tion, outlined limitations and challenges for the deep learning
implementations, as well as described RSMT, a tool that uses
DNN and autoencoders for semi-supervised and unsuper-
vised learning for web attack detection, including SQLIA.

Gurina and Eliseev [23] focus on two common types of
attacks: ‘““denial of service” and “‘code injection.” A new
lightweight approach to detect attacks as anomalies is
proposed, by using an autoencoder for dynamic response
anomaly recognition, with the detection rate against flood
attacks ranging between 61.9% and 98.5%

B. MACHINE LEARNING WITH DATASET PRE-PROCESSING
The recent were published by Cai et al (2017) [24] and
Edalat et al (2018) [25]. Cai et al outlined a method of
conversion of Natural language into SQL queries using CNN
and RNN, as well as provide techniques for pre-processing
and post-processing of input data and queries (encoding and
decoding). Edalat et al research SQL injection detection for
Android application using concolic execution method and
present a tool ConsiDroid. The paper also outlines the dataset
generation approach to multiply the number of malicious
samples.

Selected authors use empty spaces for pre-processing
classification. A pre-processing approach, presented by
Valeur et al. [18], replaces variables with “empty space”
placeholders, generating a ‘“‘skeleton query” and creating
a set of query ‘“‘profiles.” Cheon (2013) [21] presented a
pre-processing algorithm (“‘converter’), that dissects SQL
query into keywords and identifies them by the position of
blank spaces: right side, both, or none.

In the survey [15] Alwan et al. (2017) enumerate existing
tools and methods of detection of SQL injection attacks and
claim that none of the listed tools address the issues of modern
types of SQLIA, such as fast flux SQLIA.

Figure 1 presents a selected list of previous methods and
tools.

VOLUME 7, 2019

Year Method Learning Language
2005 [17] | AMNESIA | NDFA SQL
2007 [19] | Swaddler libAnomaly PHP
2008 [26] | Unnamed OC-SVM PHP, SQL
2009 [20] | Unnamed Clustering SQL
2013 [21] | Unnamed Bayesian SQL
2017 [27] | HDLN Hybrid JavaScript
2017 [24] | Unnamed CNN, RNN SQL
2017 [28] | AMODS SVM SQL, XSS
2018 [25] | ConsiDroid | Concolic Execution | SQL
2018 [29] | DeepXSS LSTM XSS
2019 [23] | Unnamed Autoencoder SQL

FIGURE 1. Code injection detection methods based on machine learning.

C. DETECTION RATES OF EXISTING SYSTEMS

Dussel et al. (2008) [26] introduced a payload-based anomaly
detection method through incorporating structural informa-
tion obtained from a protocol analyser, with the detection
accuracy of 49% for SQL and PHP code injection attacks.
Li (2015) [30] proposed a method based on auto-encoders
and deep belief network, using KDDCUP’99 dataset, with the
final accuracy up to 92,10%. Dong (2017) [28], claimed to
achieve 94.79% accuracy. In 2018, Yan et al. [27] presented
a deep learning method to detect code injection attacks on
hybrid applications. The detection rate of the method was
97,55-97,60%.

The theoretical overview has shown that the existing
methods are sufficient to detect conventional SQL injection
attacks, and have potential to detect sophisticated and inno-
vative ones. However, the implementations and configuration
of the neural networks, as well as the training time, tend to be
sub-optimal.

Our proposed approach, COODLE, attempts to confirm the
existing SQLIA detection capabilities, but with an improved
learning time and consequent need for large datasets and
relevant availability/processing costs.

lll. BACKGROUND

Code injection vulnerabilities (injection flaws) occur when
an application sends untrusted data to an interpreter. Injection
flaws are most often found in SQL, LDAP, XPath, or NoSQL
queries, OS commands, XML parsers, SMTP headers, pro-
gram arguments, etc. Injection flaws tend to be easier to
discover when examining source code than via testing [31].
Traditionally, scanners and fuzzers can detect injection flaws.
However, they fail in sophisticated attacks, in particular with
unknown vectors [32].

A. SQL INJECTION

SQL injection is a code injection technique, used to attack
data-driven applications, in which intentionally malformed
SQL statements are inserted into an entry field for execution
(e.g., to reveal database structure or contents, manipulate
the database, etc.) [33]. It must exploit the user input with
either incorrectly filtered for string literal escape characters

128619

IEEE Access

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

embedded in SQL statements, or not strongly typed and unex-
pectedly executed. SQL injection is a typical attack vector for
web applications, but can be used to attack any type of SQL
database software.

To gain access or make changes to data, the attacker
adds Structured Query Language code to the input field of
a web form or an HTTP/S request header. SQL injection
vulnerability allows the attacker to flow commands directly
to the web application’s underlying database and affect both
functionality and confidentiality.

For example, a legitimate administrator will be authenti-
cated after typing: employee id=112 and password=admin.
Figure 2 describes a login attempt by an attacker exploiting
SQL Injection vulnerability [34]. It is carried out in three
steps: 1) an attacker sends the malicious HTTP request to the
web application; 2) creates the SQL statement; and 3) submits
the SQL statement to the back-end database.

6 | |

WEB CLIENT ~ ~
ATTACKER V) Q

N

WEB 1 saL t [
APPLICATION Statments "

N
DATABASE SERVER

v v

SELECT * FROM employee
WHERE userid = ‘112" and
password = ‘aaa’ OR ‘1'='1"

employee_id =112
Password=aaa’ OR '1'="1

Iy
@ H

Var_sql = "SELECT * FROM
employee WHERE userid = +
userld + * * and password = ‘" +

password"";
>

FIGURE 2. Example of a SQL injection attack [35].

The above SQL statement is algorithmically always true
due to the Boolean tautology (OR 1=1). Thus, the application
allows access to the restricted resource as an administrator
without verifying if the password is correct [34].

