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ABSTRACT Although recent studies on object recognition using deep neural networks have reported
remarkable performance, they have usually assumed that adequate object size and image resolution are
available, whichmay not be guaranteed in real applications. This paper proposes a framework for recognizing
objects in very low resolution images through the collaborative learning of two deep neural networks: image
enhancement network and object recognition network. The proposed image enhancement network attempts
to enhance extremely low resolution images into sharper and more informative images with the use of
collaborative learning signals from the object recognition network. The object recognition network with
trained weights for high resolution images actively participates in the learning of the image enhancement
network. It also utilizes the output from the image enhancement network as augmented learning data to boost
its recognition performance on very low resolution objects. Through experiments on various low resolution
image benchmark datasets, we verified that the proposed method can improve the image reconstruction and
classification performance.

INDEX TERMS Machine learning, object recognition, very low resolution recognition, image enhancement,
deep neural networks, collaborative learning.

I. INTRODUCTION
Object recognition is one of the well-conquered problems in
machine learning owing to the use of deep learning tech-
niques [1]–[7]. After the success of AlexNet in the Ima-
genet large scale visual recognition challenge (ILSVRC)
2012 [1], the performance of object recognition using deep
neural networks has improved rapidly and steadily. Whereas
the networks in the early works were composed of limited
numbers of layers owing to difficulties associated with the
training process [2], various techniques such as the inception
module [3] and the residual module [4]–[6] have been devel-
oped to resolve the difficulties [8]–[11]. In ILSVRC 2017,
the squeeze-and-excitation network (SENet) achieved a top-5
error of 2.25% in classifying objects from 1000 classes and
won the classification competition [7], which is astonishing
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performance considering that the top-5 error rate of humans
is 5.1% [12].

Despite these prominent results, the focus on low-
resolution object recognition has been weaker than that
on high-resolution images. The average resolution of the
images used in ILSVRC is 482 × 415 pixels [13]. Although
those images contain backgrounds and multiple objects,
they can retain sufficient information about each object,
which enabled deep networks to extract rich visual features
from them and achieve notable classification performance.
However, there is no guarantee that the deep networks
designed for high resolution object recognition can perform
well when classifying extremely low resolution images,
in which much of the useful object-related information is
collapsed.

The very low resolution recognition problem deals with
images of resolution lower than 16 × 16 pixels [14]–[20].
Although previous works have not dealt with this
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topic seriously, it should not be neglected in real applications
because the recognition of small objects in a large high
resolution image is equivalent to low resolution problem.
Considering this practical importance, numerous studies have
attempted to recognize human faces from extremely low reso-
lution images. These works related to human faces have tried
to enhance low resolution images for representing facial com-
ponents more clearly [14], [15] or to design new facial feature
descriptors that are robust against to low resolution [16]. Deep
learning techniques have further improved the recognition
performance in LR facial images [17]–[19]. By contrast, there
have been few works on low resolution object recognition,
which involves further varieties of image features [19]–[22].

To improve the object recognition performance on low
resolution images, image super-resolution (SR) techniques
can be applied before the recognition step. The SR tech-
niques based on deep neural networks [23]–[34] have outper-
formed traditional methods [35]. They have led to substantial
improvements in image quality measures such as peak signal-
to-noise ratio (PSNR) [36] and structural similarity (SSIM)
index [37] and helped generate realistic high resolution
images. However, the existing SR methods focus on enhanc-
ing the image quality of small patches, meaning they cannot
necessarily extract useful object information from entire
images. In addition, these methods do not consider semantic
information, which means they may even reconstruct noise;
this is undesirable from the viewpoint of object recognition.
Therefore, to boost the recognition performance on low
resolution images, it is necessary to develop more active
enhancement methods by concentrating on the extraction of
perceptually meaningful information.

