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ABSTRACT In the field of data mining, protecting sensitive data from being leaked is part of the focuses
of current research. As a strict and provable definition of privacy model, differential privacy provides an
excellent solution to the problem of privacy leakage. Numerous methods have been suggested to enforce
differential privacy in various data mining tasks, such as regression analysis. However, existing solutions
for regression analysis is less than satisfactory since the amount of noise added is excessive. What’s
worse, the adversary can launch model inversion attacks to infer sensitive information with the published
regression model. Motivated by this, we propose a differential privacy budget allocation model. We optimize
the regression model by adjusting the privacy budget allocation within the objective function. Extensive
evaluation results show the superiority of the proposed model in terms of noise reduction, model inversion
attack proof, and the trade-off between privacy protection and data utility.

INDEX TERMS Machine learning, differential privacy, regression analysis, model inversion attack.

I. INTRODUCTION
Regression analysis [1] is widely used in the fields of sta-
tistical analysis and data mining. For example, a medical
institution collects a large number of clinical data of cancer
patients. Researchers use regression analysis technology to
analyze these data and build a model that can predict the
risk of cancer. The medical institution publishes the model,
and users can submit individual clinical data to the model to
predict cancer risk. However, the privacy leakage issue [2] has
not been well-considered in the regression analysis. On the
one hand, the adversary can infer the sensitive information
about the training set by combining the published regression
model and some background knowledge. One the other hand,
the ability of the regression model to discover the potential
relationship between the data also provides an opportunity
for the adversary to obtain sensitive information. Especially
in medical, financial and other high-confidential fields, sen-
sitive information in regression-based applications is under
great threats.

To solve the problem of privacy leakage in regression anal-
ysis, various solutions have been proposed. On the data level,
data masking is a common privacy protection mechanism,
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which achieves privacy by perturbation, encryption or gen-
eralization to datasets [3]–[6]. We can use the masking data
to build the regression model, but it is challenging to achieve
the balance between data privacy and model availability [7].
On the algorithm level, it is the research hotspot to build
the regression model with privacy protection. For example,
the regression model based on differential privacy [8] or
homomorphic encryption [9]–[11]. Consideration of comput-
ing power and application scenarios, differential privacy is a
better solution in many cases.

As a strict and provable definition of privacy model, differ-
ential privacy provides a method for quantitative evaluation
of privacy protection and develops a new solution to the
problem of privacy leakage in regression analysis. The core
idea of the regression analysis with differential privacy is to
add controllable noise to the regressionmodel [12], which can
ensure a balance between privacy preservation and utility.

There are two main methods to achieve differential privacy
in regression analysis algorithm. The first method is directly
injecting noise into the learned regression model [13]. It sep-
arates noise addition from the training process of the model,
and ignores the relationship between model parameters and
noise. This approach may lead to sizeable noise and reduce
the utility of the prediction result. The second method
is the objective perturbation mechanism [14]. Unlike the
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former one, it adds noise to the objective function of the
regression model and trains the regression model by the
objective function after noise addition. In the optimization
process, the noise-addedmodel canminimize the interference
caused by noise and improve the fitting effect. This approach
is advanced at present.

Generally, the function mechanism [15], which is based on
objective perturbation, performs better than other approaches
in the field of regression analysis with differential privacy.
In order to solve new problems and adapt to new appli-
cation scenarios, we need to make some improvements to
the function mechanism. Firstly, function mechanism never
considers the difference in sensitivity of each part of the
objective function. Therefore, it may result in uneven distri-
bution of the internal privacy budget. In this case, the noise
of the function mechanism is not optimized to a greater
extent. Although, Gong et al. [16] proposed PrivR based
on the function mechanism, which perturbs the polyno-
mial coefficients according to the magnitude of relevance
between the input features and the model output. However,
the algorithm is complicated in the case of high-dimensional
features. Secondly, model inversion attack [17] puts the
function mechanism in great risks. The adversary can use
the released regression model and some background knowl-
edge to predict the target’s sensitive attribute, which used as
input to the model. Function mechanism can only protect
regression model against model inversion attack when the
privacy budget is small enough. It means the reduction of
utility for the regression model. Wang et al. [18] makes some
improvements. However, the algorithm is inflexible and the
defense capability needs to be strengthened. Therefore, a pri-
vate preservation framework that can significantly promote
the data privacy while improving the accuracy in regression
analysis is required urgently.