SQL Injection attacks can be classified according to dif-
ferent criteria [34], [36], [37], such as attacker’s intent
(extracting data, determining database schema, adding data,
evading detection, performing denial of service, execut-
ing remote commands) and/or technical methods (Tau-
tologies, Illegal/Logically Incorrect Queries, Union Query,
Piggy-backed Queries, Stored Procedure, Alternate Encod-
ings, Blind Injection, Timing Attacks).

B. JAVASCRIPT INJECTION AND CROSS-SITE SCRIPTING
Cross-site scripting (XSS) is a type of vulnerability that
enables attackers to inject client-side scripts into web pages
viewed by other users and to bypass access controls such as
the same-origin policy [38]. In 2017, a bug bounty company
HackerOne reported XSS to be a major threat vector [39].
XSS effects vary in range from information disclosure to
significant security risk, based on the sensitivity of the data
being handled.

XSS attacks can be stored, reflected, and DOM based [40].
Stored attacks are those where the injected script is perma-
nently stored on the target servers, such as in a database,
in a message forum, visitor log, comment field, etc.
The victim then retrieves the malicious script from the
server when the server requests the stored information.
Reflected attacks are those where the injected script is

128620

reflected off the web server, such as in an error message,
search result, or any other response that includes some or all
of the input sent to the server as part of the request. They target
victims via another route, such as in an e-mail message, or on
some other website. When a user is tricked into clicking on a
malicious link, submitting a specially crafted form, or even
just browsing to a malicious site, the injected code travels
to the vulnerable web site, which reflects the attack back to
the user’s browser. The browser then executes the code as it
comes from a “trusted” server.

C. DEEP LEARNING

Deep learning is based on learning data representations,
as opposed to task-specific algorithms. Though with a vast
potential for detecting evolving threats, it has a number of
challenges in application due to semantic gap, difficulties of
results evaluation, and high cost of misclassification [41].

Deep learning can be supervised, semi-supervised or unsu-
pervised. As per [42] unsupervised learning is unstable,
it detects any types of network anomalies, creating many false
positives, thus requiring significant post-processing of the
output events, like in DarkTrace [43]. This technique does
not require any datasets with examples, as it learns from the
existing flow of data. It has been thoroughly researched for
application in detection of inconsistencies and anomalies in
network flow behaviour. Meanwhile, semi-supervised learn-
ing implies a small amount of known correlations, before
proceeding to the clustering of the unknown data, and can be
implemented in network intrusion detection systems for large
networks, using pre-trained models, that improve their perfor-
mance the longer they are active inside a specific network.

Supervised learning is a task of devising a function that
maps an input to a desired output based on provided “‘input
vs desired output™ pairs [44]. It is used for the detection of
similarities of inputs with known patterns of symbols, words,
operators, events, and combinations, solving classification
problem. This type of predictive analysis yields less false
events (i.e., the sum of false positives and false negatives) as
compared to unsupervised machine learning, yet requires a
large dataset of existing examples with known features.

Signature-based intrusion detection is typically done using
static analysis, while anomaly-based intrusion detection is
developed using supervised or unsupervised machine learn-
ing techniques [45]. However, anomaly detection further
implies unsupervised learning without known outcomes dur-
ing training cycle, while the supervised learning framework
usually matches the known “malicious” output. Gurina and
Eliseev [23] provide an overview of anomaly-based detection
methods for web attack detection, specifically against denial
of service attacks and SQLIA.

Convolutional neural network as a set of multiple percep-
trons has multiple inputs and multiple outputs. A line or an
encoded group of symbols can be forwarded into the neural
network and output will provide a set of decisions based
on the correlation algorithm. Convolutional neural network
was selected for the experiment due to low computational

VOLUME 7, 2019

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

IEEE Access

requirements for this specific task, as it does not require
sequential output for this specific implementation, and the
input dataset is multi-dimensional. CNN are special feedfor-
ward networks with layers having a reduced parameter set due
to the training of translation-invariant filters with a limited
locally-receptive field.

There are still constraints in deep learning application, such
as retraining a neural network when the dataset is changed,
inconsistency with pattern prediction, finding the optimal
shape of a deep neural network. However we hypothesise to
be efficient for the set goal.

The notions of batch size and epoch are used in the present
paper. The former defines the subset of samples used for
each parameter set update. The latter defines the number of
times the whole training set is processed (i.e. one training set
pass = one epoch).

The batch size defines the number of samples that will be
propagated through the network in a single training step. The
use of batch size smaller than the number of training samples
in the dataset requires less memory for training and makes
the network train faster, while reducing the accuracy of the
estimate.

Epoch is a one full pass over the entire training dataset,
used to separate training into distinct phases for evaluation.
Thus, a number of epochs shows how many times the neural
network learns from the same training set.

For the attack simulation Damele and Stampar (2012) [46]
presented a method of automatic SQL injection and devel-
oped a tool SQLmap, which is now a part of most security
testing toolkits and operating systems.

IV. APPROACH

A. OVERVIEW AND RATIONALE

As shown in Figure 3 and Figure 4, and as discussed in
more details later on in each dedicated subsection, CODDLE

Pre-
processing

1

Train
candidate
models

)

Evaluate
candidate
models

e

Select best
model

Test model

FIGURE 3. Training algorithm’s workflow.

VOLUME 7, 2019

Pre-
> .
processing

1

Static
analysis

FIGURE 4. Testing algorithm’s workflow.

relies on a supervised approach. During the training phase,
CODDLE is fed with a dataset comprising labeled entries
(input queries, injected code payloads, etc). Rather than using
a specific (e.g. pre-configured) Convolutional Deep Neural
Network (CNN), CODDLE optimizes the CNN shape and
parameters through a local search technique, i.e. by compar-
atively testing different model alternatives and selecting the
best performing set of parameters. The selected trained Deep
Neural Network is then used during the online phase to take
decisions on online queries. Moreover, as shown on Figure 4,
during the online operation an optional module enforcing
static filtering via signature checks may be added to the
processing pipeline. As it is a classical approach, we will not
discuss it further in this paper - numerical results have been
purposefully obtained without any static check, i.e., without
accounting for such an optional filtering stage.

