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ABSTRACT Synchronized Switch Damping (SSD) is a semi-active damping technology based on piezo-
electric materials. It has advantages such as broadband and no need to tune. Despite the nonlinear governing
equations, structures with SSD exhibit quasi-linear behaviour such as the resonant frequencies hardly
vary with respect to energy level of excitation. Inspired by these phenomena, in this paper we propose
a linearisation method for SSD, where the nonlinear force is equivalent to frequency-dependent viscous
damping and linear stiffness coefficients. Closed-form expressions of these linearised parameters are given,
making the method applicable both for lumped parameter models and finite element (FE) models. In the
derivation a general force equation is used, so the linearised method is applicable for several typical variants
of SSD, such as SSDS (S for ’on short-circuited’), SSDI (I for ‘on inductance’), SSDV (V for ‘on voltage’)
and SSDNC (NC for ‘on negative capacitance’). The method is first validated against nonlinear simulations
with harmonic and random vibration respectively, then further compared with experimental data in a
published paper. Good agreements are found.We show that the proposed method can dramatically accelerate
the computational efficiency, which is especially suitable for predicting the dynamic performance of complex
structures with SSD. Eventually, a dummy integrally bladed disk with SSD is analysed to illustrate a potential
application direction. There are more than 120k DOFs in the FE model, making full nonlinear simulation
very time-consuming. However the simulation is finished within seconds by the proposed method and the
typical damping characteristics of SSD are well captured.

INDEX TERMS Finite element model, integrally bladed disk, linearisation, nonlinear dynamics, synchro-
nized switch damping, vibration reduction.

I. INTRODUCTION
Excessive structural vibration can lead to noise and mechani-
cal failure, and further result in comfort and safety problems.
Increasing damping is one of the major solutions to reduce
vibration. Synchronized switch damping (SSD) proposed by
Richard et al. [1], [2] is an promising candidate, for it is
broadband, lightweight and stable. SSD basically consists in
a switching circuit shunted to a piezoelectric patch which
is embedded in or bonded to the host structure. The elec-
trodes of piezoelectric materials are switched on/off at the
voltage extrema of the piezoelectric patch in every vibration
cycle. Consequently the voltage and the structural velocity
are always in near opposite direction [3], providing a force
that hinders vibration of the host structure.

The associate editor coordinating the review of this manuscript and
approving it for publication was Luigi Biagiotti.

There are many other different choices of the shunting
circuits to generate damping. For example one can shunt a
circuit consists of resistors, inductors and capacitors to the
electrodes, so that the vibration can be reduced by the electric
dissipation and resonance [4]. However the performance of
these passive circuits is either weak (resistor shunt [5]) or
narrowband (inductor-resistor shunt [6]). To tune with mul-
tiple modes, the electric circuits may become rather compli-
cated [7], [8] and the performance is essentially sensitive to
modal frequencies. It has been well demonstrated that SSD
has many advantages in comparison with the passive strate-
gies [4], [9], [10]. SSD has improved multi-modal damp-
ing performance and it is insensitive with the variation of
modal frequencies. For these reasons SSD based vibration
control strategies are receiving increasingly research interests
[3], [10]–[12] since it was proposed.
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FIGURE 1. Schematic of SSD based circuit.

Several variants of SSD techniques have been defined,
depending on the subsequent electric components. The first
proposed one is synchronized switch damping on short circuit
(SSDS) [1], where the switch is directly connected to the
electrodes. A 1.3dB amplitude reduction is experimentally
observed on a beam with SSDS [1]. In order to improve the
damping effect, Richard et al. [2] put forward SSDI (SSD
based on inductance). The idea is to connect an inductor
in series with the switch, so as to magnify the voltage on
the piezoelectric patch. The vibration reduction is 6dB for
SSDI on the same beam. Lefeuvre et al. [13] proposed SSDV
(SSD based on voltage source) by adding a pair of constant
voltage sources with opposite polarity to the circuit. This
also increases the voltage on the piezoelectric patch and thus
enhance the damping. Badel et al. [11] found that the perfor-
mance of SSDV is usually better than SSDI. The vibration
reduction of SSDV even reaches 46dB experimentally for a
cantilever beam. Qiu and Ji [14], Ji et al. [15] investigated
SSDNC (SSD based on negative capacitance) where a nega-
tive capacitance is introduced into shunting circuit replacing
the inductor. The damping performance of SSDNC depends
on the value of negative capacitance which determines the
voltage magnification.

The principal constitutions of SSD-based circuits include
a piezoelectric patch bonded to the host structure, an extrema
detection module, a switch control module and a switching
circuit as illustrated by Figure 1. For a specific type of SSD,
additional electric components are subsequently connected
(e.g. inductor for SSDI). When the system is under exci-
tation, the extrema detection module firstly identifies the

maximum deformation of the system, then the switch control
module generates a pulse signal to command the switch. The
switch can be implemented by two electronic switches and
diodes [16] or a pair of MOSFET transistors is alternative
(shown by Figure 2) as declared by [2]. In terms of the
extrema detector, it can either detect the maximum displace-
ment of the system or the maximum voltage on the piezoelec-
tric patch. The former is realized by obtaining displacement
signal from eddy current sensor or displacement sensor [14].
The latter is achieved by acquiring directly the voltage signal
on the piezoelectric patch [17], which is also called self-
sensing [2]. The switch control module can be realised by a
micro-controller board (Motorola MC6SHCI1) [2] or a DSP
environment based on the dSPACE board DS1103 [16], [17].

Although a SSD circuit can be implemented in various
ways, its essence is to achieve voltage reversal when the
maximum displacement or voltage is detected in each vibra-
tion cycle. The closure of the switch is instantaneous and
generally less than 1 ms, this time is very short compared
with the vibrational period [1], the voltage applied on the
piezoelectric patch can be expressed mathematically, which
will be discussed in the following sections of the paper.

A large number of experimental studies have been carried
out, however most of the host structures are beams [2], [13],
[15], [17]. For implementations to complex structures (such
as bladed disk in aero-engines), it is much more difficult
to carry out experiments. There are also seldom numerical
studies [18], [19], because nonlinear dynamic analyses are
generally less efficient than the linear ones. The most com-
monly used numerical tool for steady-state response analysis
is Multi-Harmonic BalanceMethod (MHBM) [20]. Although
the efficiency is much higher than time-integral approaches,
the computational cost increases significantly when the num-
ber of DOFs is relatively large (e.g. when a finite ele-
ment model is used). In order to reduce calculating scale of
the problem, Joannin et al. [21] developed the Component
Nonlinear Complex Mode Synthesis method (CNCMS), and
Liu et al. [19] applied it to design SSDNC dampers for
bladed disks. In the process of CNCMS, nonlinear modes
of each substructure need to be analyzed in advance [22].
Sometimes the selection of initial value will bring difficulties

FIGURE 2. SSD circuits implemented by Richard et al. [2].
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to convergence for models with large number of DOFs. For
these reasons, currently most of the calculation for structures
with SSD are based on lumped parameter models [1], [14],
[18], [19]. Numerical tools for efficiently analyzing real-life
engineering structures with SSD by FE models still require
further development.

