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ABSTRACT As an indispensable task for traffic management department, road maintenance has attracted
much attention during the last decade due to the rapid development of traffic network. As is known, crack
is the early form of many road damages, and repair it in time can significantly save the maintenance cost.
In this case, how to detect crack regions quickly and accurately becomes a huge demand. Actually, many
image processing technique based methods have been proposed for crack detection, but their performances
can not meet our expectations. The reason is that, most of these methods use bottom features such as color
and texture to detect the cracks, which are easily influenced by the varied conditions such as light and shadow.
Inspired by the great successes of machine learning and artificial intelligence, this paper presents a sample
and structure guided network for detecting road cracks. Specifically, the proposed network is based on U-Net
architecture, which remains the details from input to output by using skip connection strategy. Then, because
the scale of crack samples is much smaller than that of non-crack ones, directly using the conventional
cross entropy loss can not optimize the network effectively. In this case, the Focal loss is utilized to address
the model optimization problem. Additionally, we incorporate the self-attention strategy into the proposed
network, which enhances its stability by encoding the 2-order information among different local regions into
the final features. Finally, we test the proposed method on four datasets, three public ones with labels and
a photographed one without labels, to validate its effectiveness. It is noteworthy that, for the photographed
dataset, we design a series of image processing strategies such as contrast enhancement to improve the
generalization capability of the proposed method.

INDEX TERMS Road crack detection, neural network, representation capability, sample imbalance,
structural information.

I. INTRODUCTION
Road maintenance is an important task for traffic manage-
ment department, which has attracted much attention during
the past decade since the relatively high construction cost
of road network. Actually, crack is the early form of many
road damages, and repair it in time can significantly reduce
the maintenance cost [1]. The premise of repairing cracks is
obtain its location and details accurately, which is a chal-
lenging problem. At present, the manual based road crack
detection strategies still play an important role in road main-
tenance field. Except for their reliability, some limitations
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and disadvantages of manual based road crack detection are
relatively severe, some of which are illustrated as follows:
1) the manual based road crack detection consumes too
much human power, material resources and too long time.
Specifically, the staff of maintenance department need to give
realtime evaluation of road damage degree. However, in real
world, themanual process is slow since the testing roads often
have long distance and the job often requires lots of resources.
2) The manual evaluation results are usually inaccurate.
Specifically, when the road crews generalize and evaluate
cracks, themain base is the sense of naked eyes and subjective
reflections of visual effects for the apparent characteristics
such as length and width of the crack, which is relatively
initiative and easy to result in large errors. 3) The manual
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FIGURE 1. The framework of conventional road crack detection
algorithms, which often contains two components, feature representation
and pixel-wise decision. Specifically, this task aims to give each pixel in
the image a specific attribution tags.

based road crack detection obstructs the normal road traf-
fic. Specifically, when the staff of maintenance department
inspect a road section, it needs to be closed. This will affect
the normal use of the road and bring lots of inconveniences
for the passing people and vehicles. 4)Manual detection has a
certain dangers. Specifically, some roads are built on the steep
and winding mountain roads, and the staff of maintenance
department have certain personal safety risks when carrying
out tasks.

To avoid the aforementioned disadvantages of manual
based road crack detection, some traditional digital image
processing technique [2], [3] based method have been
proposed for automatical crack detection. For instance,
the threshold analysis based methods [4], [5], the mathe-
matical morphology based methods [6], [7], and the edge
detection based methods [8], [9]. Most of the aforemen-
tioned methods are based on the optical and geometric
assumptions for the properties of the crack images [5], [10],
which are sensitive to the noise and their performances can
not meet the application demands. Recently, with the rapid
development of artificial intelligence and machine learn-
ing, deep neural networks especially deep convolutional
neural networks have achieved significant performances
on many computer vision tasks such as scene recognit-
ion [11], [12], salient object detection [13], [14], seman-
tic segmentation [15], [16] and age prediction [17], [18].
As for road crack detection task, some CNN based pixel-
wise or block-wise models [19], [20] have been proposed to
improve the detection accuracy. Because of the strong feature
representation capability, these CNN based methods have
significant advantages compared to manual features based
ones [21], [22]. For instance, Dorafshan et al. [21] found
that CNN based methods are more robust to residual noises.
However, several limitations still exist. For instance, most of
them ignore the spatial relationships of crack regions among
different pixels and sample scales of crack regions in the
image. Specifically, spatial relationships of crack regions can
not be characterized well with traditional independent pixel-
level classification models, while which can provide extra
auxiliary information for the final decision since the contrast
is pivotal for crack detection. In addition, the scale of crack
regions is much smaller than that of non-crack ones, and
which can not effectively guide the model to possess the
same sensitivity for crack and non-crack samples in testing
phase.