The main novelty of CODDLE consists in the introduction
of a pre-processing module, used in either training as well as
in the online phases. The role of such a pre-processing module
is to accelerate the training and improve the detection rate by
means of two complementary strategies:

« filter out “noisy” information from the input queries
(such as column or table names), by this removing dupli-
cates from the dataset, and

o enrich the original queries with semantic labels
(operator/symbol types).

Indeed, while the rationale for the first item is quite
obvious, the intuition behind such a second item is more
subtle. Roughly speaking, the goal of a well-trained neu-
ral network is to “understand” the role of a specific sym-
bol or operator. To accelerate such process, our idea is to

128621

IEEE Access

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

transform (encode) the original query into a different pat-
tern, by adding domain-specific knowledge in the form of
“type” labels, which will therefore recur more often in the
traces and will hence be more readily “learned” by the
CNN. Concretely, we have tested in this paper an approach
which replaces an otherwise atomic expression (such as an
escape symbol, a separator, or an operator e.g., the string
“SELECT”) with a code pair. This is a pair of entries (C, T)
where T (a numeric value) is the Type of the considered
symbol, i.e., a label meant to identify the class to which the
atomic symbol belongs, and C, again a numeric value, it an
encoding of the symbol itself in that class. So far, as discussed
in the next section, we have limited to three types, but in
principle the approach can be obviously generalized to any
alternative pre-classification. The original query is therefore
transformed in a sequence of numeric codes, which is then
fed to the Neural Network.

In terms of implementation, as shown in the flowchart,
the pre-processing module relies on encoding rules which
can be externally provided as a ruleset, thus permitting to
change the encoding strategy, and hence make CODDLE a
very flexible and re-programmable tool.

In Figure 3 Dataset and Encoding are text files with lines
of code, that are used by the pre-processing algorithm to
convert Dataset into a CNN-readable format using values
from the Encoding file. After pre-processing the queries from
the dataset, and before padding every transformed array to a
fixed length, CODDLE compares the configured maximum
initial length to the length of the longest pre-processed query
in the dataset. CNN is trained repeatably until loss value is
satisfactory or stops improving. For a small dataset, such
as ours, the loss should be below 0.05, or even 0.02. The
limitation was added to CODDLE to stop training the model
with one set of configurations, and move to another set of
configurations, due to the fact that in many cases the loss
value does not improve below 0.08. For example, the use
of charcode preprocessing and CNN with an SQL dataset,
cleared of duplicated, does not reduce the loss value below
0.20. Thus, corrections have to be added to the dataset,

In Figure 4 The input query is pre-processed with the
same encoding as the dataset in Figure 3, and compared to
the “‘signature dataset” using the traditional static method.
If the “signature” is not in the dataset, it is analysed using the
trained model. If the probability of the query being malicious
is more than 50%, CODDLE generates an notification (alert).

B. DATASET PRE-PROCESSING
We use SQL injection attacks and XSS attacks as examples
of code injection attacks, for evaluation purposes. The input
features used for the analysis include operators, expressions,
and escape symbols, as well as the classification identifier.
As compared to methods of pre-processing in [18]
and [21], we present pre-processing based on the type of
the keyword or symbol, completely ignoring blank spaces,
as they can be masqueraded by attackers or otherwise irrel-
evant for some programming languages. The controversy

128622

of removing variables and values from statements like /=1
and 2=0, leaving only equation symbol and removing some
potential trigger conditions, was addressed in [47].

For the experimental purposes, we tested two methods. Our
initial approach, which we later abandoned in favour of the
next one, was only based on removal of randomness from
the trace. All the remaining operators, escape symbols, and
expressions where then coded as a single value. For example,
in the SQL case, every escape symbol was encoded as a
value between 0 and 9, expressions were encoded with values
between 10 and 19, and programming language operators
were mapped to values above 20, based on the language
complexity and a syntax file provided.

We then realized that a better encoding mechanism consists
in mapping each command/symbol not as a single value,
but as a pair of values, where one of such values (the
type of command/symbol/expression), serving as a simple
semantic label. More specifically, the encoding algorithm
converts words and symbols into numeric tokens and pairs
them with an identifier (O for operators, 1 for expressions
and 2 for escape symbols) and processes them as a pattern.
Note that such an approach, which we quantitatively found
to give superior performance than our initial one, does not
require modifications in the CNN: the neural network remains
unaware about the pairwise structure of the encoded query,
and still processes it as a single unstructured sequence of
bytes.

Since any queries or lines of code have variable lengths,
pre-processing the dataset for the neural network training
requires padding for the lines that do not have enough sym-
bols to match a fixed width of the sequence. Figure 5 presents
an example of query pre-processing before the training or
classification by the neural network (removing variables and
values, classifying and encoding).

‘ ' and 1=0) union all ‘

(encoding, group) }» 0- Operator |
€, group 1 - Expression

2 -Escape |

1

I T T T T
':(1,2)‘ ‘AND:(l,O) =y =1 ‘UNION:(Z,O) ALL=(3,0)

‘ [(1,2), (1,0), (1,1), (2,2), (2,0), (3,0)]

‘—{ [1,2,1,0,1,1,2,1,2,0,3,0]‘

FIGURE 5. Dissection of the SQL query using the presented method.

For completeness and visualisation, additional examples
are presented in Fig. 6. The “Merge” list is padded with
zeroes, and an additional 1 or O to provide a supervised
knowledge if the query is an injection attempt or not. The
final training data set is formed with a list of those padded
queries.