With this consideration, we propose an integrated frame-
work for object recognition in extremely LR images
(8 × 8 pixels). This framework is based on the collaborative
training of two deep neural networks: the image enhance-
ment network (IEN) and the object recognition network. The
IEN has been newly designed to enhance low resolution
images into well-interpretable images that can be input into
the object recognition network. The fundamental structure
of the proposed IEN is inspired by various works on SR,
and it includes additional convolutional blocks for extracting
global context information, which is important for object
recognition. In addition, we propose a new loss function for
training the IEN by combining the typical super-resolution
loss with additional losses associated with the collaborating
object recognition network. The object recognition network
is based on an existing well-trained model, and we propose
systematic retraining strategies for this network that utilize
the ability of the pre-trained network efficiently and augment
its recognition performance on low resolution images. With
these strategies, the object recognition network helps the
IEN by providing training signals and uses the output of the
trained IEN as additional training data for object recognition.
Through the collaborative learning process, we expect the
proposed model to achieve high recognition performance on
low resolution and high resolution images.

The remainder of this paper is organized as follows.
Section 2 describes related works on very low resolution
object recognition and image super-resolution. The over-
all structure of the proposed networks and the training
strategies employed in them are described in Section 3.
Section 4 reports the experimental results and discusses the
performance of the proposedmethod. Section 5 concludes the
paper.

II. RELATED WORKS
A. VERY LOW RESOLUTION OBJECT RECOGNITION
Studies on very low resolution object recognition by
using deep learning techniques are in an emergent state.
Wang et al. [20] classified very low resolution objects by
using deep learning and demonstrated the feasibility of using
deep neural networks for the recognition of very low resolu-
tion objects, as well as for other recognition tasks, such as
digits, faces, and fonts. However, with this approach, the net-
works used for each task must be trained from scratch with
specific datasets, and its efficiency was not fully confirmed
for common object recognition tasks with large datasets, such
as ILSVRC.

Peng et al. [21] proposed to retrain a conventional object
recognition network by using low resolution images. The
retrained network exhibited marginally superior performance
for low resolution images than that achieved with the typical
training protocol, which uses high resolution and low resolu-
tion image simultaneously (i.e., ‘‘mixed learning’’ in [21]).
However, its performance on high resolution images was
considerably poorer, implying that necessity to develop an
elaborate training strategy for achieving good performance
with images of various resolutions.

GenLR-Net [19] and resolution-aware convolutional neu-
ral network (RACNN) [22] also attempted to solve very
low resolution object recognition problem. GenLR-Net per-
formed well in classifying objects that were not trained by
comparing the extracted features of low resolution images
with the ones of high resolution images. The RACNN
achieved superior classification performance than [21] owing
to the attachment of SR layers ahead of an object recognition
network. Although these preliminary works highlighted the
necessity and feasibility of low resolution object recogni-
tion by using deep learning models, they considered only
controlled variations [19] and did not fully examine image
resolutions lower than 16 × 16 pixels [22].
The proposed training strategies for object recognition

network have been designed to solve the abovementioned
problems. By importing and fine-tuning a well-trained object
recognition network, we attempt to achieve basic recognition
performance on common high resolution objects. In addition,
by actively involving the network in training the IEN, we try
to ensure that the IEN can generate images suitable for
object recognition. Finally, we use the images enhanced using
the IEN for retraining the object recognition network to
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further improve its recognition performance on low resolu-
tion images.

B. IMAGE SUPER-RESOLUTION
Recent SR techniques based on deep learning have achieved
high restoration performance in terms of the PSNR and the
SSIM index [23]–[34]. Super-resolution convolutional neural
network (SRCNN) [23] and VDSR [24] are pioneering SR
techniques based on deep learning. In these techniques, con-
volutional layers are stacked to extract features from image
patches [23], and the residual module and gradient clip-
ping are adopted for efficiently training deep networks [24].
These developments have subsequently been applied to the
enhanced deep super-resolution network (EDSR) [25] with
refined and deeper structures. In addition, EDSR employed
residual scaling [6], which controls the network output by
multiplying it with a small scalar value. Haris et al. [26] pro-
posed deep back-projection networks (DBPN) that enhance
the reconstruction performance by iterating pairs of up-
and down-sampling layers instead of merely stacking con-
volutional layers. These deep learning-based SR methods
successfully recovered visual information from input images.
However, the majority of deep learning-based SR methods
have been designed to enhance the detailed appearance of
small image patches in high resolution images. In other
words, the existing deep learning-based SR methods can-
not completely retain their reconstruction performance for
extremely low resolution images.Moreover, during the patch-
wise training process, the semantic information of a given
image is typically neglected. On the contrary, the proposed
IEN is designed to efficiently extract global perceptual fea-
tures from extremely low resolution images and compen-
sate for any gaps in information by means of collaborative
learning with the object recognition network.