To address the aforementioned problems, we propose a
sample and structure guided network for road crack detection.
Specifically, the proposed network is based on the popular
U-Net [23], which has achieved huge successes for image
transformation tasks because of its skip connection strategy.
Then, considering the scale of crack samples is much smaller
than that of non-crack ones, directly utilizing the conventional
cross entropy loss can not optimize the network effectively,
which may result in the ill-conditioned classifier and high
leakage rate [24]. In this case, we use the Focal loss to
optimize the network, which takes full consideration of the
sample imbalance problem for crack images and utilizes the
different penalty factors to train the model actually. Addition-
ally, pixel-wise classification mechanism can not depict the
structural relationships among different pixels in the image,
which may result in the isolated noisy point in the predicted
crack saliency map and improve the false drop rate. In this
case, we incorporate the self- attention strategy into the pro-
posed network, which enhances the stability of by encoding
the 2-order interaction information among different local
regions into the final features. Finally, differ from images in
the public datasets, the photographed road images have not
corresponding labels and they are often influenced by many
environment conditions, such as light, shadow and lane line,
which improve the detection complexity to a large extent.
In order to generalize the model trained on public datasets to
the photographed ones, we design a series of image process-
ing strategies such as contrast enhancement, and apply them
to the photographed images to improve the performances.

In summary, the contributions of this work can be listed as
follows:

1) We propose a sample and structure guided network
for road crack detection, which is based on pixel-wise
classification mechanism. In addition, the proposed
method considers the global structure and detailed tex-
ture information of the image simultaneously.

2) We utilize the Focal loss to guide the sample rela-
tionship learning, which addresses the network opti-
mization problem by using different penalty factors for
crack samples and non-crack ones.

3) We incorporate the self-attention mechanism into the
network to guide the spatial structure learning, which
alleviates the isolated noisy point problem by consid-
ering the relationships among different local regions in
the image.

4) We propose a series of image processing techniques
such as contrast enhancement to generalize the pro-
posed algorithm to other open datasets, which improve
its practical application value to a large extent.

The remainder of this paper is organized as follows.
In section II, we introduce some existing methods for hyper-
spectral image classification, including unsupervised ones
and supervised ones. Section III describes the proposed
method. We report the experimental results in section IV and
conclude the paper in section V.
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II. RELATED WORKS
This section introduces some existing road crack detec-
tion methods, including the minimal path based methods,
the image processing techniques (IPTs) based methods,
the machine learning based methods and the deep learning
based methods, which are introduced in subsection II-A,
subsection II-B, subsection II-C and subsection II-D
respectively.

A. MINIMAL BASED METHODS FOR ROAD
CRACK DETECTION
The minimal path problem aims to find the best path among
nodes in the graph, which has been applied tomany tasks such
as road crack detection. Kaul et al. [25] proposed an algo-
rithm which works on much more general curve topologies
with far fewer demands for initial input. Nguyen et al. [26]
proposed a minimal path based algorithm for road crack
detection, which considers the brightness and connectivity
simultaneously to extract the characteristics of anisotropic
cracks in the free-form path. Amhaz et al. [27] proposed an
algorithm for automatic crack detection from 2D pavement
images, which selects the endpoint and minimum path on
local and global scales respectively. Even though these meth-
ods considers the features of crack pixels in the global view,
their computational loads are too large and unsuitable for
practical applications.

B. IPTs BASED METHODS FOR ROAD CRACK DETECTION
The current mainstream algorithms for road crack detection
are all based on image processing techniques (IPTs), includ-
ing the edge detection based methods and the histogram
feature based method. Saar and Talvik [28] utilized Sobel
operator to construct eight templates with different directions,
and used them to extract the crack edges in road images, then
they obtained the crack saliency map by combing the expan-
sion processing technique of mathematical morphology with
the iterated threshold algorithm. Velinsky and Kirschke [29]
proposed to generate feature histograms of different levels in
different regions, and extract features in various histograms to
segment the images, which can achieve relatively satisfactory
performances for images with obvious cracks.

C. MACHINE LEARNING BASED METHODS FOR ROAD
CRACK DETECTION
With the development of machine learning, many approaches
based on which have made great progressed for differ-
ent applications [30]–[33]. Inspired by the successes of
these methods, many feature extraction and pattern recog-
nition based ones have been proposed for road crack detec-
tion [34]–[37]. Oliveira and Correia [35] proposed to utilize
the mean and variance from unsupervised learning strategy
to distinguish the crack blocks and non-crack ones. Cord
and Chambon [36] proposed to utilize Adaboost strategy to
choose the structural descriptors which can depict the crack
images effectively, and then obtain the crack saliency map.