In order to solve the aforementioned issues, we present an
algorithm named Differentiated Privacy Budget Allocation
(DPBA). We consider the effect of sensitivity among various
components in the objective function and allocate privacy
budgets in accordance with sensitivity. We can optimize the
model by adjusting the allocation of privacy budget. Com-
pared with the previously mentioned solutions, the proposed
algorithm is more flexible. Moreover, DPBA increases ran-
domness of the algorithm, it can significantly decrease the
risks of model inversion attacks. To summarize, we make the
following contributions.

1) we propose DPBA, a new solution for differential
privacy preserving in regression analysis. It provides
improvement to allocate privacy budget. Compared
with the previous, our method is more flexible
and simple. At the same time, it shows good
performance in privacy and utility of regression
models.

2) Using DPBA, we can defend model inversion attacks.
Compared with defense mechanism proposed by
Wang et al. [18], our method is easy to implement and
can achieve the better defensive capability.

TABLE 1. Definition of related symbols.

The remainder of the paper is organized as follows.
Section II reviews related work of security and privacy in
regression analysis. Section III introduces some basic con-
cepts about this paper. Section IV explains our methods in
detail. Section V conducts some comparative experiments
to test the performance of our method. Finally, Section VI
concludes the paper with directions for future work.

II. RELATED WORK
Security and privacy risks in regression analysis have
attracted much attention. This section mainly introduces the
related work of regression analysis with differential privacy
and security threats in regression analysis. Table 1 shows the
description of related symbols.

A. REGRESSION ANALYSIS WITH DIFFERENTIAL PRIVACY
As a strict and provable framework of privacy protection, dif-
ferential privacy is widely employed [19]–[23]. In this paper,
we mainly discuss regression analysis with differential pri-
vacy. Its main idea is to add appropriate noise to the regression
model. Chaudhuri et al. [14] proposed objective perturbation
mechanism. It achieves differential privacy by adding noise to
the means of the objective function in the regression model.
This mechanism is useful to reduce noise in the process of
building the regression model. However, it is only suitable for
linear regression. Kifer et al. [24] made some improvements
in objective perturbation mechanism and generalized it to
the regression analysis of high dimensional space. Besides,
the problem of empirical risk minimization of regression
models in high dimensional space is also discussed. However,
it also can not apply to other regression methods except linear
regression. Zhang et al. [15] presented the function mecha-
nism based on objective perturbation mechanism, which is
suitable for both linear regression and logistic regression.
Function mechanism never directly adds noise to the objec-
tive function. First, It decomposes the objective function into
polynomials. Then, it adds noise to each coefficient of the
monomial term. Function mechanism shows good perfor-
mance in generalization and privacy. In a recent study, Dwork
and Feldman [25] also made some progress in the field of
differential privacy regression analysis. They focus on the
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FIGURE 1. Logistic regression and linear regression.

convex optimization regression model. However, most of the
research in regression analysis with differential privacy focus
on the construction of parametric models. In addition, some
researchers designed the non-parametric model, such as his-
togram publishing [26], [27] and gaussian process regression
[28], [29]. In some specific scenarios, they can also have a
good performance.

B. SECURITY THREATS IN REGRESSION ANALYSIS
Generally speaking, existing attacks against regression anal-
ysis can be classified into four categories: poisoning attacks
[30], [31], evasion attacks [32], inference attacks [33], model
stealing attacks [34]. In poisoning attacks, the adversary aims
to produce a bad classifier by polluting the training dataset.
The key to defending such attacks is to identify malicious
samples in training sets. In evasion attacks, attackers aim
to construct adversarial examples to bypass the classifier
based on the regression model. Improving model robustness
is critical to against such attacks. Inference attacks and model
stealing attacks, the adversary’s goal is to infer sensitive infor-
mation about models or training data. Model perturbation
is a common method to defend these two kinds of attacks.
As we know, there is little research on the defense of various
attacks at present. This paper focuses on model inversion
attack, which is one of the inference attacks. Wang et al. [18]
proposed a method of disturbing sensitive attributes in the
cost function to defend model inversion attack. However,
the defense capability of this method is limited. We need
to build a regression model with more powerful defense
capabilities.