The application of SSD in vibration control of aerospace
structures is promising (e.g. blisks) concerning its wide
bandwidth and broad working range. However as men-
tioned above, the design process of the system with SSD
using existed numerical approaches is time consuming
because of its nonlinearity especially for large-scale models.
Liu et al. [18] found that the nonlinear modal frequency and
damping ratio of the system with SSD do not change with
the vibration level. Inspired by the quasi-linear behaviour of
SSD, we propose in the paper a new modelling method for
the structure with SSD based on linearisation. In this method,
the SSD is expressed analytically by a linear stiffness and a
viscous damping, and both of them are independent to the
vibrational amplitude.

Note that the proposed linearisation method is applicable
to all kinds of SSD attached to any mechanical structures.
Therefore, various kinds of SSD based on different structures
are under investigation. In the following, we use a lumped
parameter model with SSDNC and a beam finite element
model with SSDS containing fewDOFs to numerically verify
the algorithm, respectively (Section III-C); to compare the
results given by linearisation with published experimental
data, a FE model of cantilever beam with a large number
of DOFs is investigated (Section IV); the applicability to
complex structures in industry and the high efficiency of the
proposed method are further discussed by a blisk FE model
with SSDNC (Section V).

II. REVIEW OF QUASI-LINEAR BEHAVIOUR OF SSD
Mathematically speaking, structures with SSD are nonlinear
dynamic systems. But many of the observed characteristics
are more consistent with linear systems. The most evident
one is that the resonant frequencies of the system hardly vary
with respect to the excitation level [18], [19], [23] and control
parameters (inductance in SSDI [14] or negative capacitance
in SSDNC [19]). These features are different from typical
nonlinear systems (e.g. dry friction systems where resonant
peaks shift under different normal force, or Duffing oscilla-
tors) so they are termed ‘quasi-linear’ in this paper. Detailed
numerical and experimental results can be found in the afore-
mentioned literature. In this section, we briefly introduce
several typical SSD circuits and use a rather simplified model
to review their quasi-linear behaviour. We also outline the
numerical methods for nonlinear dynamic analysis used in
this section.

A. MATHEMATICAL MODELLING OF SSD SYSTEMS
Here we use a 2-DOF lumped parameter model (shown by
Figure 1) as an example. A piezoelectric spring is connecting
masses m1 and m2, and a SSD circuit is shunted to the

piezoelectric spring. No additional damping effects are taken
into account. In this way such a structural system can only be
damped by the SSD. The dynamic equations write as Eq. (1), k1 + k2 + ks −k2 − ks a
−k2 − ks k2 + k3 + ks −a

a −a −Cp

 x1
x2
V


+

m1
m2

0


ẍ1
ẍ2
V̈

 =
 0
fe
Q

 (1)

wherem1 andm2 refer to the mass, k1 and k2 refer to stiffness
of the spring elements, a is the electromechanical coupling
coefficient, ks is the stiffness of the piezoelectric spring with
short circuit, Cp is the capacitance of the piezoelectric spring,
V is the voltage between the electrodes, Q is the electric
quantity stored in the capacitance, and fe is the excitation
force.

Expanding the third equation in Eq. (1) at open circuit state
(i.e. Q = 0), we obtain the following relationship:

V (t) =
a
Cp
u(t). (2)

where u = x1 − x2 denotes the relative displacement. For
system with SSD, the electrodes are open at most of the
time, they are closed only when the displacement extrema is
reached. We can therefore assume V (t) = VSSD(t), where
VSSD(t) is the controlled voltage and in general it writes:

VSSD(u, u̇) = A1max(u(t))sign(u̇(t))+ A2u(t) (3)

where max(•) denotes the maximizing with respect to time t ,
and sign(•) refers to the sign function.A1 andA2 are constants
that depend on the type of SSD, namely:

A1 =



a
Cp
, SSDS

(1+ γ )a
(1− γ )Cp

, SSDI

a
(1− χ )Cp

, SSDNC

(1+ σ )(1+ γ )a
(1− γ )Cp

, SSDV

A2 =
a
Cp
, for all (4)

where coefficient γ refers to the voltage inversion factor for
SSDI, χ denotes the capacitance ratio for SSDNC, and σ is
the voltage ratio for SSDV. They can be directly derived from
the governing equations and the details can be found in [16]
and [18].

We can eliminate the voltage DOF by substituting Eq. (2)
and Eq. (3) in Eq. (1), then Eq. (5) is obtained,[
k1 + k2 + ks −k2 − ks
−k2 − ks k2 + k3 + ks

]{
x1
x2

}
+

[
m1

m2

]{
ẍ1
ẍ2

}
+

{
fSSD
−fSSD

}
=

{
0
fe

}
(5)
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where fSSD = aVSSD is the nonlinear force generated by
piezoelectric patch with SSD. The electromechanical cou-
pling stiffness a is also called the voltage coefficient [15],
which reflects the force generated by piezoelectric actuator
under unit voltage as described by the aforementioned equa-
tion. Mathematically, the general form of the nonlinear force
generated by SSD reads:

fSSD(u, u̇) = aVSSD = B1max(u(t))sign(u̇(t))+ B2u(t) (6)

where Bi = aAi, i = 1, 2 are constants depending on the type
of SSD:

B1 =



a2

Cp
, SSDS

(1+ γ )a2

(1− γ )Cp
, SSDI

a2

(1− χ )Cp
, SSDNC

(1+ σ )(1+ γ )a2

(1− γ )Cp
, SSDV

B2 =
a2

Cp
, for all (7)

B. FORCED VIBRATION: MULTI-HARMONIC
BALANCE METHOD
We can rewrite Eq. (5) in the matrix form:

Mẍ+ Cẋ+Kx+ fSSD = fe (8)

whereK is the stiffness matrix,M is the mass matrix,C is the
structural damping matrix and in this sectionC = 0, and fSSD
referes to the nonlinear force generated by SSD. In practice
the damping matrix can be determined by Rayleigh damp-
ing model, namely C = αM + βK where α and β are
constants. If a time-periodic external force is applied, e.g.
fe ∝ sin(ωt+φ), a time-periodic response is anticipatedwhen
the influence of the initial conditions is damped. To calculate
such steady-state response of the nonlinear systems, multi-
harmonic balance method (MHBM) is widely used [20] for
its high efficiency and numerical stability. The basic idea
of MHBM is to transfer the unknown variables x, the exci-
tations fe, and the nonlinear forces fSSD from time domain
to frequency domain by Fourier analysis. Then the dynamic
balance of forces can be expressed in terms of each harmonic
term, and this shifts the ordinary nonlinear differential equa-
tions (8) into the algebraic nonlinear equations:

H̃(ω)X̃+ F̃SSD(X̃) = F̃e (9)

where X̃, F̃SSD, F̃e are the complex Fourier coefficients for x,
fSSD and fe, respectively. Matrix H̃ is the assembled dynamic
stiffness matrix that consists of the dynamic stiffness matrix
for each harmonic:

H̃ =


H̃0

H̃1
. . .