Language syntax file contains the exhaustive set of
programming language “words” and operators, while the
algorithm strips variables and values, thus preventing the

VOLUME 7, 2019

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

IEEE Access

SELECT columnl, column2, column3 FROM
tablename

Remove noise: SELECT , , FROM

Encode: (5.,0) (3,1) (3,1) (10,0)

Merge: [5,0,3,1,3,1,10,0]

” or 717="1

Remove noise: ” OR 7 7 =7

Encode: (2.,2) (7,0) (2,2) (2.,2) (1,1)
(2,2)

Merge: [2,2,7,0,2,2,2,2,1,1,2,2]

<img src=1 href=1 onerror="javascript:
alert (1)”>

Remove noise: < img src =
onerror = 7 javascript
> < / img >

Encode: (1,0) (4,1) (4.,1) (4.,1) (5,0)
(4,1) (2,1) (10,0) (3.,1) (2,1) (3.1)
(3,1) (6,1)

Merge: [1,0,4,1,4,1,4,1,5,0,4,1,
2,1,10,0,3,1,2,1,3,1,3,1,6,1]

FIGURE 6. Pre-processing examples for SQL and JavaScript.

href =
alert

()7

system from encountering unknown symbols or issues with
encoding.

C. MACHINE LEARNING APPROACH

CODDLE detects malicious queries using a model-based
approach. Supervised learning was selected for the current
research as the optimal solution to the problem, that has many
existing examples (SQL injection and XSS) and requires a
non-linear decision-making.

After the neural model is trained, it has a fixed number of
input neurons. It remains unchanged after the full configura-
tion and is never updated. After the successful review of event
history by the evaluation function, the system can select the
best performing neural model and trains next set of neural
models with the set best parameters from the previous cycle,
changing the next variable parameter in the list. For the neural
model to be fully updated, it has to be retrained with the new
dataset.

When the test input query is longer than the number of
input neurons, it is analysed again, whether it can be split
into multiple smaller queries using ‘““new line”” symbols and
“escape’ symbols as split points.

The presented method also addresses problems of detec-
tion of the multi-level code encapsulation without any addi-
tional pre-processing.

With the given dimensionality of the data set we used
Convolutional 1D layers (as the input is a single pattern of
values) instead of 2D.

D. OPTIMISATION
Optimisation is a critical component to our method. Neural
models of different shape under the same conditions (same

VOLUME 7, 2019

dataset, same number of training cycles, etc.), once evaluated,
show different detection rates ranging from 40% to 94%.
Manual selection of the optimal neural network shape and
training settings is a stochastic method that requires signif-
icant time of trial and error by re-evaluating the program
with numerous parameters, and does not always result in
the most optimal outcomes. Optimisation algorithms allow to
automate this process and select the highest performing con-
figuration of parameters, without manual re-configuration.
Local search is used in the experiment for the optimisation
in CODDLE, by changing parameters of the neural network,
such as the number of hidden layers, number of neurons
in a hidden layer, training batch size, number of epochs.
The output of CODDLE yields the optimal configuration for
future retraining in future implementations.

In the neural network for our specific application the first
deep layer should be wider than the input layer, while all
the following deep neural layers have to be shorter than the
preceding ones, gradually reducing the number of neurons to
one in the output layer.

For optimisation we change the training parameters only,
the mathematical model of the neural network remains the
same. The features that might affect optimisation process
include a number of training cycles, a number of neurons in a
hidden layer (or layers) of a neural network, number of hidden
layers, batch size of the patterns sent from the dataset to the
input of the neural network, types of the optimisers.

In addition to the external parameters (number of neurons,
training cycles, etc.), Le (2011) [48], provides insight into the
optimisation methods of the machine learning mathematical
models.

V. EVALUATION METHODOLOGY

A. DATASET

For the analysis, before the initial neural network training,
the script converts “input” query (or injected code) into a
sequence and pads with zeroes to reach the maximum query
length, forming a training dataset out of provided files [49].
Dataset of XSS payloads was taken from the GitHub repos-
itory [50]. The syntax files are formed from the publicly
available lists of programming language files.

Convolutional Neural Network requires patterns of fixed
length for input data. Minimal sufficient width of the dataset
is equal to the longest pre-processed query and defines the
number of input neurons.

The system uploads and converts all queries from the
dataset of the input line from the text file into a pattern of
pairs (value and category) and pads it with “0” to match the
length of the longest query in the dataset. The non-malicious
patterns are then padded with an extra “0,” while lines from
the malicious dataset are padded with “1.”

In unique cases, when a malicious query attempts to
masquerade the injection splitting the operator with escape
characters, the pre-processing algorithm converts letter to a
charcode and classifies it as a symbol. This approach also
solves the challenge when multiple programming languages

128623

IEEE Access

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

are chained for sophisticated code injections (e.g., non-web
application code execution through code injection in web
application).

B. METRICS

CODDLE uses the dataset of queries to train multi-
ple deep neural networks. As they are trained, the part
(20%/30%/50%) of the dataset, that has already been marked
with expected outputs (1 or 0) and has not been used for
training, is used for testing of the trained neural models
instead.

As soon as several neural models with changing parameters
are trained, the system selects the model with minimal loss
value and maximum acc value. The “best” model is then
evaluated with the test dataset, and the predictions (outputs)
of the neural model are compared to the expected results,
calculating True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). Following this
step, the system calculates accuracy, precision, and recall at
the end of the evaluation process.

The optimisation is automated and CODDLE will process
data aiming for minimal resource usage for future training,
allowing the output models to be tested and deployed on low-
computational-power devices, even as an ad-hoc hardware.

The method of machine learning is justified by the poten-
tial to detect new attacks, when the signature database was
not been updated yet and by the ability to operate with less
knowledge about the attack.

The detection rate is high due to the small size of the
dataset. And the adversarial dataset composition is limited
due to the limited number of SQL query combinations. Thus,
minimising the number of training cycles and batch size is
detrimental to reducing the overtraining.

Key indicators for CODDLE performance evaluation are
calculated as follows:

TP 4+ TN
Accuracy =
TP+ TN + FP + FN
o TP
Precision = ————
TP + FN
TP
Recall = ——
TP + FP

Those key indicators are only statistical, and can fluctuate
based on the size and composition of the training dataset,
as well as if the samples in the testing dataset differ from the
samples in the training dataset or are the same.

