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ABSTRACT In this paper, a command filteredmodel-free robust (CFMFR) controller is proposed to regulate
attitude angles of an aircraft with parameter uncertainties and disturbances to track the given reference
signals. For the first subsystem of the controlled plant, the incremental nonlinear dynamic inversion (INDI)
is applied to design incremental virtual control law. While the time-delayed control (TDC) method is
used to design the control law by integrating sliding-mode technique considering the nominal value of
the control effectiveness matrix is unknown. The adaption laws of the control gain are constructed by
Lyapunov control theorem. Not only the actuator dynamics of the control surfaces are considered, but also
the noises, biases, and time delays of the measurements of the control surface deflection angles are taken into
account. Therefore, the command-filtered backstepping is utilized to compensate for the actuator dynamics
and filtered errors, and the modified stable linear filter is developed to handle the measurement errors. The
stability of the whole closed-loop system, including the compensated signals which are the outputs of the
stable linear filters, is analyzed by using Lyapunov theory. The numerical simulation results demonstrate
effectiveness of the proposed CFMFR control approach with updating matrix.

INDEX TERMS Unmanned aerial vehicles, attitude control, command filter technique, backstepping control
method.

I. INTRODUCTION
Backstepping control method [1] is proposed by
I. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse in 1991.
It has been widely applied to variable applications, such as
motors [2], aircrafts [3], robots [4], and so on. As for the
traditional backstepping control method, there are two main
drawbacks: (1) complicated calculation of partial derivatives
are necessary, which may cause ‘explosion of complexity’ as
the orders of the controlled plant increase; (2) the concrete
mathematical model must be known. With respect to the
first drawback, the dynamic surface control (DSC) [5] and
command filter technique [6]–[8] all have been successfully
applied to make the control laws more concise. They all

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaoli Luan.

make full use of the filters to obtain the derivatives of
the virtual control laws. Note that the command filter with
magnitude, rate, and bandwidth limitations proposed in [6]
can ensure that the command trajectory and its derivative
meet the magnitude and rate constraints to meet the states
and actuator physical constraints. The second drawback also
attracted many scholars’ attention for that robustness of the
traditional backstepping is questioned in the real practice.
It is nearly impossible to construct the precise mathematical
model for a controlled plant under the existence of the uncer-
tainties and disturbances. The disturbance observers [9], [10]
are used to identify the unknown disturbances and uncer-
tain parameters to improve the robustness of the controller
with the condition that the nominal value of the mathe-
matical model of the system is prior known. The neural
network (NN) [11] and fuzzy logic system (FLS) [8], [12]
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are also employed to identify the uncertain or even unknown
functions of the system whereas the calculation complexity
would be increased significantly for that large numbers of
parameters should be identified on-line.

Incremental nonlinear dynamic inversion (INDI) [13],
[14], which is a kind of sensor-based control method [15],
[16], transformed the dynamics of the system into a sum
of the first derivative of the state in the last sampling time
and a product term including the incremental input and the
control effectiveness matrix. The first derivatives of the states
can reflect the changes and information of the complicated
mathematical model. In [17], the INDI method is applied to
design the virtual control laws for each subsystem. There
is an assumption here that the nominal value of the control
matrices is known. To handle the uncertainties in the con-
trol effectiveness matrix, techniques involving tuning func-
tions [18], the least-squares method [19], and immersion and
invariance [20] have been applied to the estimator design,
and these estimators were evaluated in [21]. To improve the
computational efficiency of the multivariate simplex B-spline
method [22], [23], a novel recursive sequential method [24]
enabling real-time onboard applications was proposed for
modelling the nonlinear aerodynamics of high-performance
aircraft. In [25], a novel real-time identification strategy for
multivariate splines was proposed to address the aerodynamic
uncertainties in the control allocation system, and the compu-
tational complexity of the novel multivariate splines was even
lower than that of the recursive B-splines method developed
in [24].

Time-delayed control (TDC) is a similar control method
to INDI whereas the difference among them is that
TDC utilizes a diagonal matrix to replace the control effec-
tiveness matrix. The diagonal matrix is selected according
to the inequality

∥∥∥I −MM̄
−1
∥∥∥ < 1, proposed in [26]

and [27], respectively, where M is the control effectiveness
matrix, M̄ is the diagonal matrix. As for a controlled system
with multi-phase or with time-varying dynamics, the high-
performance of the controller with constant diagonal matrix is
not always guaranteed during the practice. It is reported that,
with constant gains, the TDC controller [28] cannot always
guarantee accurate tracking performance for robotic systems
with parameter variations. Jin et al. [29] have presented auto-
tuning method of the diagonal matrix for TDC controller by
using an adaptive gain tuning algorithm. However, the actu-
ator dynamics are not taken into consideration and rigorous
analysis of stability of the closed-loop system is not given
when we take into account the physical constraints of the
actuator. In [30], the simulation results have shown that the
tracking performance would be degraded terribly when we
ignored the actuator dynamics, and sometimes it may even
cause instability of the system.