Furthermore, several studies have claimed that mean
squared error (MSE) does not always guarantee higher recon-
struction performance in terms of image quality for human
perception [38]–[40]. Recently, a few studies on SR have
employed perceptual loss based on visual information along
withMSE to enhance reconstruction performance through the
recovery of texture information [27]–[33]. Johnson et al. [28]
suggested that perceptual loss helps improve image quality
and generate human-acceptable images. EnhanceNet [29]
indicated the limit of MSE in image restoration and the
poor correlation between PSNR index and human percep-
tion, and the authors of EnhanceNet attempted to reconstruct
image textures by using perceptual loss. SRGAN [30] is a
SR technique based on the generative adversarial network
(GAN), and it employs the perceptual loss obtained from
the part of object recognition network. Although its PSNR
and SSIM index are slightly lower than those of the other
SR techniques that employ only MSE, SRGAN employs
a sophisticated discriminator network to generate realistic
images that can fool humans. This idea has succeeded to
more complicated structures with additional loss functions
[31], [32]. Voynov et al. [33] adopted perceptual loss from

depth images to recover texture information. However, these
techniques are less focused on practical applications tied to
human perception, such as object recognition.

Haris et al. [34] combined their SR network (DBPN [26])
with a well-known object detection network (SSD [41]) and
trained the SR network in an end-to-end manner by using
the additive loss function representing the losses of the two
networks. The proposedmethod takes a similar approachwith
a different purpose, namely, object recognition. In addition,
instead of simple end-to-end-style combination, we present
systematic training strategies and an integrated function cov-
ering multiple losses to achieve optimal object recognition
performance.

III. PROPOSED METHOD
A. OVERALL STRUCTURE
The overall structure of the proposed model, as well as its
training and inference, are illustrated in Fig. 1. As shown in
Fig. 1(b), the entire model is composed of two networks: the
IEN and the object recognition network. The proposed IEN
has been newly designed to enhance low resolution images
so that they can be used for object recognition. Unlike the
conventional SR models that conduct patch-wise reconstruc-
tion by minimizing pixel-wise distance, the proposed IEN
attempts to reconstruct object information in the entire image
by maximizing perceptual fidelity. For the object recognition
network, we have adopted a well-trained conventional model
to benefit from its generalizability in the object recognition
task. The processing flow in the inference stage is represented
as a simple combination of the two networks. However, in the
training stage, the two networks collaborate interactively to
improve the performance of each network and achieve the
ultimate goal.

To achieve the ultimate goal, which is to maximize the
accuracy of object recognition on in very low resolution
images, the training process is composed of three stages,
as shown in Fig. 1(a). In training stage 1, a conventional
object recognition network with well-trained parameters is
imported and fine-tuned by using high resolution (HR)
images from a specific dataset. In this fine-tuning stage,
we freeze the early layers of the network to preserve the
general feature extraction ability of the object recognition
network, which is gained through learning using a large
database. This first training stage yields an object recognition
network with good recognition performance on the given
specificHR images, andwe use this network to create guiding
signals for learning of the IEN in the second stage.

In training stage 2, the weight of the object recognition
network is fixed and the IEN is trained in supervised man-
ner by using input-output training samples and the object
recognition network. As shown in Fig. 1(a), IEN takes low
resolution (LR) images as inputs and generates enhanced
LR (ELR) images of the same size. The outputs of IEN,
the ELR images, are evaluated by four different types of loss
functions. Because the target output of the IEN is HR images,
the reconstruction and edge loss is computed by using the
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FIGURE 1. Overall structure of the proposed method. (a) training process and (b) inference process.

discrepancy between ELR and HR images. In addition,
the classification and perceptual loss are computed by using
the object recognition network that takes the ELR images as
inputs. Using the compound loss signal, the IEN learns to
reconstruct images by focusing on the information useful for
object recognition. Detailed descriptions of the loss functions
are given in the next subsection.