Shi et al. [37] proposed to use a random forest based descrip-
tion method to depict cracks. Even though these methods
have achieved relatively satisfactory performances, they are
depend on the extracted features to a large extent, which limits
their practical applications.

D. DEEP LEARNING BASED METHODS FOR ROAD
CRACK DETECTION
With the significant improvement of the computational power
of the hardware equipments, deep learning based methods
have shown its advantageous performances on many vision
tasks such as video object tracking [38], [39], object detec-
tion [40], image captioning [41], [42]. Recently, deep learning
based methods have been successfully applied to damage
and distress detection tasks. Cha et al. [20] proposed to
divide the image into several blocks by sliding window strat-
egy, and then successively judge whether the cracks exist
in each block or not by CNN model. However, this method
can only judge the block-level cracks, which is inaccurate.
Zhang et al. [19] proposed to utilize CNN to judge whether
each single pixel belongs to crack or not by using the local
information of corresponding block, but they overestimated
the crack width since ignored the spatial relationships among
different pixels. Zhang et al. [43] proposed to use CNN to
predict the label of each pixel in the image. However, this
method needs to extract features by using manual feature
descriptors and the CNN model only acts as a classifier.
Additionally, their network architecture is closely related to
the size of input image, which hinders the promotion of this
method.

III. PROPOSED METHOD
This section details the proposed sample and structure
guided network. Specifically, subsection III-A introduces the
overview of the network, subsection III-B introduces the
sample guidance learning strategy, subsection III-C intro-
duces the structure guidance learning strategy. Additionally,
subsection III-D introduces the designed image enhancement
series for public and photographed datasets in detail.

A. OVERVIEW
We consider the road crack detection task as a pixel-wise
classification one, and utilize a U-Net [23] based model,
whose architecture is shown in Fig. 2, to finalize it. Specif-
ically, the skip connection strategy can preserve the detailed
texture information from raw images to corresponding pre-
dicted crack saliency maps. Then, we utilize the popular
Focal loss [24] based sample guidance strategy to optimize
the network, which can alleviate the ill-conditioned classifier
from imbalanced samples. Additionally, we incorporate the
self-attention [44] based structure guidance strategy into the
network, which can avoid the isolated noisy point problem
to a large extent. Last but not the least, we propose a series
of image enhancement strategies to generalize the proposed
algorithms to other open datasets more conveniently and
accurately.

130034 VOLUME 7, 2019



S. Wu et al.: Sample and Structure-Guided Network for Road Crack Detection

FIGURE 2. The architecture of the proposed sample and structure guided network. Based on the popular U-Net, the proposed network is equipped with
spatial guidance and sample guidance modules to improve its effectiveness.

B. SAMPLE GUIDANCE LEARNING
This subsection introduces the sample guidance learning
strategy. As is known, deep learning based methods obtain
the intrinsic attributes from training sets themselves in an
absolutely data-driven way. In other words, the distribution
and quality of the data directly affect the performance of the
model. As for road images, the scale of crack samples is
much smaller than that of non-crack ones, which is actually
a severe sample imbalance problem. In this case, directly
use the conventional MSE loss or cross entropy loss, which
gives the same penalty factors to each sample in the image,
may results in the model bias problem. Specifically, because
most samples of the training set belong to non-crack category,
the trained model is insensitive for the crack samples and
tend to predict all samples to non-crack category, which
influences the performance especially brings to the high miss
rate to a large extent. In these cases, we utilize the Focal loss,
which gives larger penalty factor to category with smaller
scale and smaller penalty factor to category with larger scale,
to optimize the proposed network effectively. The Focal loss
is defined as Equation 1,

L = −
1
WH

W∑
w=1

H∑
h=1

(αy(w,h)
(
1− ŷ(w,h)

)η log ŷ(w,h)
+ (1− α) y(w,h)ŷ

γ

(w,h) log
(
1− ŷ(w,h)

)
), (1)

whereW and H represents the width and height of the image
respectively. y(w,h) and ŷ(w,h) represents the label and pre-
dicted saliency score of (w, h)th pixel in the image respec-
tively. Additionally, α and η are two hyperparameters, which
are used to guide the sample learning. Specifically, the hyper-
parameter pair with larger α and smaller η means the greater
emphasis on crack samples.