H̃Nh



where

H̃k = −(kω)2M+ ikωC+K,

k = 0, 1, . . . ,Nh (10)

where i =
√
−1, Nh refers to the number of the truncated

harmonics, and ω denotes the fundamental frequency which
is equal to the excitation frequency. Note that the relation-
ship between the frequency and the amplitude of the non-
linear force F̃SSD(X̃) is not (and probably cannot) explicitly
expressed, the Alternating Frequency-Time (AFT) technique
should be applied. In this way, we will first guess an initial
value of X̃ and solve Eq. (9) iteratively until a satisfying
relative error is achieved. The convergence strongly depends
on the choose of the initial value and the frequency step,
and to improve numerical stability the arc-length continuation
technique is recommended. For more details please refer
to [24]. In addition, when the number of DOFs increases (e.g.
FE models of complex structures), the analytical Jacobian
matrix should be given instead of the numerical differential
one in order to improve the convergence and accelerate the
simulation [25]. Otherwise, the convergence failure might
occur.

C. FREE VIBRATION: COMPLEX NONLINEAR
MODAL ANALYSIS
For linear system, it is well known that the modal shapes
and natural frequencies are independent to the external exci-
tation or the level of the vibrational energy. This is no
longer valid for nonlinear systems. As an extension of linear
modes, a nonlinear mode is defined as: (1) a synchronized
periodic motion named nonlinear normal mode (NNM) for
conservative case [26] or (2) a synchronized decaying motion
named complex nonlinear mode (CNM) for non-conservative
case [27]. A nonlinear modal deformation is not necessarily
time-harmonic [28], but we can use the superposition of
several harmonics as an approximation:

x(t) ≈
Nh∑
k=0

X̃ke(−kβ+ikω)t (11)

where ω is the fundamental frequency (also termed the non-
linear modal frequency), and β is the dissipative coefficient
(also termed the nonlinear modal damping coefficient).

The MHBM can also be used to solve the CNM. By substi-
tution Eq. (11) into Eq. (8) and ignoring the excitation term,
the dynamic equations in frequency domain are derived:

H̃(β, ω)X̃+ F̃SSD(X̃) = 0 (12)

The dynamic stiffness for each harmonic becomes:

H̃k = (−kβ + ikω)2M+ (−kβ + ikω)C+K,
k = 0, 1, . . . ,Nh

(13)

Modal amplitude is defined as the norm of the first order
fourrier coefficient for an arbitrary DOF [22] (e.g. the norm of
X̃1,1 for the aforementioned case), which reflects the energy
of the system. It has been recommended that to start the
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TABLE 1. Parameters of the lumped parameter model.

FIGURE 3. 2-DOF lumped parameter model with SSD.

FIGURE 4. FRF of the system with SSDNC for different excitation
amplitude around the first resonance for DOF 1.

computing from low energy level (or low modal amplitude),
and to use a linear mode of the underlying linear system
to initialize the nonlinear modal analysis [21]. By nonlinear
modal analysis, the relationship betweenmodal characteristic
(i.e. modal frequency, damping ratio and modal shape) and
modal amplitude can be generated.

D. QUASI-LINEAR BEHAVIOUR OF SSD
Using the aforementioned numerical tools, the forced
response of the mass-spring model shown in Fig. 3 is cal-
culated. Fig. 4 shows the frequency response function (FRF)
of x1 under different excitation level, and the SSDNC circuit
with capacitance ratio χ = 0.5 is considered. Full parameters
are listed in Table 1. The quasi-linear behaviour of SSD
is not model-dependant. For example, these features were
also observed through a lumped parameter of blisk with
SSDNC [23]. In this work, although a 2-DOF lumped param-
eter model with this set of parameters is used to illustrate
the quasi-linear behaviour of SSD, certainly other models
or parameters could be also chosen. In Table 1, the mass
(m1, m2) and the stiffness (k1, k2, k3) can be different for
different mechanical structures. We can set them to other
values if required. The capacitance ratio χ depends on the
value of the negative capacitor connected in the circuit, and
the range is (0, 1). The larger the ratio, the better the damp-
ing effect. However, if χ is close to one, the system might

become unstable. Without loss of generality, we set χ = 0.5.
In [18], the quasi-linear behaviour was observed for
χ = 0.5, 0.7, 0.95. For piezoelectric patch available on the
market (e.g. material: pzt5, size: 50mm×40mm×1.5mm),
the intrinsic capacitance is around 1nf, hence we set
Cp = 1nf for this model. The voltage coefficient a charac-
terizes the conversion capability of mechanical energy and
electrical energy. Generally, the value is small and can be
measured experimentally. Basically the equivalent stiffness
of the piezoelectric structure ks should not significantly affect
the nature frequency of the structure. Therefore ks is smaller
compared with the stiffness of the host structure. The choices
of parameters of piezoelectirc patch such as ks and a should
respect the overall performance of the electromechanical
coupling systems. That is, to ensure the modal electrome-
chanical coupling factor (MEMCF) in the rational range
(0.0001, 0.01). In this lumped parameter model, the MEMCF
is 0.002. Therefore the parameters in Table 1 are reasonably
set. If the parameters are set also in the rational parameter
space but with different values, same phenomenon can be
obtained.

In Fig. 4 the peak frequency does not deviate along with
the excitation level, and this feature is different from typical
nonlinear systems (e.g. dry friction or Duffing systems). The
black dotted line connecting the resonance peaks is therefore
a straight line. To illustrate this more clearly, we define the
normalized response amplitude:

AN =
ω2A
f0

(14)

where A is the maximum response amplitude in the frequency
band, and f0 denotes the amplitude of the excitation. We can
find in Fig. 5 that AN does not change along with the exci-
tation level. This indicates that the peak response varies in
proportion with the excitation level, and the damping effect
remains unchanged. This trend can be found for all the values
of χ shown in Fig. 5.
The steady-state time-history of fSSD force and relative

displacement (x2−x1) are presented by the solid blue line and
dotted orange line in Fig. 6 respectively, where the excitation
amplitude is 1N. The force generated by SSDNC is indeed
nonlinear with respect to the relative displacement. When the
relative displacement reaches its maximum, the SSD force
drops since the switch is closed. The SSD force hinders
the movement at all times, which consequently provides
damping. According to Eq. (6), when the sign of velocity u̇
changes, the direction of nonlinear force generated by SSD
reverses. Therefore fSSD and velocity are in phase, and the
phase lag between fSSD and the displacement is almost π/2.
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FIGURE 5. The maximum normalized frequency response amplitude
under different excitation amplitude with different capacitance ratio.

FIGURE 6. Nonlinear force generated by SSDNC, the first harmonic
component of the nonlinear force by SSDNC and relative displacement in
time domain under the excitation amplitude equals to 1N at 0.779 rad/s.