III. PRELIMINARY
In this section, we introduce the concepts of regressionmodel,
differential privacy and model inversion attack.

A. REGRESSION MODEL
Let D be a data set that contains n tuples t1, t2, . . . , tn, each
tuple includes d+1 explanatory attributes X1,X2, . . . ,Xd ,Y ,

so ti = (xi1, xi2, . . . , xid , yi), and
√∑d

i=1 x
2
id ≤ 1. We set Y

as the prediction result of the regression, and X1,X2, . . . ,Xd
as the input of the training model and prediction. In these
individual attributes, Xs is the sensitivity attribute which is
the target in model inversion attack. The regression model is
shown in Fig.1.

Definition 1 (Linear Regression): Assume Y in data set D
has a value range [−1, 1]. A linear regression on D returns
a prediction function p(xi, ω∗) = xTi ω

∗, where ω∗ is a
d-dimensional real vector that minimizes the cost function
fD(ω).

fD(ω) =
n∑
i=1

(yi − xTi ω)
2 (1)

ω∗ = argminω
n∑
i=1

(yi − xTi ω)
2 (2)

Definition 2 (Logistic Regression): Assume Y has a value
range {0, 1}. A logistic regression on D returns a prediction
function which returns ŷi = 1with the probability p(xi, ω∗) =
exp(xTi ω

∗)/(1 + exp(xTi ω
∗)), where ω∗ is a d-dimensional

real vector that minimizes cost function fD(ω).

fD(ω) =
∑n

i=1
(log(1+ exp(xTi ω))− yix

T
i ω) (3)

ω∗ = argmin
ω

∑n

i=1
(log(1+ exp(xTi ω))− yix

T
i ω) (4)

B. DIFFERENTIAL PRIVACY
Definition 3 (ε-Differential Privacy [12]): A randomized

algorithm K satisfies ε-differential privacy, if any output S of
K and for any two neighbor databases D1 and D2, we have

Pr[K (D1) ∈ S] ≤ eε × Pr[K (D2) ∈ S]. (5)

In definition 3, neighbor databases D1 and D2 represent
two similar data sets that differ in one tuple. Pr[K (D1) ∈ S]
means the probability of K (D1) ∈ S. The parameter ε is the
privacy protection budget specified by the algorithm designer.
In practical applications, ε takes a small value, such as 0.01,
0.1, or 1, etc. The smaller value of ε, the higher the differential
privacy protection level rises.
Theorem 1 (Sequence Composition [12]): For algorithm

K1,K2, . . . ,Kn, each privacy budget is ε1, ε2, . . . , εn, D is a
data set, so K (K1(D),K2(D), . . . ,Kn(D)) satisfies (

∑n
i=1 εi)-

differential privacy.

C. GLOBAL SENSITIVITY
For algorithms based on differential privacy, it is critical
to add reasonable volume of noise. On the one hand, if
the added noise is not significant, the adversary can analyze
the noise distribution to achieve themalicious purpose. On the
other hand, if the added noise is too large, the output from
the query seriously deviates from the true value. Therefore,
we introduce the concept of sensitivity which refers to the
maximum change caused by the deletion of any record in the
data set. It is the key to measure the size of noise. The global
sensitivity is a property of the function, and independent of
the data set.
Definition 4 (Global Sensitivity [12]): Suppose D and D′

are neighbor data sets, the global sensitivity of a function f :
D→ Rd is as follow,

1f = max
D,D′

∥∥f (D)− f (D′)∥∥1 . (6)
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FIGURE 2. Attack model of model inversion attack.

D. NOISE MECHANISM
For differential privacy algorithm, the two mainstream mech-
anisms for adding noise includes laplace mechanism [13]
which is mainly used to add noise to numerical results, and
exponential mechanism [35] which is mainly used to add
noise to discrete results. In this paper, we use numeral data
as an instance and thereby we only leverage laplace mech-
anism. Laplace mechanism implements differential privacy
protection by adding random noise that satisfies the Laplace
distribution to the model. Assuming that parameter b satisfies
laplace distribution, the probability density function is

p(x) =
1
2b

exp(−
|x|
b
). (7)

Theorem 2 (Laplace Mechanism [12]): An algorithm K
takes a data set D, and ε > 0, a query function f : D →
Rd which sensitivity is 1f as input, and outputs as formula
(8) where Q is noise satisfied Lap(1f /ε). The algorithm K
provides ε-differential privacy protection. if

K (D) = f (D)+ Q. (8)

The definition shows that the size of noise for laplace
mechanism is determined by the sensitivity 1f and privacy
budget ε. The sensitivity is determined by the query function.
Once the query function is determined, the sensitivity is fixed,
while the amount of noise added is determined by the privacy
budget. The privacy budget increases with the decreasing of
noise size.