Motivated by the above works, a command filtered model-
free robust (CFMFR) attitude controller for an unmanned-
aerial vehicle (UAV) is proposed in this paper. As for the
first subsystem, INDI is applied to design virtual controller

because the elements of the control effectiveness matrix here
is the functions with respect to the attitudes of the aircraft,
which can be regarded as known. Whereas TDC method
is used to design the control law by integrating sliding-
mode technique regarding the nominal value of the control
effectiveness matrix is unknown. The updating laws of the
diagonal matrix are developed by Lyapunov theory. Similar
to [17], the actuator biases and the measurement noises,
biases, and time delays of the control surface deflection
angles are considered in this paper. The improved stable
linear filters are also employed to compensate for the filtered
errors and the actuator dynamics, ensuring the signals of the
filters can remain within a small neighbourhood around the
origin, without using the values transmitted from the sensors
that measure the control surface deflection angles.

Compared with the existing papers, the contributions of
the paper can be concluded as follows: 1) This is a model-
free control method. As for the first subsystem, the INDI
controller is designed and all the elements of the control
effectiveness matrix are functions of the attitude angles of
the aircraft, which are regarded as known parameters. Then,
for the second subsystem, TDC controller is designed and
the diagonal matrix is employed here without any aerody-
namic parameters. 2) An adaptive law for the elements of
diagonal matrix, is developed to improve the tracking accu-
racy or attenuate the chattering phenomenon caused by the
unreasonable selection of the diagonal matrix. The elements
of the diagonal matrix would be adapted according to the
tracking errors. This control scheme can make the controller
more intelligent. 3) The actuator dynamics are considered in
the context of TDC controller, which would cause perfor-
mance penalty in the real practice. Apart from that, we also
take the measurement delays and noises of the actuators into
consideration, and improve the compensating scheme.

This paper is organized as follows. In Sec. 2, the model
of the aircraft that we wish to control is introduced, and
preliminaries are given for some assumptions. In Sec. 3,
the command filtered model-free robust attitude controller
is proposed, and the updating laws and stability analysis of
the closed-loop system are developed by Lyapunov theory.
Finally, a numerical simulation is presented in Sec. 4 to
demonstrate the efficacy of the proposed control method.

II. PROBLEM FORMULATION AND PRELIMINARIES
A six-degree freedom nonlinear small UAV model is pre-
sented as the objective. We consider the following attitude
dynamics of the aircraft [31]:

ẋ1 = f 1 (x1)+1f 1 (x1)+
[
g1 (x1)+1g1 (x1)

]
x2

+ [h1 (x1)+1h1 (x1)]u+ d1
ẋ2 = f 2 (x1, x2)+1f 2 (x1, x2)
+
[
g2 (x1, x2)+1g2 (x1, x2)

]
u+ d2

y = x1

(1)

where the state vectors are x1 = [φ α β]T ∈ <3 and
x2 = [p q r]T ∈ <3, y is the output of the controlled plant,
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u = [δa δe δr ]T ∈ <3 is the input vector of the vehicle,
d1 and d2 are the external disturbances, φ, α, β, p, q and r
are the roll angle, angle of attack, sideslip angle, roll rate,
pitch rate and yaw rate of the aircraft, respectively. The
functions f i (•), gi (•), and h1 (•) are expressed as
follows:

f 1 (x1)

=
q̄S
mVT


0

−
[
CL,0+CL,αα+CL,β |β|+T sinα

−mg (sinα sin θ+cosα cosφ cos θ)]

/
cosβ

CY ,ββ − T sinβ cosα + mg (cosα sinβ sin θ
+ cosβ sinφ cos θ − sinα sinβ cosφ cos θ)


g1 (x1)

=

 1 sinφ tan θ cosφ tan θ

− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα


h1 (x1)

=
q̄S

mVT cosβ

 0 0 0

−CL,δa −CL,δe −CL,δr
CY ,δa cosβ CY ,δe cosβ CY ,δr cosβ


f 2 (x1, x2)

=



c1pq+ c2qr + q̄Sb
(
c3Cl,ββ + c4Cn,ββ

)
+
q̄Sb2

2VT

[
c3
(
Cl,pp+ Cl,rr

)
+ c4

(
Cn,p + Cn,rr

)]
c5pr − c6

(
p2 − r2

)
+ q̄Sc̄

(
Cm,0 + Cm,αα

+Cm,ββ
)
+
q̄Sc̄2

2VT
c7Cm,q

c8pq− c1qr + q̄Sb
(
c4Cl,ββ + c9Cn,ββ

)
+
q̄Sb2

2VT

[
c4
(
Cl,pp+ Cl,rr

)
+ c9

(
Cn,pp+ Cn,rr

)]


g2 (x1, x2)

= q̄S


bc3Cl,δa
+bc4Cn,δa

bc3Cl,δe
+bc4Cn,δa

bc3Cl,δr
+bc4Cn,δr

c̄c7Cm,δa c̄c7Cm,δe c̄c7Cm,δr
bc4Cl,δa
+bc9Cn,δa

bc4Cl,δe
+bc9Cn,δe

bc4Cl,δr
+bc9Cn,δr


The aforementioned aerodynamic coefficients and the param-
eters related to the introduced vehicle refer to [31].

Herein, a model-free robust controller for the vehicle is
proposed. The task of the controller is to stably track the
desired command yr (including φr , αr , and βr ) while uncer-
tainties and dynamics of the actuators exist. The ultimate
tracking errors are guaranteed to asymptotically converge to
a small neighbourhood around the origin. Before the con-
troller is designed, the following reasonable assumptions are
made.
Assumption 1 [32]: ∀cM ∈ <+, every desired command

satisfies
∥∥[yr ẏr]∥∥ ≤ cM , where ‖•‖ is the 2-norm.