Actually, even though cracks are discussed at length in this
paper, which are not only defect that the matters to inspectors.
In this case, for the purpose of popularizing our method to
other more complex road maintenance systems conveniently,

we have formed a variant of focal loss and which can classify
the data with more than two classes. The definition of our
expanded focal loss is shown as Equation 2,

` = −
1
WH

W∑
w=1

H∑
h=1

C∑
c=1

αcyc(w,h)
(
1−ŷc(w,h)

)ηc
log ŷc(w,h), (2)

where C is the class number of the dataset. y(w,h) is the one-
hot label of (w, h)th pixel in the image and yc(w,h) represents its
cth element. Specifically, yc(w,h) = 1 (w, h)th pixel belongs to
cth class, and otherwise yc(w,h) = 0. Besides, ŷ(w,h) represents
the predicted score vector of (w, h)th pixel, and which has
the same size with cth class. In addition, αc and ηc are two
parameters to control the optimization process of cth class.

C. STRUCTURE GUIDANCE LEARNING
This subsection introduces the structure guidance strategy.
Actually, the relationships among different pixels are vital
for the pixel-wise classification tasks [45]. As is known,
convolutional kernels can consider the relationships of pixels
in a local region, but they can not depict the relationships
among different pixels in a global view [44]. Specifically,
an important function of convolution operation is to represent
the present pixel with ones in its surroundings, and which
can consider the interactions of pixels in a specific local
region well. However, pixels with longer physical distances
can not be used to represent each other by convolutional
kernels even their characteristics are similar since their lim-
ited receptive fields. For road crack detection task, both the
relationships in a local region and ones in a global view
can contribute to the final results. Specifically, the contrast
but not the absolute intensity is the main evidence for crack
detection because of the variable photographed conditions
such as light and shadow. The relationships among different
pixels in a local region can provide some auxiliary contrast
information, compared to classify each pixel in an indepen-
dent way. Additionally, the global structure priors are also
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FIGURE 3. The flowchart of the Self-Attention mechanism, which mainly
contains three subbranches. Specifically, a subbranch (h) is used to
obtain the routine convolutional features of the image, and two other
subbranches (f and g) are used to calculate the attention map, which
contains interaction information of each paired local blocks. Then the
attention map is multiplied to the routine feature map to obtain the final
self-attention feature maps.

important for the crack detection. The relationships among
different local regions can effectively avoid the isolated noisy
points or isolated noisy blocks in the predicted crack saliency
map, because they can provide the sufficient directional priors
of texture in a global view. In this case, we incorporate the
self-attention mechanism, which is effective for the represen-
tation of long range dependency, into the conventional U-Net,
to improve its performance. It is noteworthy that, the self-
attention module is only followed the last layer in encode part
because of the computational load. The flowchart of the self-
attention mechanism is shown in Fig. 3, which is described in
details as follows.

The feature maps from the last encode layer x ∈ RD×N

are first fed into two spaces f and g to obtain the new feature
maps f (x) = Wf x + bf and g (x) = Wgx + bg. Then the
relationships among different local regions in the image can
be calculated with Equation 3,

r(j,i) =
es(i,j)

N∑
i=1

es(i,j)
, (3)

where s(i,j) = f (xi)T g
(
xj
)
, and r(j,i) demotes the extent to

which themodel attends to the ith blockwhen representing the
jth block. Additionally, the self-attention feature is denoted

as o ∈ RD×N , and whose element can be calculated by using
Equation 4,

oj =
N∑
i=1

r(j,i) (h (xi)), (4)

where h (x) = Whx + bh. Finally, the output of the self-
attention module is formulated as Equation 5,

y = x+ νo, (5)

where ν is a hyperparameter to balance the original fea-
tures and the self-attention features. Additionally, in order to
improve the representation capability of self-attention mech-
anism [44], we add three bias bf , bg, and bh to f (·), g (·), and
h (·) respectively.

D. IMAGE ENHANCEMENT STRATEGIES
This subsection introduces the designed image enhancement
strategy, including the enhancement strategy for the public
datasets and that for the photographed datasets, which are
introduced as follows.

1) IMAGE ENHANCEMENT STRATEGY FOR
PUBLIC DATASETS
For reasons of skid resistance and construction cost, although
the surface of normal road is relatively flat, the road details are
not very smooth because of the gaps among different small
gravels. These gaps form the discrete small shadow regions
in the collected road images including ones in the public and
photographed datasets, which have the similar gray intensity
with the cracks and the relatively obvious boundaries with
the surrounding regions. In these cases, the boundaries of
the shadow regions are often misclassified as cracks, which
influences the performance of the method to a certain extent.