E. MODEL INVERSION ATTACK
Model inversion attack arises from medical data protection
of pharmacogenetics. Fredrikson et al. [17] proposed this
attack model which can cause privacy leakage. Assuming
that a research organization released a regression model
y = ρ(x, ω∗) trained from a dataset D which contains the
sensitive attributeXs. An adversary acquiresmedical statistics
which is similar toD, but some individual’s sensitive attribute
Xs is unknown. Combined with some background knowledge
about individuals and the regression model, the adversary can
obtain the sensitive attribute values bymodel inversion attack.
The attack model is shown in Fig.2.

For the regression model with differential privacy, model
inversion attack still puts sensitive information under great
threats. We can defeat the attack when the privacy budget

is small. However, the smaller of the privacy budget causes
the worse availability of regression model.

IV. DIFFERENTIAL PRIVACY BUDGET ALLOCATION
MODELING AND ANALYSIS
A. SYSTEM MODELING
In the function mechanism [15], Zhang reorganizes the cost
function of regression model, and adds noise satisfied laplace
distribution to each coefficient of monomial term φ(ω),which
include ω.

fD(ω) =
∑
ti∈D

f (ti, ω) =
J∑
j=1

∑
φ∈8j

∑
ti∈D

λφtiφ(ω) (9)

Generally, we assume fD(ω) as an objective function of
the regression model, where sensitivity is 1f and privacy
budget is ε. In the function mechanism, converting fD(ω)
to the polynomial is the basic idea. Firstly, it set fD(ω) =
aω2
+ bω + c, which a and b represent the coefficients of

the objective function and c is a constant term. Next, it adds
noise Lap(1f /ε) which satisfies the laplace distribution to
the coefficients of the monomial containing ω, the objective
function after noise injection is

f ∗D (ω) = (a+ Lap(1f /ε))ω2
+ (b+ Lap(1f /ε))ω + c.

After calculating gradient descent, optimal model ω∗ will
be obtained. The problem of the function mechanism is that
it adds same amount of noise to all the coefficients of the
monomial term containing ω, and does not consider the dif-
ference of sensitivity between monomial terms. As a result,
the amount of added noise is more than expectation, because
different sensitivity of monomial terms have different degrees
of influence on the objective function.

In order to solve this problem, the influence of each mono-
mial term to objective function should get consideration.
In this case, we can combine the composition characteristic
of differential privacy to make improvements to the function
mechanism. The composition characteristic points out that
multiple combinations of an algorithm which satisfies the
differential privacy still meets the requirements of differen-
tial privacy. In this paper, we propose a solution based on
the composition characteristic of differential privacy and the
function mechanism.

Let gD(ω) = aω2, hD(ω) = bω. The sensitivity of gD(ω)
is 1f1 and the sensitivity of hD(ω) is 1f2, and fD(ω) =
aω2
+ bω + c. Moreover, for a regression model without

considering c, we have 1f = 1f1 + 1f2. The improved
idea is to decompose the polynomial of the objective function
into monomial terms, and assign different privacy budgets
according to the sensitivity of the monomial term. We sup-
pose the privacy budget allocated to gD(ω), hD(ω) is ε1 and
ε2, ε1 + ε2 = ε. After adding noise to gD(ω) and hD(ω),
g∗D(ω) = (a+Lap(1f1/ε1))ω2, h∗D(ω) = (b+Lap(1f2/ε2))ω,
so

f ∗D (ω) = g∗D(ω)+ h
∗
D(ω)+ c

f ∗D (ω) = (a+ Lap(1f1/ε1))ω2
+ (b+ Lap(1f2/ε2))ω + c
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Finally, using gradient descent to f ∗D (ω), we can obtain
the optimal regression model. The algorithm is shown as
Algorithm 1.