Assumption 2 [32], [33]: The control surface deflection
has negligible effect on the aerodynamic force component;
i.e., h1 (x1)u ≈ 0.

According to Assumption 2, the controlled system can be
rewritten as follows:

ẋ1 = f 1 (x1)+ g1 (x1) x2 + d̄1

ẋ2 = f 2 (x1, x2)+ g2 (x1, x2)u+ d̄2

y = x1

(2)

where d̄1 = 1f 1 (x1) + 1g1 (x1) x2 +
[
h1 (x1) + 1h1

(x1)
]
u + d1, and d̄2 = 1f 2 (x1, x2) + 1g2 (x1, x2)

u+ d2.
Assumption 3: The composite disturbances d̄ i (i = 1, 2)

are bounded. That is, ∀ϕi ∈ <+, then, d̄ i (i = 1, 2) satisfy∥∥d̄ i∥∥ ≤ ϕi.
Remark 1: For the reference signals are passed through the

first or second commandfilter, the reference command should
be absolutely smooth. It is reasonable to assume that its
first-order derivative is bounded, as stated in Assumption 1.
Assumption 2 was introduced in Lee et al. [32], which per-
formed a numerical analysis of the influence of the con-
trol surfaces on the aerodynamic force and reported that it
is negligible. Herein, we consider it as one of the origins
of the disturbances. As for Assumption 3, the composite
disturbance can be regarded as the difference between the
real practice and the nominal values of the controlled plant.
Besides, u here is the input of the aircraft, i.e., the control
surface deflection. In the practice, the range of the control
surface deflection is limited while the ud (see the section of
the controller design and stability analysis) is the designed
control law which may exceed the bound of the control u.
The physical limits would restrict the control u keep staying
in the bound no matter how the designed control law ud
changes. So it is reasonable to assume the disturbances d̄1
and d̄2 are all bounded. The positive constants ϕi mentioned
in Assumption 3, whose exact range cannot be determined,
are simply utilized to analyze the stability of the closed-loop
system.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, the CFMFR controller is developed, and the
updating laws of the elements of the diagonal matrix are
constructed by using Lyapunov theory. The stability of the
resulting closed-loop system is analyzed at the end of the
section.

The controller design process comprises the following two
steps.
Step 1: Consider the first subsystem:

ẋ1 = f 1 (x1)+ g1 (x1) x2 + d̄1 (3)

Regarding the composite disturbance as a part of the
function f 1 (x1) and taking the first-order Taylor series
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expansion around the solution
[
x1,0, x2,0

]
results in

ẋ1 ∼= ẋ1,0+
∂

∂x1

[
f 1 (x1)+d̄1

+g1 (x1) x2
] ∣∣∣ x1=x1,0
x2=x2,0

(
x1 − x1,0

)

+
∂

∂x2

[
f 1 (x1)+d̄1+g1 (x1) x2

] ∣∣∣ x1=x1,0
x2=x2,0

(
x2−x2,0

)
+φ1

(4)

where ∂ denotes a partial differential operator, and φ1 is the
linearization error, which arises from the expansion process
and can be small when the sampling rate is sufficiently high.
Equation (4) can be rewritten as follows:

ẋ1 = ẋ1,0 + A11x1 + g1
(
x1,0

)
1x2 + φ1 (5)

where 1x1 = x1 − x1,0, 1x2 = x2 − x2,0,
A1 =

∂
∂x1

[
f 1 (x1)+ g1 (x1) x2

] ∣∣∣ x1 = x1,0
x2 = x2,0

. According to

the assumptions introduced in the previous section, com-
pared with the incremental quality 1x2, 1x1 can be
neglected for the system because of the time-scale separation
(TSS) principle [34], [35]. As a result, we can rewrite (5)
as

ẋ1 = ẋ1,0 + g1
(
x1,0

)
1x2 + φ̄1 (6)

where φ̄1 = A11x1+φ1 is the composed linearization error.
According to incremental nonlinear dynamic inversion,

we can design the incremental virtual control law for the first
subsystem of the controlled plant:

1x2d = −
[
g1
(
x1,0

)]−1 (k1x̃1 + ẋ1,0 − ẏc) (7)

where k1 > 0 is the controller design parameter, yc is the
smooth signal that can be obtained by passing the refer-
ence signal yr through the filter, and x̃1 = x1 − yc is the
tracking error. The virtual control law is designed by adding
the introduced incremental intermediate 1x2d to the state
quantities x2,0. Therefore, x2d = x2,0 + 1x2d . The sec-
ond order low pass command filter introduced in [7]
is applied to obtain the smooth intermediate control
law.
Remark 2: According to Lemma 1 in [32], the function

g1 (x1) is invertible for that the set of rows of g1 (x1) is
linearly independent. Therefore, the incremental intermediate
control law can be implemented without any assumptions and
specific conditions.

The compensated signal ξ1, which should be designed
to compensate for the errors resulting from the introduced
command filter, can be obtained from the following stable
filter:

ξ̇1 = −k1ξ1 + g1
(
x1,0

)
(x2c − x2d )+ g1

(
x1,0

)
ξ2 (8)

where x2c is the smooth signal obtained by passing x2d
through the command filter. ξ2 is also a compensated signal
and will be given in the next step.