To address the aforementioned problem, we design a
weighed filtering strategy to alleviate the influence of the
small shadow regions. It is obvious that, the scale of shadow
regions due to the gaps among different gravels is much
smaller than that of the normal regions, and the filtering
strategy can represent the shadow regions with the combi-
nation ones, which can decrease the contrast between them
and improve the performance further. The flowchart of the
designed weighted filtering strategy is shown in Fig. 4, which
is described in details as follows. N median filters f mii (·)

1≤i≤N
with different sizes mi

1≤i≤N
= 2i + 1 are first applied to

the original road image I to obtain the filtered image series
Fi

1≤i≤N
= f mi (I)

1≤i≤N
, then the enhanced image can be obtained

by summing these filtered image series with different weight
coefficients, which is defined as Equation 6,

If =
N∑
i=1

γiFi, (6)
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FIGURE 4. The flowchart of the designed image enhancement mechanism
for public datasets. Specifically, we a) apply a series of median filter
kernels with different sizes to obtain corresponding filtered image series,
b) multiply different weight coefficients to corresponding filtered images,
and c) sum the weighted filtered images as the final processing result.

where γi = 2−i
N∑
i=1

2−i
. As can be seen from Fig. 4, bigger

median kernels can remove more noisy points while smaller
ones can remain more detailed textures. In this case, our
enhancement strategy can reconcile the noise removal and
crack texture remaining of road images simutaneouslywhile a
simple median filter can only address ones of these problems.
In addition, we place more emphasis on texture information
because of its importance for crack detection, which can be
seen from the definition of γi.

2) IMAGE ENHANCEMENT STRATEGY FOR
PHOTOGRAPHED DATASETS
As for the photographed datasets, besides shadows from gaps
among different gravels, guideposts such as lane line inter-
fere the crack detection severely. These interferences can not
be tackled simply by the aforementioned weighted filtering
strategy since the scale of these samples are large and the
contrasts between them and original road are significantly
evident.

In these cases, we design a threshold based contrast
improvement strategy to address the aforementioned prob-
lem, whose flowchart is shown in Fig. 5. Specifically,
we first utilize the aforementioned weighted filtering strategy
to suppress the influences of the noise and small shadow
regions caused by the gaps among different gravels. After
the weighted filtered image If is obtained, we multiply it

FIGURE 5. The flowchart of the designed image enhancement mechanism
for photographed datasets.

with a factor α(α > 1) to obtain an intensity-enhanced
image Iα . As for (w, h)th pixel Iα(w,h) in I

α , if Iα(w,h) > β, we set
Iα(w,h) = δ and then we can obtain the contrast enhanced
image Ic. Because the intensity of the crack pixel Ic is often
low, the intensity of αIc also remains in a relatively low level
and often can not surpass β. Additionally, the intensities of
other pixels Io, including ones in normal road and lane line
regions are relatively high, so αIo are likely to surpass β and
be set to δ. In other words, the designed strategy enlarges the
contrast between crack and normal regions, while suppresses
the contrast between normal and lane line regions. In these
cases, the designed threshold based contrast improvement
strategy can improve the detection performance by alleviating
the effects such as guideposts.

It is noteworthy that, the similar mean intensity of images
in training and testing sets can contribute the final results,
which should be adjusted when generalizing the model
trained on public datasets to photographed datasets.

IV. EXPERIMENTS
This section details the experiments, including datasets,
experimental settings, evaluation metrics, contrasting meth-
ods and experimental results, which are introduced
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TABLE 1. Important specifications of camera used to photograph
CrackPV dataset.

FIGURE 6. Some samples of CrackTree200 dataset, images in the first
and second rows are raw pavement ones and the corresponding
groundtruths.

in subsection IV-A, subsection IV-B, subsection IV-C,
subsection IV-C, and subsection IV-E respectively.

A. DATASETS
In order to validate the effectiveness of the proposed
method, we test it on four datasets, including Crack-
Tree200 dataset [46], ALE dataset [27], CrackForest
dataset [37] and CrackPV dataset. Specifically, Crack-
Tree200, ALE and CrackForest are three datasets for scien-
tific research. CrackPV is the dataset we photographed on
moving vehicle. The material used in the pavement structures
of these four datasets are all asphalt, which increases the
detection difficulty since its low contrast in crack and normal
regions. In addition, because the type of camera plays a major
role in the metrics of CNNs, some important specifications
of camera to photograph our CrackPV dataset are shown
in Table 1. Finally, the four aforementioned datasets are
introduced in details as follows.

1) CRACKTREE200 DATASET
CrackTree200 dataset contains 206 pavement images with
the fixed size of 800 × 600 pixels. Additionally, interfer-
ences such as shadows and noises improve the detection
difficulty of CrackTree200 dataset. Some samples of Crack-
Tree200 dataset are shown in Fig. 6, from which we can
see that the surfaces of these images are not smooth as we
expected, and the small gaps in the image will influence the
detection results.