This indicates that fSSD is a damping force. In order to
demonstrate the phase lag clearly, we extract the first-order
harmonic of the nonlinear force through Fourrier analysis.
As shown by the blue dotted line in Fig. 6, we can find that the
first-order component is dominant. The phase lag between the
orange line (i.e. displacement) and the blue dotted line (i.e.
the first harmonic of the nonlinear force generated by SSD)
can be easily observed.

The quasi-linear behaviour can also be shown through the
nonlinear modal characteristics in Fig. 7. As mentioned,
the nonlinear modal frequencies and shapes can vary with
the modal amplitude in typical nonlinear systems. However
for SSD systems, the nonlinear modal frequencies, shapes
(Fig. 7a) and damping coefficients (Fig. 7b) remain nearly
constant with respect to the modal amplitude. These results
are consistent with that shown in Fig. 4 and 5. The backbone
(black dotted line in Fig. 4) exactly matches the first modal
branch in Fig. 7a.

The typical characteristics of nonlinear systems are: 1) The
resonant peaks shift with respect to the excitation level [25];
2) The response amplitude is not proportional to the excitation
amplitude [29]; 3) Modal frequency and modal shape vary
with energy level [30]; 4) Unstable solutions exist [31]. Tak-
ing the dry friction system as an example, if the excitation
is sufficiently great, the dry friction system will perform

FIGURE 7. CNM for the 2-DOF lumped parameter model with SSDNC:
(a) modal frequency and modal amplitude dependence (mode shape is
described by the modal amplitude ratio of DOF1 and DOF2); (b) modal
damping ratio and modal amplitude dependence.

like the underlying linear system without frictional damper
[21], [32](i.e. the resonant frequency will be similar to that
of the host structure, the damping ratio will tend to zero,
and the vibrational amplitude will be very significant.) If
the excitation is below certain value, the host structure and
the damper will vibrate without relative displacement as an
entity. The resonant frequency will be different from that
under large excitation. Between these two extreme states,
the damper will generate an optimal damping ratio at a cer-
tain excitation amplitude. For the Duffing systems, if the
cubic stiffness coefficient exceeds a threshold, there will
be three solutions at the same excitation frequency near
the resonance. One of them is unstable, and the stabil-
ity of the solutions needs to be determined by Floquet’s
theory [30].

However, these typical features are not significantly
observed for systems with SSD. From both the forced
response and the modal analyses (performed by Fig. 4, 5,
and 7), we have observed that the overall dynamic behaviour
of a structure with SSD dampers is very similar to a linear
system (i.e. the frequency shift does not exist, the response
is proportional to the excitation, and all solutions are sta-
ble) rather than a typical nonlinear one. Not limited to this
simple model, quasi-linear behaviour can be observed by
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nearly all structural systems with different kinds of SSD
circuits, both in numerical analyses [18], [19], [23] and
experiments [15], [33].

III. LINEARISED MODEL OF SSD
In this section, we will first give the derivation process based
on the lumped parameter model, then extend to general finite
element model. It is shown that both the equivalent viscous
damping and stiffness coefficients can be given in closed-
form. Numerical verifications are presented at the end of this
section.

A. LINEARISATION ON SPRING-MASS MODELS
We recall that the nonlinear force generated by typical vari-
ants of SSD (SSDS, SSDI, SSDV and SSDNC) can be written
in a unified mathematical form as shown in Eq. (6). There are
two terms on the right side of Eq. (6), and the second one is the
function of the displacement only. Therefore the equivalent
stiffness can be directly written:

keq = B2 (15)

The first term on the right side of Eq. (6) is the function
of velocity only, which contributes to the damping. Here we
assume that the relative velocity simply follows a sinusoidal
function:

u̇ = V0 sin(ωt + φ) (16)

where V0 refers to the amplitude of the velocity. This is
reasonable when the excitation is mono-frequency or in a
relatively narrow frequency band, as presented in Fig. 6.
We will further justify this assumption later in section III-C.
In this way, the dissipative energy in one period can be
expressed as the negative work done by the nonlinear force:

WSSD =

∫ T

t=0
fSSD(t)u̇(t)dt

=

∫ T

t=0
B1max(u)sign(u̇)u̇dt =

4B1V02

ω2 (17)

where WSSD refers to the dissipative energy per cycle by
SSD. The dissipated energy of an linear viscous damper in
one cycle is known as:

Weq =

∫ T

t=0
cequ̇u̇dt =

ceqV02π
ω

(18)

where Weq is the equivalent dissipative energy by viscous
damping, and ceq refers to the equivalent viscous damping.
Let WSSD = Weq, the damping coefficient can be found:

ceq =
4B1
ωπ

(19)

Thus, the SSD system is linearised, with equivalent stiff-
ness keq shown in Eq. (15) and equivalent damping ceq shown
in Eq. (19). The nonlinear model shown in Figrue 3 is there-
fore transferred to a linear one as shown by Fig. 8. Note
that the equivalent damping only depends on the frequency,
and this explains the excitation independent feature observed

FIGURE 8. Equivalent linearisation model for lumped parameter model
with SSD.

in section II-D. With these closed-form equivalent coeffi-
cients, the numerical simulation becomes much simpler com-
paring with MHBM or NCMS [19], [21], [34]. The linearised
governing equations of Eq. (5) are expressed by Eq. (20).[
k1 + k2 + keq + ks −k2 − keq − ks
−k2 − keq − ks k2 + k3 + keq + ks

]{
x1
x2

}
+

[
ceq −ceq
−ceq ceq

]{
ẋ1
ẋ2

}
+

[
m1

m2

]{
ẍ1
ẍ2

}
=

{
0
fe

}
(20)

B. LINEARISATION ON FE MODELS
Lumped parameter models are often obtained by parameter
identification process, and parameters such as force coef-
ficient of PZT patch need to be measured by experiments.
Therefore, it is impossible to predict the dynamic perfor-
mance of the real system through the lumped parameter
model without experimental data. Even if the parameters are
identified, the numerical simulation with lumped parameter
model is not accurate because the high-order information of
the model is neglected. Lumped parameter models are only
effective for qualitative analysis.

On the contrary, FE models can be established accord-
ing to the parameters of real structures, and the response
of the system can be predicted quantitatively by numerical
simulation before the experiment. Especially for the complex
system which is not easy to implement the experiment proto-
type, numerical simulations based on FE models have great
advantages.

Firstly, the nonlinear force generated by SSD in FEmodels
is derived. Fig. 9 represents a general system bonded to Np
piezoelectric patches shunted by SSD circuits. For the sake
of simplicity, only one piezoelectric patch shunted by SSD is
considered in the formula derivation. The general equations
of the piezoelectric mechanical coupling systems write as
Eq. (21).[
Mm

0

]{
ẍ
Ü

}
+

[
Cm

0

]{
ẋ
U̇

}
+

[
Km Kmp

Kmp
T
−Cp

]{
x
U

}
=

{
fe
Q

}
(21)

There is only one electrical DOF (i.e. the voltage U )
because the upper and lower surfaces of piezoelectric patch
are electrodes, and the one of them is connected to ground.
The matrix with subscript m refers to the matrix correspond-
ing to mechanical DOFs, the subscript p denotes to the elec-
trical DOF introduced by the piezoelectric patch. In Eq. (21),
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FIGURE 9. Schematic diagram of general mechanical structure bonded to
piezoelectric patches shunted by SSD circuits.