Let x̃2 = x2 − x2c be the tracking error. The dynamics of
the tracking error x̃1 can be analyzed as follows:

˙̃x1 = ẋ1 − ẏc

= ẋ1,0 + g1
(
x1,0

)
1x2 + φ̄1 − ẏc

= ẋ1,0 + g1
(
x1,0

)
[x2d + (x2c − x2d )

+ (x2 − x2c)− x2,0
]
+ φ̄1 − ẏc

= ẋ1,0 + g1
(
x1,0

)
1x2d + g1

(
x1,0

)
(x2c − x2d )

+g1
(
x1,0

)
x̃2 + φ̄1 − ẏc (9)

Substituting the virtual control law (7) into (9), we
have

˙̃x1 = −k1x̃1 + g1
(
x1,0

)
(x2c − x2d )+ g1

(
x1,0

)
x̃2 + φ̄1

(10)

Let z1 = x̃1 − ξ1 be the compensated error and whose
dynamics can be expressed as follows:

ż1 = ˙̃x1 − ξ̇1 = −c1z1 + g1
(
x1,0

)
z2 + φ̄1 (11)

Consider the following Lyapunov function V1 : Dz1 → <

V1 =
1
2
zT1 z1 (12)

where Dz1 ⊂ <
3 is the domain of the function and con-

tains the origin. In accordance with (11), the time derivative
of V1 is given as

V̇1 = zT1 ż1

= zT1
[
−c1z1 + g1

(
x1,0

)
z2 + φ̄1

]
= −c1zT1 z1 + z

T
1g1

(
x1,0

)
z2 + zT1 φ̄1 (13)

where z2 = x̃2 − ξ2 is the compensated error for the second
subsystem, ξ2 the compensated item given in the second step.

According to (13), z1 is asymptotically stable under the
effect of the virtual control law (7) if the tracking error z2
converges to zero.
Step 2:The control law is designed in this step. The dynam-

ics of the actuators are considered, and the corresponding
compensated schemes are complemented. Consider the sec-
ond subsystem:

ẋ2 = f 2 (x)+ g2 (x)u (14)

where x =
[
xT1 , x

T
2

]T
. Taking the first-order Taylor series

expansion around the solution [x0,u0] yields

ẋ2 ∼= ẋ2,0 +
∂

∂x

[
f 2 (x)+ g2 (x)u

] ∣∣∣ x = x0
u = u0

(x− x0)

+
∂

∂u

[
f 2 (x)+ g2 (x)u

] ∣∣∣ x = x0
u = u0

(u− u0) (15)
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Similarly, let φ2 be the error arising from the linearization
process. Hence, we can rewrite (15) as

ẋ2 = ẋ2,0 + A21x+ g2 (x0)1u+ φ2 (16)

where 1x = x − x0, 1u = u − u0, and A2 =
∂
∂x

[
f 2 (x)+ g2 (x)u

] ∣∣∣ x = x0
u = u0

. According to the TSS prin-

ciple, compared with the incremental quality 1u, 1x can be
neglected. As a result, we can rewrite (16) as

ẋ2 = ẋ2,0 + A21x+ g2 (x0)1u+ φ2 (17)

where φ̄2 = A21x+ φ2 is the composed error.
According to TDC controller design, let u be the controller,

we can conclude that

u = Ḡinvẋ2 + h (18)

where Ḡinv is the diagonal matrix, h =
[
g−12 (x1, x2)− Ḡinv

]
ẋ2 − g−12 (x1, x2) f 2 (x1, x2).
Then the controller ud can de designed as follows:

ud = Ḡinv

(
ẋ2c − 2λz2 − k2ξ2 − λ2

∫
z2dt

)
+h(t−L) + (Fil (ud0)− uc0) (19)

where λ ∈ R+ and k2 ∈ R+ are the design parameter,
h(t−L) the value of h at time (t − L), L the sampling time.
Let t0 = t − L, then h(t−L) = uc0 − Ḡ

−1
ẋ2,0, where uc0 and

ẋ2,0 are the value of u and ẋ2 at time t0, respectively. The func-
tion Fil (∗) is a low-pass filter which is used to approximate
the actuator dynamics.

Let ξ2 be the output signal of the first-order low-pass
filter (LPF), which is designed as follows:

ξ̇2 = −k2ξ2 + Ḡinv (Fil(ud )− ud ) (20)

Then, the controller u is transformed as follows:

u = Ḡinvẋ2 + h = Ḡinv
(
ẋ2 − ξ̇2

)
+ Ḡinvξ̇2 + h (21)

The controller u can also be expressed as follows:

u = ud + (Fil(ud )− ud )+ (uc − Fil(ud )) (22)

Substituting (20) and (22) into (21) results in

ud = Ḡinv
(
ẋ2 − ξ̇2

)
− k2Ḡinvξ2 + (Fil(ud )− uc)+ h (23)

Combining (19) and (23), we can obtain the following
equations:

Ḡinv
(
ẋ2 − ξ̇2

)
− k2Ḡinvξ2 + (Fil(ud )− uc)+ h

= Ḡinv

(
ẋ2c − 2λz2 − k2ξ2 − λ2

∫
z2dt

)
+ h(t−L)

+ (Fil (ud0)− uc0) (24)

Ḡinv

(
ż2 + 2λz2 + λ2

∫
z2dt

)
= (ε1 + ε2 − ε3) (25)

where ε1 =
(
h(t−L) − h

)
, ε2 = (uc − uc0), and ε3 =

(Fil (ud )− Fil(ud0)). A sliding surface is then designed as
follows:

s = z2 + λ
∫
z2dt (26)

Substituting (26) into (25) results in

(ṡ2 + λs2) = Ḡ (ε1 + ε2 − ε3) (27)

where Ḡ =
(
Ḡinv

)−1
.