VI. RESULTS
The experiment was performed in multiple steps:
1) Pre-process the dataset detect minimal sufficient size
of the patter to avoid excessive padding
2) Identify optimal number of hidden layers for the neural
network
3) Identify maximum batch size with minimal number of
epochs (training cycles)

128624

4) Evaluate the model with testing dataset and statistical
analysis

To assess viability on commodity hardware, experiments
were conducted on a standard PC with an Inter Core i7-6500U
(4 CPU cores). The training runtime of CODDLE ranges
between 2 and 10 minutes for the basic training for a single
neural network, and up to 1 hour if it needs to find the best
shape of the neural network with given settings.

A. NEURAL MODEL TRAINING

The output layer is set to 1 neuron to output a single
variable, ideally 1 or O, or percentage in between: poten-
tially non-malicious (0.00-0.49) or potentially malicious
(0.50-1.00). After reaching good accuracy and minimal loss,
none of the values are close to 0.50, and they gravitate heavily
to 0 or 1. Same logic is applied to a second output neuron for
programming language attribution.

The number of neurons in the input layer is defined by
the largest item in the dataset (in our dataset any SQL query
had no more than 500 values in a single pattern, while any
JavaScript line had no more than 3000 values). The trian-
gular shape of the neural network ensures that a pattern
of 500-3000 numbers is processed to have only one value in
the output layer. Thus, every next layer has gradually less
neurons than the previous one. For example, the input layers
was set to 500 neurons, the first hidden layers - 600 neurons,
and the second (if any) to 100 neurons. The output neuron
remained 1 for all of the experiments.

After pre-processing and removal of duplicates, dataset is
split 80%/20%, where 80% of the dataset (both malicious and
non-malicious) is used to train the Deep Neural Network, and
20% of the dataset is used to evaluate the accuracy, precision,
and recall of the dataset. Accuracy between 92% and 94% on
average. Alternatively, the dateset is split 70/30% and 50/50%
for evaluation.

For additional evaluation the dataset was shuffled, to val-
idate detection rate over multiple experiments with similar
settings.

B. EVALUATION OF THE DETECTION METHOD

Unbalanced dataset with duplicates introduces a bias into the
neural model, and the model detects all queries as malicious
or as non-malicious. Before the initial tests, we ran CODDLE
without pre-processing function (see Figure 7), simply encod-
ing each symbol of the query into a charcode. This type of
encoding has limitation against attacks that change sequences

Dataset Hidden | Batch Accuracy| Precision| Recall
split layers size

80%/20%| 2 2000 74.0% | 84.2% | 82.9%
70%/30%| 2 2000 71.7% | 853% | 81.7%
50%/50%| 2 2000 57.8% | 80.0% | 54.9%
80%/20%| 1 1000 73.4% | 87.6% | 80.7%
50%/50%| 1 1000 63.9% | 782% | 75.6%

FIGURE 7. Performance of the NN on dataset for SQL injection
detection [49] without pre-processing.

VOLUME 7, 2019

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

IEEE Access

of symbols in the injection query. The loss parameter has
never gone below 0.30 under the same conditions.

As experiments show, with loss value of 0.10-0.07 it is
possible to achieve relatively high accuracy of attack pre-
diction with a small dataset. Neural network shape in this
particular example is as follows: 500 neurons in the input
layers, 600 neurons in the first hidden layer, 400 neurons in
the second hidden layers, and 1 neuron in the output layer.

With no pre-processing the detection results are sub-
optimal for a sophisticated threat detection system.
The implementation of pre-processing aids the neural net-
work with pattern recognition, providing it additional knowl-
edge about the query and the language, thus, improving the
detection rate for selected language.

1.0 — —

o o 4
> o @

True Positive Rate

o
N

72 e Without preprocessing
00 i —— With Preprocessing

0.0 0.2 0.8 1.0

0.4 0.6
False Positive Rate

FIGURE 8. ROC curve of CODDLE against SQL injection dataset [49].

Figure 8 is a receiver operating characteristic (ROC curve)
of a sample output of a neural model with 500 input neurons
and two hidden layers (600 and 200 neurons) (first sample
in Figure 9) compared to the ROC curve of the same neural
network without pre-processing. The accuracy is 95.7%, Pre-
cision 99.0, Recall 91.2, F1 Score 0.949.

Dataset Hidden | Batch Accuracy| Precision| Recall
split layers size

80%/20%| 2 2000 95.7% | 99.0% | 91.2%
70%/30%| 2 2000 90.1% | 90.1% | 90.1%
50%/50%| 2 2000 85.0% | 93.3% | 89.0%
80%/20%| 1 1000 94.0% | 97.8% | 96.2%
50%/50%| 1 1000 93.8% | 96.5% | 95.1%

FIGURE 9. Performance of the NN on dataset for SQL injection [49]
detection with pre-processing.

In Figures 9 and 10 the split of the dataset reduces the
number of training samples and increases the number of test-
ing samples. As training dataset is different from the testing
dataset, the complexity increases for the neural model and
the accuracy of the output reduces. However, this issue can
be partially resolved by increasing the number of training
cycles. For example, training of an 80/20 split model may
take 20 epochs, which training of a 50/50 split model may
take up to 50 epochs.

VOLUME 7, 2019

Dataset Hidden | Batch Accuracy| Precision| Recall
split layers size

80%/20%| 2 2000 90.2% | 99.0% | 90.0%
70%/30%| 2 2000 88.0% | 97.9% | 88.8%
50%/50%| 2 2000 84.5% | 94.5% | 87.1%
80%/20%| 1 1000 90.0% | 98.6% | 90.5%
50%/50%| 1 1000 87.3% | 95.4% | 92.1%

FIGURE 10. Performance of the NN on dataset for XSS [50] detection with
pre-processing.

Unbalanced SQL dataset contains 13000 malicious entries
and 1020 legitimate entries and yields detection accuracy
of 92.2-94.0%. Those results are achieved with 20-22 epochs
training, without overtraining the system. Bigger data set will
require more time to train, and potentially less epochs, as it
will have more samples.