Cp refers to the capacitance of the piezoelectric patch. Kmp
denotes electromechanical coupling matrix.

For piezoelectric mechanical coupling systems with SSD,
the voltage between the electrodes of piezoelectric patch is
under control. Considering the first equation in matrix form
of Eq. (21), the governing equations for SSD systems write:

Mmẍ+ Cmẋ+Kmx+ fSSD = fe (22)

where

fSSD = KmpU (23)

refers to the nonlinear force generated by SSD applied to the
mechanical system.

When the circuit is open, the current in the electrical circuit
is zero. Hence the second equation of Eq. (21) becomes:

Cp
−1Kmp

Tx = Uop (24)

where Uop denotes the voltage at open circuit. Taking SSDS
as an example, the controlled voltage applied to the piezo-
electric patch could be expressed as:

U = max(Uop)sign(U̇op)+ Uop

= max(
Kmp

Tx
Cp

)sign(
Kmp

Tẋ
Cp

)+
Kmp

Tx
Cp

(25)

Similar to the case of lumped parameter model, Eq. (25)
indicates that when the voltage of the piezoelectric patch
reaches its maximum, the piezoelectric patch will be short-
circuited. Introducing Eq. (25) into Eq.(23), the nonlinear
force generated by SSDS is then derived:

fSSDS = KmpU

= (
1
Cp

Kmpmax(Kmp
Tx)sign(Kmp

Tẋ)+
KmpKmp

Tx
Cp

)

(26)

Using the same method as that of lumped parameter models,
the negative work done by the nonlinear force for one

period is:

WSSDS =

T∫
t=0

ẋTfSSDSdt

=
1
Cp

T∫
t=0

ẋTKmpmax(Kmp
Tx)sign(Kmp

Tẋ)dt

=
1
Cp

T∫
t=0

max(Kmp
Tx)|Kmp

Tẋ|dt (27)

For the structures with SSD, the force generated by SSD is
applied only to the corresponding nodes attributed to piezo-
electric patch. Considering the small proportion of piezo-
electric material compared with the host structure, and the
low inherent damping, the motion of nodes belonging to the
piezoelectric patch could be regarded as synchronous. Under
the assumption of the first order harmonic, the velocity of the
mechanical DOFs is assumed as:

ẋ = V0 sin(ωt + φ) (28)

where V0 refers to the velocity amplitude vector of the
mechanical DOFs. Introducing Eq. (28) into Eq. (27), the dis-
sipative energy by SSDS for one period is then derived:

WSSDS =
1

Cpω

T∫
t=0

|Kmp
TV0|

2
| sin(ωt + φ)|dt

=
4V0

TKmpKmp
TV0

Cpω2 (29)

If an equivalent viscous damping matrix is used, the
equivalent dissipative energy in one cycle is derived:

Weq =

T∫
t=0

ẋTCeqẋdt =
V0

TCeqV0π

ω
(30)

LetWSSDS = Weq, the equivalent viscous damping matrix is:

Ceq =
4KmpKmp

T

Cpωπ
(31)

The equivalent stiffness matrix is derived from the second
term which is only the function of displacement vector on the
right side of Eq. (26), the equivalent stiffness matrix writes:

Keq =
KmpKmp

T

Cp
(32)

Since the forms of the nonlinear force generated by all
types of SSD are similar mathematically, by employing the
same derivation process, the equivalent viscous damping and
stiffness matrix for FE models with SSD can be written
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uniformly:

Ceq =
4B1

ωπ
, B1=



KmpKmp
T

Cp
, SSDS

(1+ γ )KmpKmp
T

(1− γ )Cp
, SSDI

KmpKmp
T

(1− χ )Cp
, SSDNC

(1+γ )(1+σ )KmpKmp
T

(1− γ )Cp
, SSDV

(33)

Keq = B2, B2 =
KmpKmp

T

Cp
, for all SSD (34)

Consistent to the conclusion of lumped parameter mod-
els, the equivalent damping matrix does not depend on the
amplitude of the response. Therefore the damping generated
by SSD for FE model is linear and can be replaced by the
equivalent viscous damping matrix. The equivalent linearisa-
tion equations write:

Mmẍ+ (Cm + Ceq)ẋ+ (Km +Keq)x = fe (35)

If the host structure contains multiple piezoelectric patches
shunted with SSD, since each piezo patch is independent,
the total equivalent damping or stiffness can be regarded as
the sum of the equivalent damping or stiffness for each piezo
patch shunted with SSD:

Mmẍ+ (Cm +

Np∑
i=1

Ceq,i)ẋ+ (Km +

Np∑
i=1

Keq,i)x = fe

(36)

where Np is the number of the piezoelectric patches, Ceq,i
andKeq,i refer to the equivalent damping matrix and stiffness
matrix by the ith piezo patch with SSD, respectively.
If a model containing only two mechanical DOFs shunted

by SSD is under investigation as shown by Fig. 3, then
Eq. (22), Eq. (26) and Eq. (36) degenerate to Eq. (5) Eq. (6)
and Eq. (20), respectively. Therefore, SSD linearisation the-
ory based on lumped parameter models can be regarded as a
special case of FE models.

As indicated by Eq. (33), the equivalent viscous damping
of SSD is the function of the fundamental frequency of the
excitation. The damping term is influential to the dynamic
performance of the system in the resonant zone (i.e. the
vibration frequency near resonance). Therefore, the limita-
tion of the linearisation method is that the excitation spectra
should only contain one resonant frequency of the structure.
Otherwise, it brings the challenge to estimate the equivalent
damping via Eq. (33). Further research dedicated to multi-
frequency excitation is required.

C. NUMERICAL VERIFICATIONS
Applying the equivalent linearisation method firstly to
the lumped parameter model with SSDNC introduced in
Section II and comparing with the results by MHBM,

FIGURE 10. Comparison of FRFs by MHBM with different number of
harmonics and the FRF by linearisation method based on 2-DOF lumped
parameter model with SSDNC.

FIGURE 11. Comparison of simulation time for the 2-DOF lumped
parameter model.

we obtain the FRFs as demonstrated by Fig. 10. It can be
noticed that the number of harmonics retained has little effect
on the results, keeping only the first order harmonic is suf-
ficient to simulate the steady-state response accurately. The
difference between the results by the proposed linearisation
method and that by MHBM can be ignored. Therefore the
correctness and accuracy of the proposed method is verified
based on a representative lumped parameter model.

As far as concerned the efficiency, for MHBM with 1 har-
monic, 3 harmonics and 5 harmonics, the simulation time are
24.8s, 46.0s and 100.8s. This is only for the 2-DOF model.
With the augmentation of the number of DOFs, it can be
predicted that the computing time will increase significantly.
Even if only the first harmonic is retained, the calculation
time will be very long. Whereas for the linearisation method,
the simulation time is only 0.1s, the comparison of the cost
time is performed by Fig. 11. The computational efficiency
of the linearisation method has been dramatically increased
comparing with the MHBM method.