The well-known stability condition TDC is established by
Youcef-Toumi and Hsia independently in [26], [27], given
as follows according to the real second subsystem of the
controlled plant.∥∥I − g2 (x1, x2) Ḡinv∥∥ < 1 (28)

When the closed-loop system is stable with the stability
criterion (28), ε1 =

(
h(t−L) − h

)
is bounded because h is the

sum of continuous terms and bounded discontinuous terms,
and (ε2 − ε3) is also bounded for that magnitude and rate of
the actuator and the introduced LPF are all saturated.

According to (23), the incremental control law can be
obtained as follows:

1ud = Ḡinv

(
ẋ2c − 2λz2 − k2ξ2 − λ2

∫
z2dt − ẋ20

)
(29)

From (27), it is obvious that ‖s‖ would be very small
when

∥∥Ḡinv∥∥ increased. However, some research work also
indicates that too large value of

∥∥Ḡinv∥∥ arises chattering of
actuator dynamics, and this chattering may cause mechanical
and electronic damage to the aircraft. So, selection of the
parameter of the diagonal matrix Ḡinv is a hard nut. We also
found that the desired gain Ḡinv at one point of the flight
channelmay not be the best option for another one. Therefore,
the further research on practical adaptive tuning algorithm of
the gain Ḡinv is demanded.

The updating laws of the gain Ḡinv are proposed as follows:

Ḡinv,i =
λ

ai
, if

λ

ai
≤ Ḡinv,i

˙̄Ginv,i = ai
[
|si|γ − ωi

∣∣Ḡinv,i∣∣χ sgn (Ḡinv,i)] ,
if σi < Ḡinv,i <

λ

ai
Ḡinv,i = σi if Ḡinv,i ≤ σi

(30)

where Ḡinv,i is the i-th element of the diagonal matrix,
˙̄Ginv,i is the time derivative of the parameter Ḡinv,i, si is the
i-th element of the sliding variable s = [s1s2s3]T, ai > 0
is the adaptation law, ωi is the leakage factor of i-th element
to prevent parameter drift resulting in chattering of actuator
dynamics according to above discussion, σi > 0 is a small
positive constant which sets a threshold for each parameter,
γ > 1, χ > 0, sgn (∗) is the sign function.

Consider the following Lyapunov function V2 [29] : Dz2 ×

DḠinv → <:

V2 =
3∑
i=1

[
1
γ
|si|γ +

1
2

(
Ḡinv,i

)2] (31)
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FIGURE 1. Block diagram of the control structure (the number insider is the equation number).

whereDz2 ⊂ <
3 andDḠinv ⊂ <

3 is the domain of the function
and contains the origin. In accordance with (27) and (30),
the time derivative of V2 is given as

V̇2 =
3∑
i=1

{[
−λsi + Gi

(
ε1,i + ε2,i − ε3,i

)]
|si|γ−1 sgn (si)

+aiGinv,i
([
|si|γ − ωi

∣∣Ginv,i∣∣χ sgn (Ginv,i)])}
=

3∑
i=1

[ (
−λ+ aiGinv,i

)
|si|γ

+Gi
(
ε1,i + ε2,i − ε3,i

)
|si|γ−1 sgn (si)

]
−

3∑
i=1

aiωi
∣∣Ginv,i∣∣x+1 (32)

It is obvious that −
3∑
i=1

aiωi
∣∣Ḡinv,i∣∣χ+1 < 0. Hence, (32)

becomes

V̇2 <
3∑
i=1

[(
−λ+ aiḠinv,i

)
|si|γ + Ḡinv,iεmax,i |si|γ−1

]
(33)

where εmax,i =
∣∣(ε1,i + ε2,i − ε3,i) sgn (si)∣∣. Let c2,i =(

λ− aiḠinv,i
)
, κi = Ḡinv,iεmax,i, then

V̇2 <
3∑
i=1

−
(
c2,i |si| − κi

)
|si|γ−1 (34)

From (34), it is concluded that V̇2 ≤ 0 when |si| ≥ κi
/
c2,i.

