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ABSTRACT In most of the fault detection methods, the time domain signals collected from the mechanical
equipment usually need to be transformed into frequency domain or other high-level data, highly relying
on professional knowledge such as signal processing and fault pattern recognition. Contrary to those
existing approaches, we proposed a two-stage machine learning analysis architecture which can accurately
predict the motor fault modes only by using motor vibration time-domain signals without any complicated
preprocessing. In the first stage, the method RNN-based VAE was proposed which is highly suitable for
dimension reduction of time series data. In addition to reducing the dimension of sequential data from
150%3 to 25 dimensions, our method furthermore improves the prediction accuracy evaluated by several
classification algorithms. While other dimension reduction methods such as Autoencoder and Variational
Autoencoder cannot improve the classification accuracy effectively or even decreased. It indicates that the
sequential data after dimension reduction via the RNN-based VAE still can maintain the high-dimensional
data information. Furthermore, the experimental results demonstrate that it can be well applied to time
series data dimension reduction and shows a significant improvement of the prediction performance, even
with a simple double-layer Neural Network can reach over 99% of accuracy. In the second stage, Principal
Components Analysis (PCA) and Linear Discriminant Analysis (LDA) are used to further perform the second
dimension reduction, such that the different or unknown fault modes can be clearly visualized and detected.

INDEX TERMS Motor fault detection, feature extraction, recurrent neural network, variational autoencoder.

I. INTRODUCTION

In recent years, the global manufacturing has faced with
the environmental tests such as rapidly changed market and
increasinglypersonalized demands. In addition, under the
general lack of labor force, it is difficult for manufacturers to
maintain their industrial status if they cannot flexibly adapt
to the production conditions. The ‘“smart manufacturing”
rising with the stack of the above factors is rapidly reshaping
the appearance of the global manufacturing and factories.
For example, in semiconductor process, due to continuous
pursuit of lightweight, efficiency and endurance of electronic
products, the competition on semiconductor wafer process
technology among all major factories is becoming increas-
ingly fierce. In the well-developed area of materials and prod-
ucts, it is more likely to encounter bottlenecks and technical
challenges are getting tougher. If various machine parameters
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of the process control can be successfully used for analysis,
there will be an opportunity to find breakthroughs.

In the traditional way of machine fault diagnosis, simple
measuring instruments are used to collect signals, so that
maintenance personnel can conduct diagnosis based on their
knowledge and experience. The principle of machine man-
agement is to conduct regular and routine maintenance, or to
shut down for maintenance after faults occur, or even direct
replacement. However, in such a way, the capacity losses
arising from shutdown shall be borne, and the fault factors
may have irreparably damaged machines. Hence, in smart
manufacturing, the use of fault detection and classification
system (FDC) is specially emphasized [4].

According to the McKinsey Report [26], big data analysis
has great commercial application potentials in the mainte-
nance industry. Different from the previous mode of rou-
tine inspection and break-down repair, in FDC, big data
is used to analyze health conditions of machine, to pre-
dict possible faults of machine and to prevent further loss
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through preventive maintenance. In E-maintenance proposed
by Arnaiz et al. [2], the main function of big data analy-
sis is assisting in making maintenance decisions. Generally
speaking, maintenance modes can be divided into two types:
corrective type and preventive type, and the latter can be
divided into look-ahead type and condition-based type (pre-
dictive type). Look-ahead maintenance can prevent damages
to machines and equipment through fixed intervals, but is
more likely to cause waste resources due to excessive mainte-
nance. Predictive maintenance predicts the probability of fail-
ure based on the health conditions of machine, which depends
on the analysis of machine data collected by a large number of
sensors. Not only internal parameters of machine but external
factors, such as temperature, humidity and vibration, will
become the important basis for determination and modeling,
to achieve the diagnosis effect in cooperation with appro-
priate models. As for the production line machine, the most
vital component is the motor providing power. In practice,
motor faults are most likely to have serious consequences,
so that most of the current studies focus on motor fault detect-
ion [1], [10], [11], [33]. However, most of the current studies
rely on professional knowledge such as high-level signal
processing [9] and fault identification, and input data are
entered into the classification model after feature extraction.
Therefore, this study attempted to propose a model that can
effectively reduce the dimension of time series by simply
inputting the time domain data of original signals, which can
improve the accuracy of fault detection in addition to feature
extraction and dimension reduction.

In this study, a motor experiment platform was designed
to simulate 15 fault scenarios and to collect the time domain
vibration signals at 3 different locations. The experimental
results show that the prediction accuracy is not ideal when the
original time domain data are input into all the classification
models. However, if the RNN-based VAE model proposed in
this study is used to extract features firstly and then the dimen-
sion of all sequential data with the dimension of (150, 3)
are reduced to the non-sequential data with 25 dimensions.
In addition to great reduction in hardware burden of compu-
tation, a high fault detection accuracy can be obtained through
simple classification models. The major contributions of this
study can be divided into 4 aspects:

1) A feature extraction and dimension reduction model

suitable for time series data was proposed

2) In most of the fault detection methods, the time
domain signals are transformed into frequency
domain or other high-level data, highly relying on
professional knowledge such as signal processing and
fault mode identification. Whereas in this model,
the fault mode can be successfully identified by simply
inputting the time domain data of original vibration
signals.