C. DISCUSSION AND EXTENSIONS

Overfitting - Overfitting [51] is “‘the production of an
analysis that corresponds too closely or exactly to a particular
set of data, and may therefore fail to fit additional data or
predict future observations reliably.”” A pragmatic approach
to control overfitting consists in avoiding an excessive train-
ing. We experimentally found out that for the type and size
of datasets used in the experimental results, a neural net-
work training not exceeding 20 epochs (training cycles) was
adequate.

Randomness removal and Boolean statements -
Pre-processing removes variables and values from the anal-
ysed dataset. By removing this randomness from the queries,
the method simplifies the equation. Ignoring Boolean state-
ments (True and False) may cause the loss of ‘“‘trigger”
conditions. E.g., for CODDLE the statement /=1/ means
the same as 2=0, as only equation symbol is processed.
The implementation of the additional category of values
and variables in the method may improve the efficiency and
detection rate, while significantly increasing the complexity
of the code.

Batch size - Our CNN is fed with sequences of the same
size. We therefore selected a sufficiently large batch size so
as to accommodate the worst case query in each dataset,
and used padding (after pre-processing encoding). Obviously,
in an online, dynamic, deployment, even if we set a “large”
batch size, an attacker may always generate a malicious
injection pattern that can be longer than the neural network
input capacity. In this case a pragmatic mitigation technique
consists in making sure that the system will not process a
query longer than a given maximum size, but will simply
reject it.

Extension to other attacks beyond SQL and XSS -
Even if, for the sake of experimental evaluation, we have
restricted our quantitative analysis to two datasets/attack
types (SQL and XSS), we remark that the proposed code
injection detection method is general, and can be applied to
any other programming language. For every new language,

128625

IEEE Access

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

it suffices to change the encoding module, and use a specific
encoder customized to the specificities of the considered lan-
guage (i.e., supply a file that contains programming language
syntax).

Data preparation - Our approach requires queries to be
expressed in terms of native code. In the case of encoded
queries (e.g., Base64), such data has to be additionally
pre-processed and converted into the code to be forwarded to
the system. Also, during training, dataset should be filtered
and duplicates should be removed as they may affect the
precision and accuracy of the system.

Additional static / signature-based analysis - although
in this paper we focused only on the neural network part,
our CODDLE prototype is designed with the capability
to integrate further processing modules, devised to sup-
port static method and analyses on whether the query fully
matches with the existing signatures in a known database of
examples.

VIl. CONCLUSION

This paper has proposed CODDLE, a system devised to
detect code injection attacks using Convolutional (Deep)
Neural Network.

In order to circumvent the demanding training require-
ments that Convolutional Neural Networks bring about,
CODDLE introduces an original pre-processing technique.

Rather than processing the raw code injection data,
CODDLE transforms the original data into an encoded pat-
tern. On one side, such an encoding removes randomness in
the original data. On the other side, and more significantly,
CODDLE encodes each originally atomic symbol, command
or instruction into a <code,type> pair. This permits not only
to retain the information about the original symbol, but also to
add a simple semantic label which helps the neural network to
“understand” the role of the specific symbol or operator
itself, thus significantly reducing the training needs.

Numerical results have been produced on two real-world
datasets encompassing both SQL and XSS attacks. The
results show that CODDLE provides excellent detection
detection performance, up to 94% accuracy, 99% precision,
and a 93% recall value.

Finally, the CODDLE system is being developed as a
highly modular framework, which does not rely on ‘“hard-
coded” syntax of programming or scripting languages, but
permits to change the type of pre-processing via a configu-
ration module, thus allowing the method to be used for any
programming language that allows code injection attacks.

We believe that the flexibility of the programming lan-
guage syntax encoding, in conjunction with the possibility to
add supplementary modules devised to static (e.g. signature-
based) analysis makes of CODDLE a versatile tool, which
may find compelling application also in different intru-
sion detection scenarios, such as critical infrastructure and
CBRNe. Indeed, We plan to release a first version of
CODDLE as public-domain software once this paper will
appear.

128626

REFERENCES

[1] OWASP Top 10 2017. Accessed: Jan. 30, 2019. [Online]. Available:

https://www.owasp.org/index.php/Top_10-2017_Top_10/

[2] J.P.Singh, “Analysis of SQL injection detection techniques,” Theor. Appl.

Informat., vol. 28, nos. 1-2, pp. 37-55, 2017.

Acunetix. (2016). Acunetix Web Application Vulnerability Report 2016.

[Online]. Available: https://www.acunetix.com/acunetix-web-application-

vulnerability-report-2016/

Five Indicted in New Jersey for Largest Known Data Breach Conspiracy,

Department of Justice, 2013. Accessed: Apr. 3, 2019. [Online]. Avail-

able: https://www.justice.gov/usao-nj/pr/five-indicted-new-jersey-largest-

known-data-breach-conspiracy

[51 U.S. Prosecutors Launch Largest Ever Hacking Fraud Case. Accessed:

Mar. 4, 2019. [Online]. Available: https://www.bbc.co.uk/news/

technology-23448639

Equifax, Apache Struts, and CVE-2017-5638 Vulnerability. Accessed:

Mar. 4, 2019. [Online]. Available: https://www.synopsys.com/blogs/

software-security/equifax-apache-struts-cve-2017-5638-vulnerability/

Hetzner. Konsoleh Database Compromise. Accessed: Mar. 4, 2019.