This algorithm use α and β as a variable to adjust the value
of ε1 and ε2. By adjusting the values of ε1 and ε2, we can get
a more optimized regression model. In this way, we optimize
the distribution of the internal privacy budget of the objective
function, and ensure less noise is added to the target function.
At the same time, this uneven noise addition method also
makes the regression model effective against model inversion
attacks.

Algorithm 1 Differentiated Privacy Budget Allocation
Input: Privacy budget ε, data setD,objective function fD(ω)
Output: Optimal model ω∗

1: if linear regression then
2: expanding the objective function fD(ω) to polynomial
3: set gD(ω) =

∑
1≤j,l≤d (

∑
ti∈D xijxil)ωiωj

4: set hD(ω) =
∑d

j=1 (2
∑

ti∈D yixij)ωj
5: else if logistic regression then
6: expanding the objective function fD(ω) to polynomial
7: set gD(ω) = 1

8

∑n
i=1 (x

T
i )

2
ω2

8: set hD(ω) = ( 12
∑n

i=1 x
T
i −

∑n
i=1 yix

T
i )ω

9: end if
10: compute the sensitivity of gD(ω), hD(ω) as 1f1 and 1f2
11: set the coefficient of gD(ω), hD(ω) as a and b
12: if 1f1 > 1f2 then
13: set α = 1f1

(1f1)2+1f2
β, 0 < β <

f2
f1
+ f1

14: else
15: set α = 1f1

(1f2)2+1f1
16: end if
17: set ε1 = αε, ε2 = ε − ε1
18: compute g∗D(ω) = (a+ Lap(1f1/ε1))ω2

19: compute h∗D(ω) = (b+ Lap(1f2/ε2))ω
20: set f ∗D (ω) = g∗D(ω)+ h

∗
D(ω)

21: compute ω∗ = argminωf ∗D (ω)
22: return ω∗

B. ALGORITHM OVERVIEW
In this section, we introduce the main steps of the algorithm
in details. Due to the difference in objective function between
linear regression and logistic regression, so we deal with
them differently. In the first step of the algorithm, we need
to identify the types of models, linear regression or logistic
regression. It depends on the type of task we are dealing
with. According to the models, we determine the objective
function as in function mechanism and split it to gD(ω) and
hD(ω). Then, we need to calculate the sensitivity 1f1, 1f2 of
gD(ω) and hD(ω). The allocation of privacy budget is deter-
mined by sensitivity. we tend to allocatemore privacy budgets
to more sensitive items, because the greater the sensitivity,
the greater the impact on the model. We use more privacy
budgets to reduce the amount of noise. In general, we set
β = max(1f1,1f2). When 1f1 > 1f2, α =

(1f1)2

(1f1)2+1f2
,

so ε1 =
(1f1)2

(1f1)2+1f2
ε. The range of noise added for gD(ω) is

1f1/ε1 =
1f1
ε
+

1f2
1f1ε

. In the function mechanism, the added

noise for gD(ω) is
1f1
ε
+

1f2
ε
. So, we reduce the noise of the

more sensitive items. When total privacy budget ε is small or
d is so big (high-dimensional feature of dataset) and other
specific requirements scenarios, we can make appropriate
adjustments to β. After that, the value ε1 and ε2 are obtained.
Next, we add noise to the coefficient of gD(ω) and hD(ω)
and compose a new cost function. Finally, computing ω∗ =
argminωf ∗D (ω), we can get the optimal regression model.

C. SYSTEM ANALYSIS
Lemma 1: The objective function of regression model is

fD(ω) = gD(ω) + hD(ω) + c. The sensitivity of the objective
function fD(ω)without considering c is1f , and the sensitivity
of gD(ω), hD(ω) is 1f1 and 1f2, then 1f = 1f1 +1f2.