3) The RNN-based VAE model was proposed. The exper-
imental results show that it can effectively con-
duct dimension reduction and feature extraction on
sequential vibration signals, then the accuracy of fault
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FIGURE 1. Study flowchart.

detection

detection using simple classification models can be
significantly improve.

4) Atthe last part of the experiment, the data after dimen-
sion reduction were reduced to 2 dimensions using
PCA and LDA, and the visualization results show that
the identification effects are good and can be used to
assist in determining unknown fault modes.

The research structure is shown in Fig 1. The remainder
of this paper is organized as follows: Section 2 reviews
the existing fault detection and predictive maintenance, and
presents studies related to machine learning used for feature
extraction and fault mode identification; Section 3 introduces
the method to propose RNN-based VAE; Section 4 describes
the experiment platform establishment, data collection and
preprocessing; Section 5 compares the differences in effects
before and after using our method, and discusses the visual-
ization results of dimension reduction of the two stages.

Il. RELATED WORK

Fault detection technology plays an important role in Industry
4.0, among which, the most important part is data processing
and algorithm design. In this section, the studies related to
fault detection and the performance of various algorithms on
fault detection are organized.

Comstock et al. [7] proposed 7 steps for the operation
of predictive maintenance: data capture, data preprocessing,
condition stability, health assessment, prognostics, decision
support and presentation. It is shown that the first 4 steps
are the basic elements constituting fault detection diagnosis
(FDD).Dai and Gao [8] divided FDD into: physical mode-
based method, signal-based method, and knowledge-based
and historical data-navigated method, as shown in Fig 2.
In physical mode-based method, by cooperating with the
empirical data, the governing equations deduced for the
physical characteristics of equipment systems are used to
obtain the empirical laws. In signal-based method, spe-
cific signals are used to define different FDD scenarios.
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FIGURE 2. Knowledge-based and historical data-navigated method [8].

In recent years, the machine learning algorithm is popular due
to the rapid development of software and hardware, so that the
knowledge-based FDD has become a hot study topic.

According to the statistical results of the study conducted
by Thomson and Fenger [31], when motors are abnormal,
the abnormalities in core components, such as stators, rotors
and bearings, account for 88% in all motor abnormalities, and
the variables commonly used in motor abnormality detec-
tion are current, electromagnetic field, vibration and other
signals. Based on Li and Mechefske [23], the signals of motor
stators, such as current, vibration and sound, are collected,
and various motor speeds and load test scenarios of multi-
ple groups are made, after cross test, it is found that stator
current is highly sensitive to rotor damages and vibration
signals are more suitable for detecting bearing abnormali-
ties. Thomson et al. [30] used power spectrum analysis to
diagnose a high-power and high-voltage three-phase induc-
tion motor, the results show that current spectrum data can
effectively control the occurrence of air-gap eccentricity.

Fault detection can be roughly divided into two steps:
feature extraction and fault mode identification. Glowacz
and Glowacz [14] collected the sound signals of unidirec-
tional induction motors and obtained the new feature vectors
through extraction of the signal features, and on this basis,
established a k-nearest neighbor algorithm model. The exper-
iment results show that the goal of fault detection can be suc-
cessfully achieved by inputting the new feature vectors into
the model. Zhong et al. [38] applied empirical mode decom-
position (EMD) [17] and teager energy operator (TEO) [37]
to analyze the periodic pulse signals of vibration inside and
outside races of fault bearings, and the results show that
the faults inside and outside races of fault bearings can be
detected more effectively by using the periodic pulse signals
of vibration than by using the complete spectrum signals.
Xiao et al. [36] used support vector machine (SVM) in coop-
eration with principle component analysis (PCA) to compare
with the three-layer neural network, which mentioned that
the dimension reduction technology of PCA can dramatically
decrease the model training time and provide better accuracy.
Gauch extracted the data features in PCA-based method to
eliminate noises and improve the performance of dimension
reduction results [12].
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In recent years, artificial neuron network (ANN) has
become the most dominant algorithm. Due to its advantages
such as high dimensional data processing, strong ability in
reasoning and elastic structure design, more and more people
have applied neural network to mechanical equipment fault
detection and signal feature extraction [35]. Bailey [3] used
artificial neuron network to conduct fault detection analysis
of screw chillers, and proposed that the misclassification
rate of the optimal model is 20%, through direct classifi-
cation of normal modes and fault modes in the literature.
Liyanagedera ef al. [24] made 4 different fault scenarios
of internal combustion engines, used fast Fourier transform
to transform the collected vibration signals into frequency
domain data and established a neural network model to train
data. 250 input nodes, 150 hidden layers and elastic back-
propagation are used to optimize the training course to verify
that this model can successfully predict the fault types, after
testing multiple sets of mixed fault scenarios.