2) CRACKFOREST DATASET
CrackForest dataset contains 118 images with the fixed size
480×320 pixels, and each image has correspondingmanually
labeled groundtruth. Some samples of CrackForest dataset
are shown in Fig. 7, from which we can see that the light
conditions of different images and even different regions in
the same image. In addition, images in CrackForest dataset

FIGURE 7. Some samples of CrackForest dataset.

FIGURE 8. Some samples of ALE dataset.

FIGURE 9. Some samples of CrackPV dataset.

contain noises such as oil spots and water stains, all of the
these factors increase its difficulty.

3) ALE DATASET
ALE dataset contains three subsets actually, including ESAR,
LCMS and Aigle-RN, which are respectively obtained by
three imaging systems, named ESAR, LCMS and Aigle-RN.
Specifically, ESAR corresponds to a static acquisitionwith no
controlled lighting, LCMS uses laser and Aigle-RN utilizes
stroboscopic lights. In addition, ESAR contains 15 images
with fully annotated labels. LCMS contains five pixel-wise
annotated groundtruths. Aigle-RN contains 38 images with
pixel-wise labels. Some samples of ALE dataset are shown
in Fig. 8.

4) CRACKPV DATASET
CrackPV dataset is the one we photographed on moving
vehicle with the speed of 80km per hour, compared to the
public datasets, the photographed one is more complex and
challenging. Specifically, the motion blurring interference,
the shadow interference, the guideposts interference and
other controllable and uncontrollable factors such as exposure
intensity and weather condition will influence the image
quality to a large extent. Some samples of CrackPV dataset
are shown in Fig. 9.
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B. EXPERIMENTAL SETTINGS
In this subsection, we introduce the experimental settings,
including data partition, hyperparameter settings and testing
platform, which are described as followings.

1) DATA PARTITION
For three public datasets, we choose 50% samples as the
training set and leave the other half as the testing one. For
CrackPV set, we utilize the popular transfer learning strategy
to use the model trained on CrackTree200 dataset to predict
the crack saliency map. Because the scales of three public
datasets are relatively small, which are insufficient to train
a robust and effective model. In this case, we utilize the
data augmentation strategy introduced in [23] to expand the
training sets.

2) TESTING PLATFORM
The algorithms are implemented with Pytorch, and the test-
ing platform is X99UD4 of GIGABTYE, GPU (8G×8) of
Titan X. For each of the contrasting algorithms, we train the
model through mini-batch SGD with batch size 4. The initial
learning rate is set to 5×10−5, the momentum is set to 0.9 and
eachmodel is trained for 10 epoches. The image enhancement
procedures we designed in this paper are implemented with
Matlab on CPU platform.

C. EVALUATION METRICS
To verify the superiority of the proposed method, we use
three commonmetrics to evaluate its performances, including
precision (P), recall (R), and F-measure (Fβ ). Specifically,
P and R are defined in Equation 7,

P =
|M ∩ G|
|M |

,R =
|M ∩ G|
|G|

, (7)

whereM is the binary mask obtained from the crack saliency
map through a specific threshold, G is the corresponding
manual annotated label map. Besides, as a weighted harmonic
mean of P and R with a non-negative β, Fβ is formulated as
Equation 8,

Fβ =

(
1+ β2

)
· P · R

β2 · P+ R
, (8)

where β is a hyperparameter to balance P and R. As is
suggested in [47], β2 is set to 0.3 to emphasize the importance
of precision.

D. CONTRASTING METHODS
Three methods are used as the contrasting ones to verify the
superiority of this work, including fully convolutional net-
work (FCN) [48], Dilated convolutional network (DiCN) [49]
and the U-Net [23]. FCN is the ground-breaking work for
applying deep convolutional neural network to semantic seg-
mentation task in an end-to-end way. DiCN expands the
receptive field through adding holes with different sizes to
convolutional kernels but not shrinks the feature maps, which
can maintain more texture information. U-Net utilizes the

TABLE 2. Ablation experimental results on CtrackTree200 dataset.

FIGURE 10. The visualized results of ablation experiment on
CrackTree200 dataset, raw images are shown in the first row, the results
of U-Net+SaGui are shown in the second row, and the results of
U-Net+SaGui+WeiFil+StGui are shown in the third row.

skip-connection strategy to propagate more texture informa-
tion from shallow layers to deeper ones, which has achieved
huge success for salient object detection task.