It also implies that all the signals including Ḡinv,i are bounded.
According to the definition of the sliding surface s = z2 +
λ
∫
z2dt , the compensated tracking error z2 is bounded. The

stability of the tracking errors are not analyzed for that the
aforementioned stability-analysis procedures mainly focus

on compensated tracking errors. According to the definition
of the compensated tracking errors, the stability analysis of
the compensated signals must be accomplished.
Remark 3: The updating law of the gain (30) can reduce the

chattering performance [36] of the sliding mode variable (26)
for that the gain would increase when the sliding mode vari-
able increased while it would decrease as the sliding mode
variable reduces.
A Lyapunov function Vξ : Dξ1 × Dξ2 → < is chosen as

follows:

V̇ξ =
1
2
ξT1 ξ1 +

1
2
ξT2 ξ2 (35)

where Dξ1 ⊂ <
3 and Dξ2 ⊂ <

3 are the domains of the
function and contains the origin. In accordance with (8)
and (20), the time derivative of Vξ is written as

V̇ξ = ξT1 ξ̇1 + ξ
T
2 ξ̇2

= ξT1
[
−c1ξ1 + g1

(
x1,0

)
(x2c − x2d )+ g1

(
x1,0

)
ξ2
]

+ ξT2
[
−kξ2 + Ḡinv (Fil(ud )− ud )

]
= −c1ξT1 ξ1 − kξ

T
2 ξ2 + ξ

T
1 g1

(
x1,0

)
(x2c − x2d )

+ξT1 g1
(
x1,0

)
ξ2 + ξ

T
2 Ḡinv (Fil(ud )− ud ) (36)

Some assumptions are introduced here:
Assumption 4: ∀ρ1 ∈ <+ and ∀ρ2 ∈ <+, ρi (i = 1, 2)

satisfy ‖x2c − x2d‖ ≤ ρ1 and ‖u− ud‖ ≤ ρ2.
Assumption 5: There is a positive constant g1,max such that∥∥g1 (•)∥∥ ≤ g1,max.
Assumption 6: ∀ρ3 ∈ <

+, ρ3 satisfies
∥∥Fil (ud )

−ud
∥∥ ≤ ρ3.

Remark 4: Most actuators have the low-pass
property [37], [38]. The introduced second-order filter with
the magnitude, rate, and bandwidth limitations is an LPF
by nature. The function g1 (•) is bounded on the specific
set because of the continuity. So, Assumption 4 and 5 are
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FIGURE 2. Curves of the attitude angles with the constant value
Ḡinv,i = diag(0.05,0.05,0.05).

reasonable. According to property of the LPF, ∀T ∈ [t0,∞),
then t > T , ‖Fil (ud )− ud‖ → 0. Thus, ρ3 can be very small
when the closed-loop system remains stable.

According toYoung’s inequality and principles of the norm
of the matrices, the following inequalities are obtained:∥∥∥ξT1 g1 (x1,0) ξ2∥∥∥≤σ1 ‖ξ1‖ ‖ξ2‖ ≤ g1,max

2

(
‖ξ1‖

2
+‖ξ2‖

2
)

(37)∥∥∥ξT1 g1 (x1,0) (x2c − x2d )∥∥∥ ≤ g1,maxρ1 ‖ξ1‖ (38)∥∥∥ξT2 Ḡinv (Fil(ud )− ud )∥∥∥ ≤ λρ3

ai
‖ξ2‖ (39)

FIGURE 3. Curves of the control surface deflection angles with the
constant value Ḡinv,i = diag(0.05,0.05,0.05).

Substituting (37), (38), and (39) into (36), we can get

V̇ξ ≤ −
(
c1 −

g1,max

2

)
‖ξ1‖

2
−

(
k −

g1,max

2

)
‖ξ2‖

2

+g1,maxρ1 ‖ξ1‖+
λρ3

ai
‖ξ2‖≤−4k0Vξ+ψρ

√
Vξ (40)

where k0 = 0.5min
{(
c1 −

g1,max
2

)
,
(
k − g1,max

2

)}
, ψρ =

max
{
g1,maxρ1,

λρ3
ai

}
. It should be noted that selection of the

design parameters c1, k must satisfy the conditions that c1 >
g1,max

2 , k > g1,max
2 , g1 is a function with respect to the attitude

angles, of which the scope is easy to determine.
Hence, the compensated signals ξi satisfy this following

bound:

‖ξi‖ ≤
ψρ

2k0

(
1− e−2k0t

)
(41)

It indicates that the compensated signals are bounded [36].
In [17], stability analysis of the traditional command
filter [6], [7] is introduced when actuator biases or actuator
measurement errors occur. It shows that there is an increase
in the ultimate errors of the compensated signals if biases
and measurement errors exist. The above improved stable
linear filters can make the compensated signals converge to
small neighborhood around the origin even when actuator
biases and measurement errors occur simultaneously for that
the LPF filters are introduced in the stable linear filters.
So, the compensated errors and compensated signals are all
bounded based on above discussion. According to the def-
inition of the compensated errors zi = x̃i − ξi (i = 1, 2),
it implies that the tracking errors x̃i (i = 1, 2) and other con-
trol signals are bounded over any time interval.

The foregoing analysis yields the following theorem.
Theorem 1: For the nonlinear system defined in (1), under

Assumptions 1-6, with the incremental control laws of (7)
and (29), the stable linear filters designed by (8) and (20)
to compensate for the actuator dynamics and the filter errors
caused by the second-order command filter, and the updating
law of the elements of the diagonal matrix, we can obtain
that all of the signals of the closed-loop system are bounded
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FIGURE 4. Curves of the attitude angles with the constant value
Ḡinv,i = diag(0.1,0.1,0.1).

without knowing the nominal value of the control effective-
ness matrix or even under the condition that there are actuator
biases and measurement noises, biases, and time delays of the
fin deflection angles. Besides, if the appropriate parameters
are selected, the tracking errors can converge to a small
neighborhood around the origin.