Proof: In function mechanism [15], Zhang proposed a
method for computing the sensitivity of the objective func-
tion. Let D and D′ be any two neighbor databases, and fD(ω)
and fD′ (ω) be the objective functions of regression analysis
on D and D′, respectively.

fD(ω) =
J∑
j=1

∑
φ∈8j

∑
ti∈D

λφtiφ(ω)

fD′ (ω) =
J∑
j=1

∑
φ∈8j

∑
t ′i∈D

′

λφt ′i
φ(ω)

Then, we can get the following inequality

J∑
j=1

∑
φ∈8j

∥∥∥∥∥∥
∑
ti∈D

λφti −
∑
t ′i∈D

′

λφt ′

∥∥∥∥∥∥
1

≤ 2max
t

J∑
j=1

∑
φ∈8j

∥∥λφt∥∥1
This inequality is useful for our proof. First, we present the
proof in the linear regression model with differential privacy.
The objective function of a linear regressionmodel is fD(ω) =∑n

i=1 (yi − x
T
i ω)

2, and its sensitivity without considering c
is 1f = 2d2 + 4d in the function mechanism [15], where
d represents the dimension of the attribute in the dataset.
Decomposing the objective function into polynomials, we get

fD(ω) =
∑
ti∈D

(yi)2 −
d∑
j=1

2
∑
ti∈D

yixij

ωj
+

∑
1≤j,l≤d

∑
ti∈D

xijxil

ωjωl
Then, we set

gD(ω) =
∑

1≤j,l≤d

∑
ti∈D

xijxil

ωjωl,
hD(ω) =

d∑
j=1

2
∑
ti∈D

yixij

ωj
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According to the definition of sensitivity and the above
inequality, we can calculate the sensitivity of gD(ω) and
hD(ω).

1f1 = max
D,D′
‖gD(ω)− gD′ (ω)‖1

≤ 2max
∑

1≤j,l≤d

∥∥xijxil∥∥1 ≤ 2d2

1f2 = max
D,D′
‖hD(ω)− hD′ (ω)‖1

≤ 2max(2
∑d

j=1
yx(j)) ≤ 4d

Thus, we get 1f = 1f1 +1f2.
Next, we show the proof in the logistic regression

model with differential privacy. In function mechanism [15],
the objective function of logistic regression is approximated
as a combination of polynomials by using the Taylor Formula.

fD(ω) =
∑n

i=1

∑2

k=0

f k1 (0)

k!
(xTi ω)

k
− (
∑n

i=1
yixTi )ω

Its sensitivity is 1f = d2/4 + 3d , and d represents the
dimension of the attribute in the dataset. Decomposing the
objective function into polynomials, we get

fD(ω)(
1
2

∑n

i=1
xTi −

∑n

i=1
yixTi )ω +

1
8

∑n

i=1
(xTi )

2
ω2

Then, we set

gD(ω) =
1
8

∑n

i=1
(xTi )

2
ω2,

hD(ω) = (
1
2

∑n

i=1
xTi −

∑n

i=1
yixTi )ω

As the same, we can calculate the sensitivity of gD(ω) and
hD(ω).

1f1 = max
D,D′
‖gD(ω)− gD′ (ω)‖1

≤ 2max(
1
8

∑
1≤j,l≤d

xjxl) ≤
d2

4
1f2 = max

D,D′
‖hD(ω)− hD′ (ω)‖1

≤ 2max(
1
2

∑d

j=1
xj +

∑d

i=1
yixi) ≤ 3d

So, we get 1f = 1f1 +1f2.
Theorem 3: Differentiated privacy budget allocation

satisfies ε-differential privacy.
Proof: In the execution of the algorithm, we need to

add noise to gD(ω), hD(ω) separately. Assuming the pro-
cess of adding noise to gD(ω), hD(ω) are algorithm k1 and
algorithm k2. In function mechanism, adding noise to the
monomial coefficients which include ω in the objective func-
tion satisfies the definition of differential privacy, so k1 and
k2 satisfy ε1-differential privacy and ε2-differential privacy.
The algorithm of differentiated privacy budget allocation is
composed of k1 and k2, and ε1 + ε2 = ε. According to the
sequence composition characteristic of differential privacy,
the algorithm of DPBA satisfies ε-differential privacy.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL ENVIRONMENT AND DATA
We conduct extensive experimental results on both US Cen-
sus data set and Brazilian Census data set from the UCI
Machine Learning Database, which contains 370057 and
188846 samples, respectively. These two data sets include
13 attributes, such as name, age, marital status, etc. Since
the marital status exceeds two values, the marital status is
converted into a single/married attribute, after which the
transformed data set becomes 14 dimensions. We use the
annual income attribute as the predicted value of the regres-
sion model. The regression task is to forecast whether the
annual income of an individual is greater than 50K. For linear
regression, the prediction results are numerical values. For
logistic regression, the prediction results are classification
(0 or 1). Before building models, the data sets need to be
subjected to feature scaling to facilitate the convergence of
the regressionmodel. The experiments are executedwith Intel
i7 processor, 8GB RAM, 500GB hard disk, Microsoft Win-
dows10 operating system, and the algorithms are deployed on
64-bit Matlab (2017a).