[Online]. Available: https://hetzner.co.za/insights/konsoleh-database-

compromise/

Hitechwiki. Web Hosting Provider Have Been Hacked for the Second Time

in the Past Year by Hackers. Accessed: Mar. 4, 2019. [Online]. Available:

https://hitechwiki.com/2018/10/web-hosting-provider-have-been-hacked-
for-the-second-time-in-the-past-year-by-hackers/

Nist CVE-2018-18550 Details. Accessed: Apr. 3, 2019. [Online]. Avail-

able: https://nvd.nist.gov/vuln/detail/CVE-2018-18550

[10] Plcsql TIA Installation Manual V1.04. Accessed: Feb. 13, 2019. [Online].
Available: http://www.plesql-link.com/pdf/PLCSQL_PLC_TIA _
Installation_Manual_V1_04.pdf

[11] Microsoft. Bala Neerumalla, SQL Injections by Truncation. Accessed:
Apr. 3, 2019. [Online]. Available: https://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Neerumalla.pdf

[12] OWASP. Web Application Firewall. Accessed: Apr. 5, 2019. [Online].
Available: https://www.owasp.org/index.php/Web_Application_Firewall

[13] Oracle. The Oracle DYN Web Application Firewall (WAF). Accessed:
Apr. 5, 2019. [Online]. Available: https://dyn.com/waf/

[14] K. Elshazly, Y. Fouad, M. Saleh, and A. Sewisy, “A survey of SQL
injection attack detection and prevention,” J. Comput. Commun., vol. 2,
no. 8, pp. 1-9, 2014.

[15] Z. S. Alwan and M. F. Younis, “Detection and prevention of SQL
injection attack: A survey,” Int. J. Comput. Sci. Mobile Comput.,
vol. 6, no. 8, pp. 5-17, 2017. [Online]. Available: https://www.ijjcsmc.
com/docs/papers/August2017/V618201701.pdf

[16] B. Nagpal, N. Chauhan, and N. Singh, “A survey on the detection of SQL
injection attacks and their countermeasures,” J. Inf. Process. Syst., vol. 13,
no. 4, pp. 689-702, 2017.

[17] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and monitor-
ing for NEutralizing SQL-injection attacks,” in Proc. 20th IEEE/ACM
Int. Conf. Automated Softw. Eng., Nov. 2005, pp. 174-183. doi: 10.
1145/1101908.1101935.

[18] F. Valeur, D. Mutz, and G. Vigna, A Learning-Based Approach to the
Detection of SQL Attacks, 2005, pp. 123-140.

[19] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, ‘“Swaddler:
An approach for the anomaly-based detection of state violations in Web
applications,” in Recent Advances in Intrusion Detection, 2007, pp. 63-86.

[20] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for database
intrusion detection using context-sensitive modelling (extended abstract),”
in Detection of Intrusions and Malware, and Vulnerability Assessment
(Lecture Notes in Computer Science), vol. 5587, 2009, pp. 196-205.

[21] E. H. Cheon, Z. Huang, and Y. S. Lee, ‘“Preventing SQL injection attack
based on machine learning,” Int. J. Adv. Comput. Technol., vol. 5, no. 9,
pp. 967-974, 2013.

[22] Y. Pan, F. Sun, J. White, D. C. Schmidt, J. Staples, and L. Krause,
“Detecting Web attacks with end-to-end deep learning,” J. Internet
Services Appl., vol. 10, p. 16, Aug. 2019. [Online]. Available:
https://www.dre.vanderbilt.edu/~schmidt/PDF/machine-learning-
feasibility-study.pdf

[23] A. Gurina and V. Eliseev, “Anomaly-based method for detecting multiple
classes of network attacks,” Information, vol. 10, no. 3, p. 84, 2019.

[24] R. Cai, B. Xu, Z. Zhang, X. Yang, Z. Li, and Z. Liang, “An encoder-
decoder framework translating natural language to database queries,” in
Proc. Int. Joint Conf. Artif. Intell. (IJCAI), Nov. 2018, pp. 3977-3983.

3

—

[4

=

[6

17

—

[8

—

[9

—

VOLUME 7, 2019

http://dx.doi.org/10.1145/1101908.1101935
http://dx.doi.org/10.1145/1101908.1101935

S. Abaimov, G. Bianchi: CODDLE: Code-Injection Detection With Deep Learning

IEEE Access

[25] E. Edalat, B. Sadeghiyan, and F. Ghassemi, “ConsiDroid: A concolic-
based tool for detecting SQL injection vulnerability in Android apps,”
pp. 1-10, Nov. 2018, arXiv:1811.10448. [Online]. Available: https://arxiv.
org/abs/1811.10448

[26] H.Jahankhani, S. Fernando, M. Z. Nkhoma, and H. Mouratidis, ‘“Informa-
tion systems security: Cases of network administrator threats,” Int. J. Inf.
Secur. Privacy, vol. 1, no. 3, pp. 13-25, 2011.

[27] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, ““New deep learning method
to detect code injection attacks on hybrid applications,” J. Syst. Softw.,
vol. 137, pp. 67-77, Mar. 2018.

[28] Y. Dong, Y. Zhang, H. Ma, Q. Wu, Q. Liu, K. Wang, and W. Wang,
“An adaptive system for detecting malicious queries in Web attacks,”
Sci. China Inf. Sci., vol. 61, no. 3, Feb. 2018, Art. no. 032114. doi: 10.
1007/s11432-017-9288-4.

[29] Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross site scripting
detection based on deep learning,” in Proc. Int. Conf. Comput. Artif. Intell.,
May 2018, pp. 47-51.

[30] Y.Li,R.Ma, andR.Jiao, ““A hybrid malicious code detection method based
on deep learning,” Methods, vol. 9, no. 5, pp. 205-216, 2015.

[31] G. S. M. Muth. Top 10 Web Application Security Vulnerabilities,
PENN Computing. University of Pennsylvania. [Online]. Available:
https://www.upenn.edu/computing/group/npc/pending/draft-201804 18-
webappsec.html

[32] OWASP. OWASP Top 10 2013 Al: Injection Flaws. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013-A1-Injection

[33] Microsoft. (2012). SQL Injection. [Online]. Available: https://docs.
microsoft.com/en-us/previous-versions/sql/sql-server-2008-
r2/ms161953(v=sql.105)

[34] P.grazie, PHD Sqlprevent Thesis. Vancouver, BC, Canada: Univ. of British
Columbia, 2008.