For random excitation signals with a certain bandwidth,
Newmark integral is adopted to predict the transient response
of the 2-DOF model. The result by equivalent linearisation
is compared with that by direct nonlinear analysis. The fre-
quency band of the excitation contains 0.8 times to 1.2 times
of the first-order resonant frequency (i.e. 0.779 rad/s), which
is demonstrated by Figure 12a, the excitation signal in time
domain is shown by Figure 12b.
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FIGURE 12. Random excitation with a certain bandwidth a. Signal in
frequency domain. b. Signal in time domain.

Concerning the equivalent linearisation method under ran-
dom excitation, due to the frequency dependence of the equiv-
alent linearised damping as expressed by Eq. (19), and note
that the frequency spectra of the random excitation contains
not only one frequency component, therefore we estimate
the equivalent damping by using the first resonant frequency.
Fig. 13a performs the comparison of time series of the forced
response by direct nonlinear analysis and equivalent lin-
earisation. The results are basically consistent with relative
error less than 3%. Fig. 13b shows the vibration reduction
compared with the system at open circuit state, indicating
that under random excitation, the vibration reduction effect
of SSD is not as good as that under harmonic excitation.
We can conclude that the equivalent linearisation method has
high accuracy under random excitation with the band only
containing one resonance.

Through the above analyses, we can conclude that the
linearisation method of SSD can capture both the steady-state
performance and the transient response under random exci-
tation for lumped parameter models with SSD. The results
are numerically verified by MHBM and Newmark integral
respectively. The efficiency of the proposed method is much
higher than traditional nonlinear solvers.

Next we will use a FE model to further verify the proposed
method. In this case, results calculated by MHBM will be
regarded as baseline. Since the algorithm of MHBM is also
coded by the authors, the Newmark method will be adopted
to validate the program.

FIGURE 13. Time series of displacement under random excitation a.
Comparison of direct nonlinear Newmark and linearisation method with
SSDNC. b. Comparison of the system at open circuit state and with SSDNC.

A simple cantilever beam model attached by a PZT patch
with coarse mesh is under investigation (shown by Fig. 14a),
the voltage DOFs on the upper electrode of PZT patch are
coupled. On the lower electrode, the voltage is set to zero.
There are totally 45 nodes (except for the clamped nodes)
containing 136 DOFs (including one electrical DOF). Only
mechanical DOFs belonging to the PZT patch are under
nonlinear force, thus the number of nonlinear DOFs is 45.

To verify the linearisation method for the FE model, both
the MHBM method and Newmark method are used to calcu-
late the steady-state response. The maximum displacement
of the node in one period at steady-state is recorded as the
response amplitude at the excitation frequency.

The target mode is set as the first bendingmode as instance.
The modal frequency is 586.7Hz at open-circuit state, and the
modal shape is presented by Fig. 14b.

Fig. 15. compares the results calculated by the proposed
linearisation method, the MHBM and the Newmark for the
cantilever model with SSDS. Good agreements can be found.
At each calculated frequency point, the relative error is less
than 2%, which is acceptable. A filtering process of velocity
in time domain is indispensable for Newmark method due to
the symbolic function in the expression of nonlinear force
generated by SSD. The error might be caused by the low

VOLUME 7, 2019 133677



Y. Wu et al.: Linearized Analysis for Structures With Synchronized Switch Damping

FIGURE 14. a. FE model of a cantilever beam attached by a PZT patch
with coarse mesh. b. The first bending mode at open-circuit state.

FIGURE 15. Comparison of results by linearisation method and nonlinear
methods (MHBM and Newmark) for the cantilever beam FE model with
SSDS.

FIGURE 16. Sequential displacement and nonlinear force generated by
SSDS calculated by Newmark integral at 580.1 Hz.

pass filtering. Fig. 16. performs the displacement and non-
linear force generated by SSDS in time domain calculated by
Newmark integral at 580.1 Hz.

Table 2 lists the simulation time for the three numerical
methods. It can be seen that the Newmark integral requires
a long calculation time in order to obtain the steady-state
at each frequency. The efficiency of harmonic balance has
been improved compared with the Newmark method. The
proposed linearisation method reduces the calculation time

TABLE 2. Comparison of simulation time for the coarse FE model of
cantilever beam with SSDS.

to trace a FRF curve to 0.7% compared with the harmonic
balance one even though the frequency resolution is much
higher.

IV. COMPARISON WITH PUBLISHED
EXPERIMENTAL DATA
In order to further verify the proposed equivalent linearisa-
tion method, we use the experimental data from an already
published paper by Ji et al. [14] in terms of single mode
control for SSDI. This experiment is conducted on a can-
tilever beam attached by two PZT patches on the top and the
bottom surface of the beam. For the finite element modeling
of the experimental beam, in order to make the calculation
independent to the mesh density, the number of DOFs has
been significantly augmented compared with the case in
Section III-C. In order to further explain the correctness and
efficiency of the linearisation algorithm on large-scale model,
the widely-used harmonic balance method is also taken as
a comparison. Since the MHBM has been already verified
by Newmark integral in Section III-C, and the computational
cost of Newmark could be enormous in terms of large-scale
models, Newmark will be no longer employed.

The configuration of the composite beam used in the
experiment is shown by Fig. 17a. The beam is clamped
on an electromagnetic shaker for excitation which generates
harmonic excitation. The distance between left edge of the
piezoelectric elements and the clamped end of the beam is
10 mm as shown in Fig. 17b. The vibrational level of the
beam is quantified by the vertical displacement amplitude at
a distance of 290 mm from its clamped end. The parameters
of the beam and the PZT patches used in this experiment are
listed in Table 3 and Table 4 respectively, which are used for
numerical simulations later.

The FEmodel is established in Ansys at open circuit shown
by Fig. 17b. The beam is modeled by SHELL 181 element,
and the PZT patches are modeled by SOLID 5. The number
of DOFs is 16199 so that the simulation result is independent
to the mesh. Fig. 18a. and 18b. illustrate the 1st modal shape
(1st bending) and the 2nd modal shape (2nd bending) of the
cantilever beam attached by a piezo-patch at open circuit,
respectively. The 1st modal frequency is 10.4Hz, and the 2nd
modal frequency is 62.2Hz.

With the value of the resistance and the impedance in
the shunting circuit, the voltage inversion factor γ can be
derived [18], which is equal to 0.58 for the system with SSDI.
The equivalent damping and stiffness generated by SSD can
then be calculated. By using the structural matrix and the
calculated equivalent matrix, the linearisation method can be
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TABLE 3. Parameters of the cantilever beam.

FIGURE 17. a. Configuration of the experimental system (Ji et al. JVA,
2011); b. Finite element model of the experiment system.

TABLE 4. Parameters of the piezoelectric patches.