Proof: Please see the controller design process and sta-
bility analysis, i.e., (3)-(41).

FIGURE 5. Curves of the control surface deflection angles with the
constant value Ḡinv,i = diag(0.1,0.1,0.1).

Remark 5: As for the CFMFR attitude controller for the
aircraft, the INDI virtual controller (7) without any infor-
mation of the function f 1 (x1) is designed for the first sub-
system. The elements of control effectiveness matrix g1 (x1)
are functions with respect to the attitude angles, which can
be regarded as known functions. In the second subsystem,
the TDC method is employed to design the control law (29)
where the diagonal matrix with updating laws is used to
replace the control effectiveness matrix g2 (x1, x2). To sum
up, the aerodynamic coefficients and the parameters related
to the introduced aircraft are not required to design the control
laws. This is why this method is referred to as model free one.

So far, we complete the controller design procedure. Obvi-
ously, many signals and parameters are involved in the
whole process. Fig. 1 shows the block diagrams of the con-
troller structure, depicting the control process and signal flow
according to the actual aircraft control system [17]. The dia-
gram is useful for understanding the signals and relationships
among them.
Remark 6: In this paper, we assume the states x1 = [φαβ]T

and x2 = [pqr]T can be measured directly and noises orig-
inated from the sensors which are used to measure states x1
and x2 are not taken into consideration. The time derivatives
are calculated by the fifth order sliding mode differentiator
developed in [39].

IV. SIMULATION STUDY
In this section, a simulation is provided to demonstrate the
effectiveness of the developed command filtered model-free
robust (CFMFR) control method. Considering the nonlinear
6-DOF model of a flying-wing UAV that was developed
primarily in [31] by Guillaume Ducard, we refer to [31] to
obtain details regarding the aerodynamic data. The control
surfaces consist of an elevator (δe), an aileron (δa), and a
rudder (δr ). Firstly, we verify the robustness of the approach
with actuator biases and measurement errors of the control
surface deflection angles. The diagonal matrix is constant
here. Besides, two diagonal matrices of the TDC are selected
to illustrate that too small elements of the matrix cause poor
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FIGURE 6. Curves of the attitude angles with the constant value
Ḡinv,i = diag(0.005,0.005,0.005).

control performance or even instability of the closed-loop
system and too large ones arise chattering of the actuators.
At last, we check the effectiveness of the developed CFMFR
control method with the updating laws of the elements of the
diagonal matrix by adopting different initial values.

The actuator dynamics with the magnitude and rate con-
straints can be expressed by the introduced second-order

FIGURE 7. Curves of the control surface deflection angles with the
constant value Ḡinv,i = diag(0.005,0.005,0.005).

TABLE 1. Second-order actuator dynamics [40].

TABLE 2. Command-filter parameters [7].

command filter. Details regarding the actuator dynamics are
presented in Table 1.

We should impose constraints on the virtual control laws
through the command filters. The parameters of the command
filter are presented in Table 2.
Remark 7: To guarantee the security of the UAVs, we need

the variables to vary in the specific zone. In the simulation,
the command-filter parameters are designed according to the
specific areas of the variables.

To apply the first-order Taylor series expansion and ensure
the accuracy of the linearization, the dynamics of the con-
trolled plant must satisfy the TSS property. In the aircraft
system, the actuator system can be viewed as a subsystem cas-
caded to the angular rate dynamic system, so does the angular
rate dynamics compared with the attitude angle dynamics.
This is largely because the actuator dynamics are faster than
the angular rate dynamics. This could be explained as follows.
A change in control input of the aircraft has a change in
moment as effect. The change in moment is directly effecting
the angular accelerations. On the other hand, the angular rates
only change by integrating the angular accelerations [41].
Therefore, the TSS property is guaranteed [15].

To illustrate the performance and the robustness to the
model errors of the control laws developed herein, the aircraft
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FIGURE 8. Curves of the attitude angles under the action of the proposed
CFMFR control method with the initial value Ḡinv,i = diag(0.1,0.1,0.1).

is commanded to perform doublets in both roll and attack
angles simultaneously while regulating the sideslip to zero.
This set of the commands is challenging for the autopilot
because it includes significant amounts of coupling between
all three channels and the modeling errors. In the simulation
model, one typical kind of uncertainties, magnitude scal-
ing, is considered. In this case the actual coefficients are

FIGURE 9. Curves of the control surface deflection angles under the
action of the proposed CFMFR control method with the initial value
Ḡinv,i = diag(0.1,0.1,0.1).

obtained by scaling the magnitude of the nominal coeffi-
cients. The relations between them can be described as an
equation: C∗act (∗) =

(
1+ Fmag

)
C∗nom (∗), where C∗act (∗)

and C∗nom (∗) are the actual coefficients and nominal coeffi-
cients, respectively. Fmag = −30% is the scaling factor [21].
In addition, external disturbances to the aircraft are added.
The disturbance of the first subsystem is a constant whose
numerical value is diag(30, 30, 30).

In all the simulations, actuator biases and measurement
noises, biases and time delays are considered. We assume
all the actuator have biases, whose values are +0.3◦. The
independent nonzero mean (0.2◦) Gaussian noise is added to
the measurements with a standard deviation of+0.1◦. In [17],
the simulation results show that the tracking performance is
significantly degraded by the oscillation caused by the time
delays especially when the value of the time delay is more
than 0.2s. The value of the measurement time delay is 0.3s.