[35] A.Tajpour, S. Ibrahim, and M. Masrom, “SQL injection detection and pre-
vention techniques,” Int. J. Adv. Comput. Technol., vol. 3, no. 7, pp. 82-91,
2012.

[36] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,
“CANDID: Preventing sql injection attacks using dynamic candidate eval-
uations,” in Proc. CCS, 2007, pp. 12-24.

[37] W. G. J. Halfond, J. Viegas, and A. Orso, “A classification of SQL-
injection attacks and countermeasures,” in Proc. IEEE Int. Symp. Secure
Softw. Eng., 2006, pp. 13-15.

[38] Symantec Internet Security Threat Report: Trends for July-December 2007
(Executive Summary), Symantec, Mountain View, CA, USA, Apr. 2008.

[39] S. Ranger. (2017). At $30,000 for a Flaw, Bug Bounties are Big and Get-
ting Bigger. Zdnet. [Online]. Available: https://www.zdnet.com/article/at-
30000-for-a-flaw-bug-bounties-are-big-and-getting-bigger/

[40] A. Klein. (2005). Dom Based Cross Site Scripting or XSS of the Third
Kind, a Look at an Overlooked Flavor of XSS. [Online]. Available:
http://www.webappsec.org/projects/articles/071105.txt

[41] O. Shaya, “Using machine learning in networks intrusion detection,”
Tech. Rep., Aug. 2008.

[42] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436-444, May 2015. [Online]. Available: https://www.cs.
toronto.edu/hinton/absps/NatureDeepReview.pdf

[43] Darktrace. [Online]. Available: https://www.darktrace.com/en/resources/

[44] P. N. Stuart and J. Russell, Artificial Intelligence: A Modern Approach,
2010.

[45] H. Kaur, G. Singh, and J. Minhas, “A review of machine learning
based anomaly detection techniques,” Int. J. Comput. Appl. Technol.
Res., vol. 2, no. 2, pp. 185-187, 2013. [Online]. Available: https://arxiv.
org/pdf/1307.7286.pdf

[46] Bernardo Damele, a.g., Stampar, m.: Sqlmap: Automatic SQL Injection
and Database Takeover Tool. Accessed: Apr. 5,2019. [Online]. Available:
http://sqlmap.sourceforge.net/

VOLUME 7, 2019

[47] 1. Lee, S. Jeong, S.-S. Yeo, and J. Moon, “A novel method for SQL
injection attack detection based on removing SQL query attribute values,”
Math. Comput. Model., vol. 55, nos. 1-2, pp. 58-68, Jan. 2012. doi: 10.
1016/j.mem.2011.01.050.

[48] Q. V.Le,J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On
optimization methods for deep learning,” in Proc. 28th Int. Conf. Int. Conf.
Mach. Learn. (ICML). Madison, WI, USA: Omnipress, 2011, pp. 265-272.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3104482.3104516

[49] Github. SQL Payload Dataset. Accessed: Jan. 2, 2019. [Online]. Avail-
able: https://github.com/SuperCowPowers/data_hacking/tree/master/sql_
injection/data

[50] Github, XSS Payload Dataset. Accessed: Jan. 2, 2019. [Online]. Available:
https://github.com/ismailtasdelen/xss-payload-list

[51] Oxford Dictionaries. Definition of Overfitting. Accessed: Feb. 14,
2019. [Online]. Available: https://en.oxforddictionaries.com/definition/
overfitting

STANISLAV ABAIMOV received the M.Sc.
degree in information security from the Royal Hol-
loway, University of London, an Academic Cen-
ter of Excellence in Cyber Security, certified by
EPSRC and GCHQ. He is currently a Graduate
of the Moscow State Institute of Electronics and
Mathematics, Faculty of “‘Automated Systems and
Informatics in Control Systems.” He is also a
Ph.D. Researcher in cyber security and electronic
engineering with the University of Rome Tor Ver-
gata. During his master’s studies, he conducted his research in the field
of advanced persistent threat, security testing, digital forensics, and cyber
warfare and defense. His Ph.D. research interests include CBRNe cyber
security and industrial control systems in critical infrastructure. He is also
supporting research in SCADA systems in CBRNe and critical infrastructure,
ICS malware and his interests vary from cyber security in ICSs and
autonomous weapons systems to wireless communications, threat modeling,
network analysis, and cyber defense.

GIUSEPPE BIANCHI is currently a Full Pro-
fessor of networking and network security with
the University of Roma Tor Vergata. His research
activities include privacy and security, wireless
networks, programmable network systems, traf-
fic modeling and control, and is documented
in about 230 peer-reviewed international journal
and conference articles, accounting for more than
16.000 citations (source: Google Scholar). He has
coordinated six large-scale EU projects, and has
been (or still is) an Editor for several journals in his field, including
the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT, and Elsevier Computer Communications.

128627

http://dx.doi.org/10.1007/s11432-017-9288-4
http://dx.doi.org/10.1007/s11432-017-9288-4
http://dx.doi.org/10.1016/j.mcm.2011.01.050
http://dx.doi.org/10.1016/j.mcm.2011.01.050

	INTRODUCTION
	RELATED WORK
	MACHINE LEARNING FOR WEB ATTACK DETECTION
	MACHINE LEARNING WITH DATASET PRE-PROCESSING
	DETECTION RATES OF EXISTING SYSTEMS

	BACKGROUND
	SQL INJECTION
	JAVASCRIPT INJECTION AND CROSS-SITE SCRIPTING
	DEEP LEARNING

	APPROACH
	OVERVIEW AND RATIONALE
	DATASET PRE-PROCESSING
	MACHINE LEARNING APPROACH
	OPTIMISATION

	EVALUATION METHODOLOGY
	DATASET
	METRICS

	RESULTS
	NEURAL MODEL TRAINING
	EVALUATION OF THE DETECTION METHOD
	DISCUSSION AND EXTENSIONS

	CONCLUSION
	REFERENCES
	Biographies
	STANISLAV ABAIMOV
	GIUSEPPE BIANCHI