FIGURE 18. Modal shape of the cantilever beam with PZT patch at open
circuit state: a. 1st bending mode; b. 2nd bending mode.

executed in Matlab. It is noteworthy that unlike the lumped
parameter model, all the parameters of the experimental sam-
ple are taken directly in the numerical simulation process.
This will improve the accuracy of simulation. The parameters
of the numerical model, especially those of piezoelectric
materials, are calibrated with the open circuit experimen-
tal data of the first resonance (i.e. resonant frequency and
amplitude), because the parameters of PZT materials given
by the experiment are not sufficient in terms of modelling.
The calibrated data of PZT materials are listed in Appendix.

Firstly the simulation result by linearisation is compared
with the result calculated by harmonic balance method. Good
agreements are confirmed at the frequency range where the
two resonance peaks belong to as performed by Fig. 19,
and the relative error is less than 5%. The result by HBM

FIGURE 19. Comparison of FRFs by linearisation and HBM based on the
finite element model of the cantilever beam with SSDI.

TABLE 5. Comparison of harmonic balance method and linearisation
method for large-scale FE model of cantilever beam with SSDI.

is just calculated around the resonances where the damping
is sensitive to the dynamic performance in order to avoid
computational burden. The simulation time for these two
methods are listed in Table 5. We notice that the efficiency of
linearisation is much higher than HBM for large-scale model.
The time cost of linearisation is 5% of HBM.

Secondly, the simulation resuls by linearisation are com-
pared with the published experimental data. The FRFs by lin-
earisation are plotted in Fig. 20. The comparison of the results
from numerical simulation and by experiment is summarized
in Table 6. The relative error for resonant frequency is 1%
for the 1st mode and 8.6% for the 2nd mode. For the resonant
amplitude, the errors are less than 12.5% for these twomodes.
The attenuation of the 1st resonant amplitude is−4.3dB from
experiment and −4.7dB by numerical simulation compared
to the open state. For the 2nd resonant peak, the attenua-
tion is −2.3dB and −3.8dB for experiment and simulation,
respectively. We notice that the damping effect of numerical
simulation is better than that of experiment, because the
turning time of the switch in simulation is neglected, which
avoids the loss of work done by the force generated by SSDI.

The error might be caused by the boundary conditions
and the inaccurate material parameters especially for PZT
patches, since the piezoelectric parameters provided by the
experiment are not complete to modeling numerically. This is
also the reason why the case with SSDNC in [14] is not under
investigation in this paper, the intrinsic capacitance of the
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FIGURE 20. FRFs for the shunting system at open circuit state and with
SSDI by linearisation numerical simulation.

TABLE 6. Summarization of results by linearisation method and by
experiment.

piezoelectric patch generated by FE model is quite different
from that measured in experiment.

Even though the numerical results are slightly different
from the experiment, the numerical results are sufficient to
predict the dynamic performance of the system with accept-
able accuracy. For FE models with a great number of DOFs
the efficiency is sufficiently high (e.g. considering this case,
the simulation time is about 160s for each FRF curve).

V. APPLICATION: VIBRATION CONTROL OF
BLADED DISKS BY SSD
Bladed disk is the assembly of the disk and the mounted
blades in aeroengines. When the aeroengine operates in
the rotating state, the bladed disk of compressor works on
the gas, or the gas works on the bladed disk of turbine. The
interaction between the rotating bladed disk and the complex
flow field makes it suffers severe aerodynamic load. Since the
bladed disk rotates in the flow field, from an observing point
fixed on the blisk, the excitation generated by the flow field
and applied to the blisk can be regarded as rotational load,
which is composed by circumferential travelling waves with
different engine order (EO). The EO describes the number
of harmonic waves along circumferential direction It also
reflects the phase difference between the excitation force at
each sector. Due to the high modal density of bladed disks,
it is difficult to avoid all the resonances in the design pro-
cess. Therefore, bladed disks often experience high vibration

FIGURE 21. a. FE model of the blisk; b. FE model for the expanded sector.

levels, leading to high cycle fatigue (HCF) which might
cause structural failure. Frictional damping is a traditional
way to reduce the vibration level of bladed disks. Joints
or contact interfaces in bladed disk assemblies can bring
frictional damping. Relative displacements at these frictional
interfaces generate energy dissipation thus the vibration level
decreases [29], [34], [35]. In recent years, in order to improve
aerodynamic performance and reliability, the integral bladed
disk (blisk) as single-piece-made component is developed
and implemented industrially [36]. However, due to the lack
of joints and connections where energy dissipation by friction
could occur, the damping decreases dramatically and vibra-
tion problem becomesmore prominent. For these reasons, it is
necessary to investigate new damping strategies for blisks.

Piezoelectric damping is a developing damping technol-
ogy [4] since 1990s. More and more scholars try to control
the vibration of blisk via piezoelectric damping technolo-
gies [23], [37]–[39], including passive piezoelectric shunted
damping, piezoelectric network and SSD. Considering the
advantages of semi-active piezoelectric damping technology
based on SSD, such asmulti-modal damping effect and insen-
sitivity to working conditions, it seems that the SSD provides
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FIGURE 22. Modal frequencyâĂ" nodal diameter index (NDI) diagram of
the blisk model embedded with PZT patch at short circuit state (only
1-4 modal groups are demonstrated).

the prospect of application for blisks. For the studies of blisks
with SSD, according to the authors’ knowledge, no experi-
ments have been implemented. Due to the complexity of the
structure, numerical simulation is a feasible way of investi-
gation for blisks with SSD [18], [19]. For numerical studies,
lumped parameter models were used, and the steady-state
response of the system was calculated by nonlinear solver
either by MHBM [18] or CNCMS [19]. Comparing with
Newmark integral, the computational efficiency has been
improved, but with the increase of DOFs, the computational
burden will be still heavy, and even the risk of convergence
failure will arise. This might be the reason why research con-
cerning about blisks with SSD were often based on lumped
parameter models. In order to quantitatively study the effect
of SSD on blisks vibration reduction, generally FE models
should be applied, leading to a great number of DOFs. It is
time-consuming to employ nonlinear algorithm such as New-
mark integral or MHBM especially for parameter analysis.
Therefore, the proposed linearisation method is especially
suitable for the design of blisks with SSD.

In this section, a dummy blisk FE model with SSD shunted
in each sector is under investigation by the proposed lineari-
sation method. Although this model is not from a real blisk,
on the one hand, it is sufficient to describe typical nodal-
diameter vibration of blisk, on the other hand, it has enough
DOFs. Therefore this dummy blisk model can be used to
verify the potential industrial implementation in the design
process of blisks with SSD by the linearisation method.
Thanks to the cyclic periodicity of the blisk, cyclic reduction
technique can be used by projecting physical coordinates to
traveling wave space, thus the number of DOFs is reduced to
the dimension of a sector.

Fig. 21a demonstrates the FE model of the blisk, PZT
patches (purple) are embedded on blades. There are 24 sec-
tors. For this case, only the FE model of the expanded sec-
tor needs to be established (shown by Fig. 21b). The DOF
number of the sector is 5968. The engine order excitation is
applied on the excitation node marked in Fig. 21b. The direc-
tion of the exciting force is perpendicular to the blade, and the
amplitude is 100N. Another nodemarked as observation node

FIGURE 23. Modal shape for the blisk with SSD at short circuit state:
mode (NDI 6, 1st mode group).