After completion of the learning of the IEN, we proceed
to the third training stage. In training stage 3, the object
recognition network is retrained with ELR images obtained
from the trained IEN. To secure recognition performance on

both HR and LR images, all HR, LR, and ELR images are
input through data shuffling. The IEN is fixed in this stage,
and all layers of the object recognition network are retrained
without freezing to boost the object recognition ability on the
given images of various resolutions.

After all three training stages are complete, the inference
process can be applied to a new LR image. As shown in
in Fig. 1(b), the IEN takes an LR image to generate an
enhanced image, which is fed into the object recognition
network as input. Then, the classification results are predicted
through the object recognition network.
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FIGURE 2. Overall structure of proposed image enhancement network.

B. STRUCTURE OF IMAGE-ENHANCEMENT NETWORK
Fig. 2 depicts the entire structure of the proposed IEN. The
IEN uses several types of convolutional blocks, including
convolution layers and the leaky-ReLU activation function.
The structure of the IEN is inspired by U-net [42], which
is composed of a CNN-based encoder–decoder architecture
and skip-connection. With skip-connection of the extracted
features, the IEN can reconstruct images by maintaining
information across multiple scales. In the encoding part,
transposed convolution layers are employed instead of sim-
ple up-sampling to generate enhanced images with a more
detailed appearance.

Additionally, we employ convolutional blocks for extract-
ing the global context information of input images. The
blocks are composed of a convolution layer with non-
overlapping kernels of various sizes to extract and compress
image features at various scales. The sizes of the kernel and
stride are doubled, starting from 2 to the size of the input
image. By using these blocks, we expect that the proposed
IEN can extract object-related features efficiently from LR
images at various scales.

When an LR image is input into the IEN, it passes through
1 × 1 convolution layers once to ensure non-linearity. Then,
the images are transmitted in two ways: local and global way.
In the local way, image features are extracted and compressed
with convolutional blocks with small kernels. In the global

way, global image features are extracted using the convolu-
tional blocks for global contexts with various receptive fields.
The locally and globally extracted features are concatenated
in the reconstruction process according to scale. Finally,
the output of the network is added to the input image with
a residual scaling of 0.1, which is known to be effective for
stable learning [25].

C. TRAINING IMAGE ENHANCEMENT NETWORK
The IEN is trained in the second stage shown in Fig. 1(a). The
task of the IEN is to reconstruct high resolution images from
very low resolution images, which is an ill-posed problem.
Therefore, to obtain the desired enhancement results, it is
important to design an appropriate loss function that is suited
for the ultimate goal of the given problem. Because our ulti-
mate goal is to increase recognition accuracy, we need to train
the IEN to reconstruct high resolution images by focusing
on object-related information. To this end, we propose to
combine four different types of loss signals. Based on the
typical reconstruction loss for super resolution, we add three
loss signals that can play secondary roles in inducing the
learning to generate enhanced images.

1) RECONSTRUCTION LOSS
The conventional pixel-wise MSE between two images is
the typical reconstruction loss used for SR. Consider a
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mini-batch training set composed of N pairs of HR and LR
images, such as {(IHRi , ILRi )}i=1, . . . ,N . For a given i-th LR
image ILRi , the IEN generates an enhanced image IELRi . Then,
the pixel-wise MSE between IELRi and IHRi can be written as
follows:

Lossreconstruction =
1
N

N∑
i=1

||IHRi − I
ELR
i ||

2
F , (1)

where || · ||F denotes the Frobenius norm of a matrix. All
images used in this study are three-channel RGB images in
the form of a matrix.

Although pixel-wise MSE is a well-known and efficient
loss function for super resolution, it is inadequate for recon-
structing the semantic information that is essential for object
recognition. Especially in the extremely low resolution case,
in which most of the detail information is absent, additional
guiding signals can boost the learning along the desired
direction. To achieve this, we combine three additional loss
functions.

2) PERCEPTUAL LOSS
The perceptual loss function has been developed to recover
texture information [43]–[45], and it has been used for super
resolution [27]–[33]. By using the perceptual loss function,
it is expected to increase the perceptual fidelity of the recon-
structed image.