B. DIFFERENTIATED PRIVACY BUDGET ALLOCATION
The basic idea of the differentiated privacy budget allocation
(DPBA) algorithm is to optimize the allocation strategy of
privacy budget within the objective function. After decom-
poseing the objective function into polynomials, we treat
each monomial term as a function, and assign different pri-
vacy budgets to different monomial term while maintaining
the overall privacy budget. For regression models in this
paper, the objective function is generally decomposed into a
quadratic term of ω and a linear term of ω. Assuming that
the privacy budget assigned to the objective function is ε,
ε is assigned to the two monomial as ε1 and ε2, and we
have ε1 + ε2 = ε. In the first experiment, four different
privacy budgets are given, which are 0.1, 1.0, 2.0, 4.0. We use
80% as training set and 20% as test set. The experiment tests
the variation of the mean square error (for linear regression)
or the predicition error rate (for logistic regression) under
different combinations of ε1 and ε2. We set the privacy budget
ε1 assigned to quadratic term ofω as the abscissa. Fig.3 shows
the fitting effect of the differential privacy budget allocation
algorithm in linear regression, and Fig.4 shows the fitting
effect of the differential privacy budget allocation algorithm
in logistic regression.

For different data sets or different privacy budgets, both
Fig.3 and Fig.4 roughly show such a tendency, with the
increase of ε1, the mean square error (or predictive error
rate) of the test data decreases sharply at the beginning, and
then the amplitude of the decrease gradually becomes stable.
Finally, when ε1 approaches ε, it rises sharply space. It shows
that privacy budget allocation methods for ε1 and ε2 have
a great influence on the fitting effect of the test data. The
regression model can be optimized by finding an optimal
allocation method of privacy budget.

129358 VOLUME 7, 2019



X. Fang et al.: Regression Analysis With Differential Privacy Preserving

FIGURE 3. The influence of DPBA on linear regression model under
different privacy budgets.

FIGURE 4. The influence of DPBA on logistic regression model under
different privacy budgets.

C. MEAN SQUARE ERROR AND PREDICTION ERROR RATE
After the analysis of experiment 1, we know that the allo-
cation method of privacy budget has a great impact of
the fitting effect on the regression models. In the second
experiment, we compare the proposed DPBA algorithm with
four approaches, namely, FM (function mechanism) [15],
DPC [18], PrivR [16] and baseline. DPC and PrivR are based
on FM, which achieves differential privacy preservation in
regression analysis by adding identical noise to all coeffi-
cients of the objective function in the polynomial form. DPC
divides the data set into non-sensitive attributes and sensitive
attributes and allocates different privacy budgets to each cate-
gory. PrivR perturbs the polynomial coefficients according to
the magnitude of relevance between the input features and the
model output. The baseline represents the regression model
without differential privacy preserving. We test six groups of
privacy budgets, which were 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2.
All the experiments run in the data sets of US Census data
and Brazilian Census data.

No matter it is linear regression shown in Fig.5 or logistic
regression shown in Fig.6, DPBA is significantly improved

FIGURE 5. The comparison of FM, DPC, PrivR and DPBA in mean square
error for linear regression.

FIGURE 6. The comparison of FM, DPC, PrivR and DPBA in prediction
error rate for logistic regression.

than others. And such conclusion can also be derived for
different test data sets. Although, the noise has a great impact
on the model, the optimization strategy of DPBA makes its
fitting effect close to baseline. Function mechanism adds the
same noise to each monomial term, without considering the
difference between the sensitivity of monomial term. DPC
and PrivR excessively consider the influence of different
characteristics on the model, which makes the added noise
unbalanced. However, DPBA mechanism optimizes the allo-
cation strategy of privacy budget and minimizes the noise
added to the objective function. Also, the implementation of
DPBA is simpler than DPC and PrivR.