FIGURE 24. The comparison of FRFs of the blisk embedded with PZT
patches at open circuit state, shunted by SSDS and SSDNC for the mode
(NDI 6, 1st group).

is used to display the response. The maximum displacement
of the observation node is regarded as an index to quantify
the vibrational level. In this study, the Craig-Bampton (CB)
modal reduction technique is also implemented to decrease
the further calculating scale. The DOFs belong to PZT patch,
the excitation DOF, the cyclic boundary DOFs, and the
DOFs belong to observation node should be kept in physical
coordinates in the CB reduction process. Other linear DOFs
are replaced by modal coordinates. After the CB reduction,
the retained number of DOFs is 463.

Blisks normally exhibit vibration with different nodal-
diameters, and nodes on nodal-diameters do not vibrate. This
nodal-diameter phenomenon is the modal characteristic of
blisks, which is described by frequency - nodal diameter
index (NDI) diagram. The modal frequency - NDI diagram
of the blisk model embedded with PZT patch at short circuit
state is illustrated in Fig. 22. Only the first four modal groups
are plotted. The modes at the horizontal position of modal
group lines are dominated by blade, whereas the modes at
slope position are disk dominated. The modes in frequency
steering zone (i.e. the nearest zone between two consecutive
groups) are coupling mode, indicating that both blade and
disk vibrates.

Fig. 23 shows the modal shape of the blisk with embedded
PZT patches at short circuit state. The NDI of the mode is 6,
and it belongs to the 1st modal group. This mode is blade
dominated. It can be observed from Fig. 24 that compared
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TABLE 7. Vibration Reduction of different SSD technologies for different modes.

FIGURE 25. Modal shape for the blisk with SSD at short circuit state:
mode (NDI 8, 4th modal group).

FIGURE 26. Modal shape for the blisk with SSD at short circuit state:
mode (NDI 6, 4th modal group).

with the open circuit state, the response amplitude for SSDS
and SSDNC dropped by 59% and 73%, respectively. Since
the piezoelectric plate is installed at the position where the
strain is large for the mode, the damping effect is good. The
negative capacitance is 60% of the capacitance of the piezo-
electric patch for the SSDNC shunting circuit. The damping
generated by SSDNC is better than SSDS, which conforms
to the theoretical basis of SSD, and similar results have been
found in previous studies by using nonlinear simulations on
a lumped parameter model [18]. In addition, the simulation
result by linearisation is varified by HBM for the blisk with
SSDNC. The simulation time is 6.21s for linearisation and
89.73s for HBM, and the relative error is less than 2% (shown
in Table. 8), which demonstrates the high accuracy and effi-
ciency of the linearisation method.

FIGURE 27. The comparison of FRFs of the blisk embedded with PZT
patches at open circuit state, shunted by SSDS and SSDNC: a. for mode
(NDI 8, 4th modal group); b. for mode (NDI 6, 4th modal group).

For the higher order mode dominated by blades (NDI 8,
4th modal group) and the coupling mode (NDI 6,
4th modal group) shown by Fig. 25 and 26. Blades vibrate
with respect to the torsional blade mode for mode (NDI 6, 4th
modal group). Fig. 27a and 27b perform the corresponding
FRFs, the results of which are consistent to the previous
case. Table 7 summarizes the simulation results for the
aforementioned 3 modes. It is noteworthy that the same
parameters are selected for piezoelectric circuits for these
mode. Therefore, the damping effect of SSD is insensitive to
electrical parameters. In addition, the multi-mode damping
effect of SSD is also verified as shown by Fig. 28, the engine
order of the excitation force is set to 6, the resonant peaks for
mode (NDI 6, 1st group) and for mode (NDI 6, 4th group)
both decrease significantly with SSD.

We can conclude that the proposed linearisation method
can capture all the characteristics of SSD including good
damping effect and multi-mode vibration reduction based
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FIGURE 28. Multi-mode damping effect of SSD for modes with NDI=6.

TABLE 8. Comparison of simulation time between harmonic balance
method and linearisation method for blisk model with SSDNC (NDI 6, 1st

group).

on a dummy bllisk FE model efficiently and accurately.
These findings are consistent to the results by previous studies
conducted on lumped parameter models of blisks with SSD
by using nonlinear solvers.

VI. CONCLUSION
This study addresses improvement of the numerical simu-
lation efficiency for complex nonlinear systems with SSD.
Considering the quasi-linear behavior of SSD systems,
we have proposed and verified a linearisation method for
efficient numerical simulation of complex structures with
SSD.

The SSD can be simply modelled by a frequency-
dependent viscous damping and a linear stiffness. These
equivalent parameters are in closed-form and can be derived
by the idea of equivalent dissipated energy. In addition,
the lineaisation can be applied to almost every subtype of SSD
(SSDS, SSDI, SSDV, SSDNC) for lumped parameter models
and FE models.

The linearisation method has high computational effi-
ciency. Compared withMHBM, the time cost of the proposed
method is only 5% for the FEmodel of the experimental beam
with SSDI and 6% for the blisk FE model with SSDNC.

The proposed method is accurate. Good agreements can
be found through numerical simulation. The average relative
error is about 2% compared with MHBM for steady-state
analyses. Concerning the transient response under random
excitation, the relative error is less than 3% compared with
Newmark integral. The accuracy of the linearisation method
is also verified by the published experimental data, the

relative error of steady-state response of the cantilever beam
with SSDI is only about 12%.

This method is especially suitable for complex structures.
In this paper, the proposed method is applied to a dummy
blisk with SSDNC, which is a promising application in aero-
nautic industry. The blisk contains more than 120k DOFs,
whereas the time for calculating a frequency response curve
is only 6 seconds. The vibration amplitude of the target
mode is reduced by about 73%, and the multi-mode vibration
reduction is achieved.

APPENDIX
The stiffness matrix of the PZT material at short circuit
state cE used in the simulation reads:

cE=



CE
11 CE

12 CE
13

CE
12 CE

11 CE
13

CE
13 CE

13 CE
33

CE
66

CE
44

CE
44


Pa (37)

where

CE
11 = 13.2×1010, CE

12 = 5.9×1010, CE
13 = 5.9×1010

CE
33 = 11.5×1010, CE

44 = 2.6×1010, CE
66 = 3.0×1010

(38)

The piezoelectric coupling matrix e reads:

e =


e31
e31
e33

e15
e15

N/(V ·m) (39)

where

e31 = −11.6, e33 = 14.1, e15 = 10.5 (40)

The dielectric matrix at constant strain condition εs reads:

εs = ε0

 ks11 ks11
ks33

 (41)

where

ε0=8.85× 1012 C/(V ·m), ks11=804.6, k
s
33=659.7 (42)

The constitutive equations of PZT materials is:

T = cES− eE

D = eTS+ εsE (43)

where T is mechanical stress matrix, S refers to mechanical
strain matrix, E denotes electric field intensity vector and D
refers to electric displacement vector.
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