For given IHRi and IELRi , perceptual features are extracted
from the intermediate layer of the object recognition network,
and they are denoted as f(IHRi ) and f(IELRi ), respectively. Then,
the perceptual loss is calculated using the Euclidean distance
between two feature vectors as

Lossperceptual =
1
N

N∑
i=1

||f(IHRi )− f(IELRi )||22. (2)

Note that we extract the feature vectors f(IHRi ) and f(IELRi )
from the frozen parts of the object recognition network, which
are fixed in training stage 1. Since the fixed part has pre-
trained weights by using large data set, we can expect to
obtain more generalized features from the fixed layers rather
than from the fine-tuned parts to the given specific dataset.

3) CLASSIFICATION LOSS
Classification loss provides the IEN with conceptual infor-
mation that can be used to reconstruct distinguishable feature
information for classifying objects. For a given LR image ILRi ,
the classification loss for the corresponding output IELRi is
defined as the cross-entropy loss of the object recognition
network that takes IELRi as its input. When the output of
the object recognition network for the given input IELRi is
obtained as the one-hot vector y(IELRi ), its cross-entropy loss
can be written as follows:

Lossclassification =
1
N

N∑
i=1

M∑
j=1

{cj(IELRi ) ln yj(I
ELR
i )}, (3)

where yj(I
ELR
i ) is the j-th element of the output vector y(IELRi ),

and cj(IELRi ) is a binary target value that becomes 1 only when
IELRi is in the j-th class.
Use of the classification loss can be considered similar to

the task-driven learning scheme used in [30]. Although the
classification loss cannot provide explicit information about
the true output values of the IEN, it can play a secondary role
of guiding the proposed method toward the ultimate goal.

4) EDGE LOSS
While perceptual loss and classification loss are somewhat
indirect signals from the object recognition network, edge
loss is designed to represent the direct loss measured in
the IEN output. Based on the supposition that the edge of
an image is important for object recognition, we define a
measure to account for the differences between the edges in
HR images and those in the IEN output images.

To compare the edges of IHRi and IELRi , we first design
a simple edge-extraction operator ED(I ) by using the Sobel
operator [24], which generates the edge images of a given
input I . Then, we compute the edge loss based on the dif-
ference between ED(IHRi ) and ED(IELRi ), as defined in the
following equation:

Lossedge =
1
N

N∑
i=1

|(ED(IHRi )− ED(IELRi )) ∗ K |. (4)

Note that we additionally apply a smoothing convolution with
a 3 × 3 filter K = {kij}(kij = 1for all i, j) to average out the
one-pixel difference. Using this edge loss, we expect the IEN
to learn by focusing on the edges that may represent object
shapes.

5) TOTAL LOSS FOR IMAGE-ENHANCEMENT NETWORK
The entire loss function for the proposed IEN can then be
expressed as follows:

LossIEN = α1Lossreconsturction + α2Lossperceptual
+α3Lossclassification + α4Lossedge, (5)

where α1, α2, α3, and α4 are user-defined hyperparameters in
the range [0, 1]. In this work, we determine the hyperparam-
eters empirically by considering the range of actual values
of each loss function, as well as the tradeoff between image
quality and perceptual index [34].

While the ultimate goal of the proposed method is to
improve object recognition performance, the primary goal
of IEN learning is to minimize reconstruction error. This is
based on the assumption that if IEN can generate ELR images
close to HR, the recognition accuracy of the object recogni-
tion network will be increased accordingly. Since perceptual
and edge loss also depend on the difference between HR and
ELR, they induce the IEN learning to generate images close
to HR, especially focusing on the texture and edges of the
image. Though classification loss does not depend directly
on the difference between HR and ELR, it can be predicted
that the loss will decrease when ELR images are close to HR,
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because the object recognition network is only trained for HR
images. Based on these considerations, we can expect that the
proposed combination of four different losses can improve
the performance of IEN in the view of image quality as well
as recognition accuracy.

Once the IEN is trainedwith the proposed losses, the output
of IEN can be used to retrain the object recognition network
in the third stage of the learning process.