E. EXPERIMENTAL RESULTS
This subsection reports the experimental results, includ-
ing ablation experimental results, contrasting experimental
results, and experimental results on open datasets. Specifi-
cally, the ablation experiment is to validate the effectiveness
of each proposed component, the contrasting experiment is
to verify the superiority of the proposed method compared
to the existing ones, and the experiment on open datdaset
is to demonstrate the generalization and practicability of the
proposed method.

1) ABLATION EXPERIMENTAL RESULTS
Compared to the conventional U-Net for saliency detec-
tion task, the proposed method contains three differences,
the weighted-filtering strategy, the self-attention alike based
structure guidance and the Focal loss based sample guid-
ance modules. We incorporated them into the conventional
U-Net successively to validate their effectiveness, and the
ablation results are shown in Table 2, where SaGui, WeiFil
and StGui represents the sample guidance, weighted filtering
and structure guidance strategy respectively. Additionally,
some visualized results are shown in Fig. 10.
From Table 2 we can see that, each of the proposed com-

ponents has contributed to the improvement of the detection
performance. Specifically, U-Net equippedwith conventional
cross entropy loss even can not detect any crack regions,
which is because the ill-conditional problem from the severe
imbalanced samples in training set. When the Focal loss
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TABLE 3. Contrasting experimental results on three datasets.

based sample guidance strategy is applied, the detection per-
formances have improved a lot. Besides, weighted filtering
and structure guidance strategies have enhanced the perfor-
mance further, which obtain 1.21% and 0.40% increments in
terms of Fβ respectively.
From Fig. 10 we can see that, the proposed three compo-

nents can alleviate the influence of shadow (images in the
first column), alleviate the fracture condition of predicted
cracks (images in the second the third columns), and reduce
the omission rate (images in the fourth column) to a certain
extent. The reasons contain two aspects: 1) the weighted
filtering strategy decreases the contrast among normal and
shadow regions, 2) and the self-attention based structure
guidance learning strategy improves the detection perfor-
mances through considering the 2-order information of dif-
ferent blocks in the image. In general, all these phenomenons
can validate the effectiveness of the proposed components.

Incidentally, performance of the proposed method seems
inferior to some related works [21], [43] if only from the
perspective of metric indictors. Actually, the profound rea-
sons for this situations are different evaluation strategies
but not the algorithms themselves. Specifically, our evalu-
ation strategy is based on pixel-level and some others are
based on block-level measurements. Additionally, for Crack-
Tree200 dataset, the width of crack in groundtruth is narrower
than that in corresponding original road image. In testing
stage, the predicted crack saliency line is often wider than
that in groundtruth since all contrasting methods used in this
paper are based on the pixel-level classification mechanism,
which results in a huge impact on pixel-level based evaluation
strategy but a smaller one on block-based evaluation strategy.

2) CONTRASTING EXPERIMENTAL RESULTS
This part reports the contrasting experimental results with
four algorithms, including three existing ones and ours,
on three public datasets, which are shown in Table 3.
Incidentally, SSGN in Table 3 represents the proposed sample
and structure guided network.
Experimental results on CrackTree200 dataset are shown

in the first block of Table 3. From which we can see that,

FIGURE 11. The visualized results of CrackTree200 dataset. Images in the
first and last rows are raw images and the corresponding groundtruth.
Additionally, Images in the second to fifth rows are corresponding
saliency maps predicted by FCN, DiCN, U-Net and SSGN respectively.

DiCN achieves better performances than FCN. Specifically,
which obtains 5.03% improvement in terms of precision and
6.12% improvement in terms of Fβ , while the recall rate
decreases from 87.92% to 77.24%. The reason is that, DiCN
enlarges the receptive field through hole convolutional ker-
nels, which remainsmore detail information and improves the
precision. However, hole convolutional kernels can not depict
the intrinsic information of independent pixel well, while this
attribute information of independent pixel is very important
for crack detection since the crack regions are often relatively
small. In this case, the leakage rate of DiCN is higher and the
recall rate is correspondingly lower than those of FCN.

Some visualized results on CrackTree200 dataset are
shown in Fig. 11. From which we can see that, the crack
saliency map predicted by DiCN is thinner than that by FCN,
while the fracture phenomenon of the former is more severe
than that of the latter.
Experimental results on ALE dataset are shown in the sec-

ond block of Table 3. From which we can see that, U-Net
significantly improves the detection performance, compared
to DiCN. Specifically, it achieves 20.12%, 12.52%, 22.73%
improvements in terms of precision, recall and F-measure
respectively, which demonstrate the superiority of U-Net
architecture for crack detection task sufficiently. On one
hand, even though convolutional kernels can enlarge the
receptive field with out shrinking feature maps, they often
bring to many noises since violate the local similarity rule in
images. On the other hand, U-Net utilizes the skip connection
strategy to remain the spatial details from the raw images to
corresponding saliency maps, while it uses the traditional but
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FIGURE 12. The visualized results of ALE dataset. Images in the first and
last rows are raw images and the corresponding groundtruth.
Additionally, Images in the second to fifth rows are corresponding
saliency maps predicted by FCN, DiCN, U-Net and SSGN respectively.

not the hole convolutional kernels to alleviate the noises. Both
the aforementioned reasons contribute to the superiority of
U-Net.