D. GENERALIZATION PERFORMANCE
The mean square error (or prediction accuracy) can only
describe the regression model fitting effect partly. To more
comprehensively comparing the fitting effect of DPBA and
the function mechanism, it is necessary to examine the per-
formance of the two algorithms in other aspects. In the UCI
machine learning database, the census data sets are often
used to test classification tasks, and the prediction result of
annual income is usually divided into two categories. For the
two-classification task, the generalization performance of the
regression model can be evaluated by the ROC curve. In this
experiment, we test the generalization performance of DPBA
for logistic regression. the function mechanism is more stable
than other approaches in generalization performance [16]. So,
we mainly compare the generalization performance with the
function mechanism. The experiment tests the generalization
performance of functional mechanism and DPBA under dif-
ferent data sets, where privacy budgets ε = 0.1.

VOLUME 7, 2019 129359



X. Fang et al.: Regression Analysis With Differential Privacy Preserving

FIGURE 7. The comparison of FM and DPBA in generalization
performance for logistic regression.

FIGURE 8. The comparison of DPC and DPBA for linear regression against
model inversion attack.

Fig.7 shows that whether it is the Brazilian census data
set or the US census data set, the area enclosed by ROC
curve of DPBA is obviously larger than function mechanism.
Therefore, the generalization performance of DPBA is better
than function mechanism. In this experiment, we observe that
when the selected privacy budget is small, the advantage of
DPBA in generalization performance is obvious. And if the
allocated privacy budget is large, the generalization perfor-
mance between of the two algorithms is similar.

E. MODEL INVERSION ATTACK
The purpose of the model inversion attack is to infer an
individual’s sensitive attribute in the train data. In this exper-
iment, we will test the impact of the mechanism DPBA on
model inversion attack. DPCfirstly proposed to defendmodel
inversion attack in regression with differential privacy, its
defense ability for model inversion attack is stronger than the
function mechanism [18]. And the defense ability of PrivR
is still unclear. So, we mainly compare with DPC in the
experiment. We assume the adversary aims at the sensitive
attribute of marital status (single/married). After the model
training, we select 20% of the samples from the training set
for testing. The adversary can access the model and knows
values of all input attributes of the testing samples except the
sensitive one. We test the defense capabilities of DPBA and
DPC in six groups of privacy budgets, which were 0.1, 0.2,
0.4, 0.8, 1.6, and 3.2.

As shown in Fig.8 and Fig.9, the baseline represents the
attack accuracy of the regression model without differen-
tial privacy. When the regression model has non-privacy
protection, attackers can obtain sensitive information with
a high degree of accuracy through model inversion attack.

FIGURE 9. The comparison of DPC and DPBA for logistic regression
against model inversion attack.

Both DPC and DPBA algorithms greatly reduce the risk of
model inversion attack. Obviously, DPBA has better defense
capabilities. And, as shown in experiment 2, the fitting effect
of DPBA is also better than DPC. There is not much differ-
ence between the two algorithms in implementation strategy.
However, DPBA is more flexible, and we canmake the model
have better performance by adjusting the allocation of privacy
budget. Although the process of adjusting the model will
increase the calculation time, the loss is worthwhile. We can
get a regression model that is more suitable for the demand.

VI. SUMMARY AND FUTURE WORK
To address the problems of excessive noise and the risk of
model inversion attack, which exist in the field of differen-
tial privacy regression analysis, we developed the solution
named DPBA based on function mechanism and composition
characteristic of differential privacy in this paper. DPBA can
optimize the privacy budget allocation within the objective
function while allocating privacy budgets more flexible and
adjusted accordingly. Compared with the other approaches,
this algorithm effectively reduces noise and achieves a bal-
ance between privacy protection and utility. On the other
hand, our approach provides a new solution to prevent pri-
vacy disclosure caused by model inversion attacks. Keeping
the overall privacy budget unchanged, we can modify the
allocation method of internal privacy budget of an objective
function to achieve different degrees of privacy protection.

In our future work, we will conduct a more in-depth study
of the relationship between the distribution of privacy budgets
and the size of the noise. In addition, we will find better
ways to defendmodel inversion attacks. Furthermore, we will
try to extend the DPBA mechanism to differential privacy
protection of other machine learning algorithms.
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