D. TRAINING STRATEGIES FOR OBJECT RECOGNITION
NETWORK
The object recognition network is trained twice: preliminary
training using HR images in stage 1 and secondary training
using HR and ELR images in stage 3. As shown in Fig. 1(a),
in training stage 1, a pre-trained object recognition network
is imported and fine-tuned using HR images from a desired
dataset. In this process, early network layers are frozen, and
only the later network layers are fine-tuned. The outputs
from the intermediate frozen block are used to calculate the
perceptual loss, and the outputs of the network are used to
calculate the classification loss. After the IEN is trained,
we retrain the object recognition network with ELR images
without freezing any layer, as shown in training stage 3 in
Fig. 1(a). After the second round of learning, the object
recognition network can recognize low resolution and high
resolution objects.

The reason why we trained object recognition network
in two stages is to fully utilize feature extraction ability of
pre-trained network and to generate the classification loss
signal effectively. If the network were to be fine-tuned with-
out freezing in the first stage, the features extracted in its
intermediate layer would contain some bias toward the train-
ing data, which is undesirable for estimating the perceptual
loss. In addition, if the object recognition network were to
be trained using both HR and LR images in the first stage,
the IEN would stop reducing the classification loss in the
early steps of learning because early ELR images that are
rather similar to the LR images can be well classified from the
start of learning. Therefore, we trained the object recognition
network with only HR images in first stage to generate a
greater number of well-interpretable images that are similar
to HR images.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
To verify the performance of the proposed method,
CIFAR-10, CIFAR-100 [46], and Downsampled Ima-
geNet [47] were employed as the benchmark datasets.
CIFAR-10 and CIFAR-100 comprise 50,000 training images
and 10,000 test images in 10 and 100 object classes, respec-
tively. Downsampled ImageNet contains 1.28M+ training
images and 50,000 test images in 1000 object classes. The
resolution of the original images in the CIFAR datasets
is 32 × 32 pixels, and we composed an HR image set
by using these images. To generate the LR image set,

we downsampled the HR images to 8 × 8 pixels and up-
sampled them to 32 × 32 pixels with the bilinear method,
as shown in Fig. 3. Instead of using the original ImageNet
images with resolutions higher than 224 × 224 pixels,
we used the ImageNet 32 × 32 pixel subset included in
Downsampled ImageNet to use the same settings as those
used for the CIFAR datasets. All images were resized to
224 × 224 pixels with the bilinear method when inputting
them to the object recognition network, because the
object recognition network has pretrained weights for
224 × 224 pixel image inputs.

FIGURE 3. Generating LR images from HR images.

To implement the IEN, each convolutional block in local
way was composed of three pairs of convolution layers with
a 3 × 3 filter and the leaky-ReLU activation function. The
convolutional blocks in global way are composed of a pair
of convolution layers without overlap and the leaky-ReLU
activation function. The blocks for concatenated features used
the same output channels as the other convolutional blocks.
To upscale the features by a factor of 2, we transposed the
convolution layers with the leaky-ReLU activation function.
The 1 × 1 convolution layer for input images employs the
leaky-ReLU activation function, while the 1× 1 convolution
layer for the network output employs the identity activation
function. All convolutional blocks except the 1× 1 block for
network output have 16 channels. The negative slope of the
leaky-ReLU activation function was set to 0.2. The depth (k)
of IEN was set to 5 for treating the 32 × 32 pixel images.

Among the loss functions, the edge loss was obtained
through convolutional operation of the bi-directional Sobel
operator [48]. Weight values of the loss functions were set
empirically; the weight value of the perceptual, classifica-
tion, and edge loss functions was set to 0.01 and that of
the reconstruction loss function was set to 1. Moreover, all
loss functions except reconstruction loss were applied after
two epochs from the beginning to secure stability, as sug-
gested in [30]. We chose the Adam optimizer for training the
IEN, because it achieved lower loss value than SGD in the
experiment.