The design parameters are k1 = 4, k2 = 8, λ = 4,
γ = 1.25, χ = 0.75, a1 = a2 = a3 = 20, ω1 = 0.005,
ω2 = ω3 = 0.0005, σ1 = σ2 = σ3 = 0.2.
Firstly, the simulations are conducted with constant gains

whose values are diag(0.05, 0.05, 0.05), diag(0.1, 0.1, 0.1),
and diag(0.005, 0.005, 0.005), respectively. As shown in
Figs. 2-3, the output signals, including the roll angle φ,
the attack angle α, and the sideslip angle β, can steadily
track the given reference signal, and the tracking errors
can converge to a small neighborhood around the origin.
The chattering performance of the control surfaces are not
occurred, from which we can learn that if we can select
the right candidate of the constant gain, we can obtain the
desired tracking performances. Sometimes, when we select
some ill-suited gains, either the chattering phenomenon of the
control surfaces are happened or the tracking performances
are seriously degraded. As mentioned in Sec.II, as the values
of the gains improve, the ultimate tracking errors will be
decreased. From the Fig. 4, it is obvious that the tracking
errors of the attitude angles of the aircraft can converge to
zero or a small neighborhood around the origin. However,
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FIGURE 10. Curves of the attitude angles under the action of the
proposed CFMFR control method with the initial value
Ḡinv,i = diag(0.005,0.005,0.005).

the actuators, especially δa, are chattered, as shown in Fig. 5.
Therefore, if wewant the flight vehicle to operate steadily and
safely, the values of the gains must be reduced. From Fig. 6,
we can learn that overshoot of the roll angle and the large
tracking errors of the attack angle and the sideslip angle have
bad influences on the tracking performances of the vehicle
if we let Ḡinv,i = diag(0.005, 0.005, 0.005) although the

FIGURE 11. Curves of the control surface deflection angles under the
action of the proposed CFMFR control method with the initial value
Ḡinv,i = diag(0.005,0.005,0.005).

magnitudes and actuating rates of the actuators are kept in the
reasonable region (as shown in Fig. 7). Therefore, the values
of the gain are vital to the stability of the whole close-loop
system. Unfortunately, it’s not practical for that lots efforts
and time are consumed to select the reasonable constant gain
under the circumstances that the nominal value is unknown.
So, the adaption scheme should be considered.

In the following simulation experiments, the performances
of the CFMFR controller with adaption laws using different
initial values of the gain whose values are diag(0.1, 0.1, 0.1)
and diag(0.005, 0.005, 0.005), respectively. The Figs. 8-11,
especially Figs. 8 and 10, indicate the tracking errors are guar-
anteed to converge to a small neighborhood around the origin.
It can be clearly seen that the developed CFMFR controller
with adaption laws can lead to a good tracking performance
in the φ, α, and β. In Fig. 10, overshoot of the roll angle φ is
not happened with the help of the adaption laws depending on
which the elements of the gain Ḡinv are adjusted to obtain the
desired tracking performance according to the errors and the
values of themselves. As shown in Fig.9, the control surface
δa is chattered during the time period t ∈ [0s, 1.5s] when
we let the initial value Ḡinv,i = diag(0.1, 0.1, 0.1). After
that, chattering performance is avoided under the action of
the adaption laws designed above. As depicted in Fig. 11,
the curves of actuators are similar to Fig. 3 after the parame-
ters are tuned automatically by (30). We also can learn from
the Figs. 8-11 that the closed-loop stability can be guaranteed
regardless of the selection of the initial values. As long as the
initial values are located in the reasonable region (see (28)),
the stability would be guaranteed and performance would be
improved alongwith the adaptive laws. The simulation results
powerfully verify the effectiveness of the presented CFMFR
with adaption laws.

V. CONCLUSION
A command filtered model-free robust (CFMFR) attitude
controller is proposed for aircraft with parameter uncertain-
ties and disturbances. The incremental nonlinear dynamic
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inversion (INDI) and time-delayed control (TDC) method
integrating sliding-mode technique are employed to design
the virtual control laws, respectively, according to the reality
of the control effectiveness matrix. The updating laws of the
diagonal matrix is constructed by Lyapunov control theorem.
We considered the actuator dynamics of the control surfaces
and the noises, biases, and time delays of themeasurements of
the control surface deflection angles. The command-filtered
backstepping is utilized to compensate the actuator dynamics
and filtered errors, and the modified stable linear filter is
developed to handle the measurement errors. The stability
of the whole closed-loop system, including the compensated
signals which are the outputs of the stable linear filters,
is analyzed by using Lyapunov theory. Numerical simulation
results are performed to demonstrate the chattering of the
proposed control method. As for the TDC controller with
constant diagonal matrix, instability or fluctuations of the
actuators occurs if inappropriate diagonal matrix is cho-
sen. Under the action of the CFMFR controller with auto-
tuning diagonal matrix, the high-tracking performance can
be obtained regardless of the initial values of the diagonal
matrix. In the future work, we will make our control signals
optimal or near-optimal by combining reinforcement learning
and other machine learning algorithms.
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