Some visualized results on ALE dataset are shown
in Fig. 12. From which we can see that, compared to saliency
maps predicted by DiCN, ones predicted by U-Net are more
accurate, which have more thinner crack skeletons and fewer
isolated noisy points and small noisy blocks.
Experimental results on CrackForest dataset are shown

in the third block of Table 3. From which we can see that,
the proposed SSGNachieves better performances thanU-Net.
Specifically, which achieves 2.59%, 0.96% and 2.55%
improvements in terms of precision, recall rate and Fβ respec-
tively. The main reasons contain two aspects, the proposed
self-attention based structure guidance module encodes inter-
actions among different local regions in the image to the final
predicted saliency map, which enhances the global structure
representation. Additionally, the designed weighted filtering
strategy alleviates interference of noises and small shadow
regions from gaps among different gravels.

Some visualized results on CrackForest dataset are shown
in Fig. 13. From which we can see that, compared to U-Net,
the proposed SSGN addresses the crack fracture problem to
a large extent. The results of first and second images can
illustrate this point apparently.

The above analysis demonstrates the effectiveness and
superiority of our proposed sample and structure guided net-
work. It is noteworthy that, as shown in Table 3, performances
of the same model on different datasets are significantly
different. For instance. FCN achieves 5.53% and 25.31%

FIGURE 13. The visualized results of CrackForest dataset. Images in the
first and last rows are raw images and the corresponding groundtruth.
Additionally, Images in the second to fifth rows are corresponding
saliency maps predicted by FCN, DiCN, U-Net and SSGN respectively.

in terms of precision on CrackTree200 and CrackForest
datasets respectively, which have a huge gap. Besides the
intrinsic characteristics such as intensity and contrast of
images in different datasets, another important reason for
this situation is the different labeling strategies. Specifically,
crack width in groundtruth of CrackTree200 dataset remain
a single pixel regardless of the actual crack width, while
which in groundtruth of CrackForest dataset varies with
the actual crack width in the corresponding original image.
Additionally, crack width in predicted saliency map varies
with the actual crack of the corresponding original images
since all contrasting methods are based on pixel-level classi-
fication mechanism. In these cases, metrics such as precision
have shown a significant difference even for the similar actual
prediction errors on two datasets.

3) EXPERIMENTAL RESULTS ON CRACKPV DATASET
Compared to the experimental results on public datasets,
the performances on practical ones are more important since
the original intention of designing the algorithm is to assist
the road maintenance task. In this case, we test the proposed
method equipped with conventional corrosion operations on
CrackPV, an open dataset we photographed on moving vehi-
cle. It is noteworthy that we transfer to use the model trained
on CrackTree200 dataset to predict the crack saliency map
of images in CrackPV dataset, because the latter does not
have the correspondingmanually annotated pixel-wise labels.
Additionally, some visualized results are shown in Fig. 14.
From which we can see that, most of the crack regions have
been detected, and the interference such as lane lines and gaps
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FIGURE 14. The visualized results on CrackPV dataset, images in the first
and third rows are raw road images, while ones in the second and fourth
rows are corresponding predicted binary saliency map.

among different gravels are suppressed well in the predicted
crack saliency map. All these positive effects are benefited
from the designed threshold based contrast improvement
strategy, which sufficiently enhances the robustness of the
algorithm. Generally speaking, combined with appropriate
image processing techniques, the proposed sample and struc-
ture guided network can be generalized to open datasets and
achieve relatively satisfactory performances.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a sample and structure guided
network for road crack detection, which considers the task
as a pixel-wise classification one and can obtain the crack
saliency map from the raw road image directly. Specifically,
we utilize the Focal loss to guide the sample relation learning,
which addresses the optimization problem from imbalanced
data. Then, we incorporate the self-attention mechanism into
the network to guide the spatial structure learning, which alle-
viates the isolated noisy point problem. Additionally, we pro-
pose a series of image enhancement strategies to generalize
the proposed method to other open datasets, which improves
its practical application value to a large extent. Finally, exper-
imental results on three public and a photographed datasets
validate the robustness, effectiveness and superiority of the
proposed algorithm.
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