For the object recognition networks, the ResNet-152
model [11] trained using the ILSVRC dataset was imported.
In the first learning stage, the model was fine-tuned using HR
images from each dataset. Note that the layers prior to the
first residual block (‘conv2_x’ in paper) in the network were
frozen and later parts of network were tuned. We used the
SGD optimizer for training the object recognition network,
which has been used for the pre-training of the imported
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FIGURE 4. Sample images and images generated for benchmark datasets.
(a) HR images, (b) downsampled HR images, (c) LR images, (d) ELR
images obtained with SRCNN, (e) ELR images obtained with VDSR, (f) ELR
images obtained with DBPN, (g) ELR images obtained with SRGAN, and
(h) ELR images obtained with proposed IEN.

network. In primary training stage, the object recognition
network was trained with early stopping based on the clas-
sification loss and the desired accuracy for the training data.
The performance of the proposed method was evaluated in
terms of image enhancement quality and object recognition
performance.

B. IMAGE ENHANCEMENT PERFORMANCE
Before evaluating the recognition performance of the entire
proposed method, we investigated the image-reconstruction
performance of the proposed IEN relative to that of four
popular SR models: SRCNN [23], VDSR [24], DBPN [26],
and SRGAN [30]. SRCNN and VDSR are pioneering deep
network models in the field of SR, and DBPN won first

place in track 1 of the CVPR NTIRE 2018 challenge on
single-image SR. SRGAN is a representative model that uses
perceptual loss from a discriminator network to increase
the perceptual fidelity. All models were adopted from open-
source repositories and retrained for each benchmark dataset.
In the training of SRGAN, we used the VGG22 model, which
resulted in superior values of PSNR and SSIM index than
those of the VGG54 model.

Table 1 lists the results of quantitative evaluation of image
quality with PSNR and SSIM index, and Fig. 4 presents

TABLE 1. Image quality on benchmark dataset.

TABLE 2. Recognition performance on benchmark dataset according to
image quality.
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TABLE 3. Image quality and recognition performance according to structure and losses.

LR and HR image samples from three benchmark datasets,
as well as the ELR images obtained using the SRmethods and
the proposed IEN. As shown in Table 1, DBPN has the best
PSNR and SSIM index for all datasets. Though the proposed
IEN exhibits slightly inferior performance, it is superior to
SRCNN and competitive against VDSR and SRGAN, which
have considerably more complex structures (Note that the
proposed IEN has only 166,239 training parameters, while
SRCNN, VDSR, DBPN, and the SRGAN generator have
263,075, 668,227, 10,426,358, and 1,549,443 parameters,
respectively).

In addition to the pixel-based image quality, we checked
the image-enhancement quality from the viewpoint of object
recognition. To this end, we compared the accuracy of object
recognition on the various ELR images, as summarized
in Table 2. To check only the effect of image enhancement,
we used the object recognition network trained using only
HR images in the first training stage of the proposed method.
The first two rows of Table 2 indicate drastic decreases in
recognition accuracy for the LR input images, which implies
the difficulty of the given task. The poor performance can be
understood from sample LR images in Fig. 4, in which large
amounts of perceptual information are absent. Despite the
difficulty, the SR methods improve the recognition accuracy
to some extent, as can be seen from Table 2. In particular, the

proposed IEN achieves the best recognition performance on
all datasets, and the performance of SRGAN is superior to
that of DBPN on the CIFAR-10 and CIFAR-100 datasets.

From the results, we can confirm that higher PSNR and
SSIM do not necessarily lead to improved recognition per-
formance, and the reconstruction error in the sense of MSE
loss cannot be the best solution for the specific task of object
recognition. For the same reason, the use of perceptual loss
and other additional losses seems to positively influence the
performance of SRGAN and the proposed IEN. Additionally,
the performance degradation of SRGAN on Downsampled
ImageNet may be ascribed to the adversarial training effects
of GAN models, in which a well-trained discriminator can
interfere with the learning process of a generator.

Although the results in Table 1 and 2 demonstrate the effi-
ciency of the proposed IEN model, we investigated the effect
of the proposed loss functions and the global convolutional
blocksmore thoroughly. Starting from the IENmodel without
the global convolutional blocks trained with only the MSE
reconstruction loss, we added the global convolutional blocks
and other losses one-by-one to evaluate the changes in PSNR,
SSIM, and recognition accuracy.

The first two rows of Table 3 indicate that even the basic
IEN model without the global convolutional blocks trained
with only the MSE loss can improve image quality as well
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TABLE 4. Object recogniton performance on CIFAR-10 and CIFAR-100 dataset.

TABLE 5. Object recognition on downsampled imagenet dataset.

as recognition accuracy, and the addition of the global con-
volutional blocks improves the performance further in most
cases. The addition of edge loss and perceptual loss causes
marginal performance degradation in a few cases, but they
have positive effects on average. In the overall sense, edge
loss is more effective for enhancing image quality, and per-
ceptual loss is more effective for increasing recognition accu-
racy. Finally, owing to introduction of the classification loss,
PSNR and SSIM index decrease, but the recognition accuracy
improves remarkably. Based on these results, we confirm that
the proposed loss functions work cooperatively to achieve the
ultimate goal.

C. OBJECT RECOGNITION PERFORMANCE
Though we confirm that the proposed IEN can achieve
remarkable improvement in recognition accuracy as shown
in Table 2 and 3, it is still unsatisfactory. To further increase
the accuracy, it is essential to conduct the training stage 3

for the object recognition network by using ELR images.
Tables 4 and 5 summarize the evaluation results on the
object recognition performance of the entire proposed model
obtained through training stage 3. To verify the performance
of the proposed method, we have presented the performances
of ResNet-152, which were obtained by using various train-
ing protocols. The results obtained by using HR and LR
images simultaneously can be considered as a ‘mixed learn-
ing’ protocol in [21]. In addition, we have depicted the per-
formance reported in [20] in table 4, which is the only study
reporting the results obtained using 8 × 8 pixel images. For
the proposed method, we tried three different compositions
of datasets for training in the third stage.

As shown in the first row of the tables, [20] achieved
remarkably high accuracy for LR images, albeit at the
expense of accuracy for HR images. The low performance
of the model in [20] on HR images may be ascribed to the
relatively simple underlying network model that was specifi-
cally designed for recognizing LR images. On the contrary,
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the conventional object recognition networks achieve high
recognition accuracy for HR images but significantly low
recognition accuracy for LR images. Although the perfor-
mance for LR images can be improved by using LR training
images, it still has similar problems to the case that using
HR images. Themixed learning protocol that uses HR and LR
images has reasonable performance for both test sets. In the
proposed method, we have utilized the conventional well-
trained object recognition network to ensure that the method
performs competently on both HR and LR images. In addi-
tion, we confirmed that remarkable performance improve-
ment can be achieved by implementing the proposed third
stage of learning. When trained with the ELR images alone,
the proposedmethod exhibits a marginal decrease in accuracy
for HR images, but this decrease can be compensated by train-
ing the method with HR and ELR images simultaneously.
Moreover, the simultaneous use of LR and HR images can
further increase the accuracy on LR images. The tradeoff
between the accuracy on HR images and LR images can be
treated with an appropriate combination of three training sets
(HR, ELR, and LR). To the best of our knowledge, this is the
first work dealing with the 8 × 8 Downsampled ImageNet.

V. CONCLUSION
This paper proposes a collaborative training system compris-
ing an IEN and object recognition network for recognizing
very low resolution objects. Using the training signals orig-
inating from the object recognition network, the IEN can
generate images with improved quality in terms of appear-
ance and perception. The proposed IEN employs consider-
ably fewer parameters than conventional SR networks, but it
can efficiently reconstruct high resolution information that is
essential for object recognition. This purpose-driven recon-
struction is achieved with appropriately designed loss func-
tions that actively use of the object recognition networks.
The object recognition network, which has been imported
from a well-trained conventional model, can generate good
loss signals for the IEN. In addition, through retraining using
the outputs of the IEN, the recognition ability of the object
recognition network can be extended to very low resolution
objects. Consequently, the proposed systematic collaboration
between two deep networks can serve as an efficient solution
for to the task of very low resolution object recognition. Even
though we have focused on the object recognition problem,
the proposed framework can be applied to other low resolu-
tion problems, such as faces and letters, which will be done
in future studies.
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