Many people used Autoencoder which is a method based
on neural network to extract features. Thirukovalluru et al. [29]
input many handcrafted features into autoencoder to extract
features and then into the two models including SVM
and Random Forest, to obtain good prediction accuracy.
Chen and Li [5] input the statistics of bearing signals into
Sparse-autoencoder and used Deep belief network for clas-
sification prediction. Shao et al. [28] input spectrum data
into SAE for feature extraction and into restricted Boltz-
mann machine (RBM) to conduct fault detection of induc-
tion motors. In addition, some scholars used RNN [25] and
Autoencoder [32] to remove noises while extracting features.

To sum up, it can be found that most of the existing studies
are about the pre-processed data such as input spectrum
and statistics but not the original time domain data [19].
Additionally, if the time windows of the original time domain
data are directly slide and segmented, it will be found that
the fault types appear at different time points, which will
affect the interpretation effect (see Fig 3) [18]. Therefore,
the above study can achieve a good accuracy, but one major
problem still remains: the signal feature extraction relies on
professional knowledge such as high-level signal processing
and fault identification, which consumes considerable costs
before actual input into the classification model.

lll. METHODOLOGY

An implementation scheme of our proposed method is shown
in Fig 8. We use RNN as the encoding and decoding models
in VAE, in order to extract the latent features of the sequential
data. These methods will be explained in this section.

A. VARIATIONAL AUTOENCODER

Autoencoder is an unsupervised learning algorithm based
on neural network, with the main purpose of extracting
low-dimensional features (also known as code) which can
represent the original data, so as to achieve the effects of
dimension reduction. Autoencoder is comprised of two neural
networks, respectively encoder and decoder. The input data
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will be compressed into lower-dimensional codes after pass-
ing through the encoder, and the resulting codes will pass
through the decoder again and restored to the original data
by using the decoder.

The weights of Autoencoder are updated according to the
output and input reconstruct losses, the original data and the
difference between decoded output data can be minimized
through iterative update, so that the compressed codes can
retain data information in lower dimensions, to achieve the
purpose of dimension reduction and feature extraction. The
code size, number of layers of encoder and decoder, and
number of neurons can be self-designed.

Kingma and Welling proposed Variational Encoder
(VAE) [22] in 2013, as shown in Fig 4. Compared with
the general Autoencoder, in VAE, variational inference and
parameterization trick are added to strengthen the model’s
ability in feature extraction and maintain the diversity of
generated data, instead of simple reconstruction of input data.
VAE is one of the generative models because of its purpose
to maximize the log likelihood of the data x generated by a
given latent variable z.

In VAE, assume the data distribution can be expressed in
latent variable z obtained from encode and z is subject to stan-
dard Gaussian distribution N ~ (0, 1). Let the distribution
function of z be p (z), the process of the data x generated by
decoder can be expressed by (1). In other words, to generate

VOLUME 7, 2019

Output [0 O Oy1
4 %4 14
v Se1 w St St1 w
u u U
Input Xe—1 Xe Xr41

FIGURE 5. Diagram of RNN structure.

the data x, firstly randomly sample z, and then generate x
from Py(x|z).

P(X) = /P(XIZ)P(Z)dZ ey

The objective function of VAE is shown in (2). KL(q||p)
denotes the Kullback-Liebler divergence of the two proba-
bility distributions p and q. Please refer to section 3.3 for the
detailed description of loss function.

maximize Eq, ;| x) — KL(qg (2] x) ||Po(2)) (2)

B. RECURRENT NEURAL NETWORK(RNN)

The vibration signals used in this study are time series data,
so RNN is more suitable for processing. Before input into
RNN, data are transformed into two-dimensional according
to the size of time windows to maintain their sequentiality.
In addition, in computing the state S; of current time #, RNN
not only multiplies the current input value x; by the weight
U of input layer, but also sums up with the result obtained
by multiplying by the common weight W, so as to retain
the previously memorized information (see Fig 5). W is the
common weight, U and V are the weight matrix of input layer
and output layer respectively, and oy is the output value at this
point of time.

St = f(U * x+WxS;_1) 3)
o = f(s; x V) “4)

The recurrent neural network can keep data to be relevant,
but due to weight reuse, gradient vanish or gradient explode
is more likely to happen in the face of a longer time step.
Gradient explode is easy to be solved, gradient clipping [27]
can be added to regulate the modified gradient. The way to
solve gradient vanish comes from LSTM (Long Short-Term
Memory) [16] proposed by Hochreiter and Schmidhuber in
1997, and LSTM was optimized by Felix Gers’ team in 2000
(see Fig 6.) [13]. The solution is to set three thresholds,
and the values are controlled between 0 and 1 by sigmoid
function to control the proportion of input, memory and
output. 0 denotes blocking all information and 1 denotes
accepting all information. If the value of the input gate i,
is approximately O, the input value at this time is blocked.
If the value of the forget gate f; is approximately 0, and the
value of the memory state at this time is forgotten. If the value
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FIGURE 6. Diagram of LSTM structure.

of the output gate o; is approximately 0, the memory won’t
be output. x; is the input at the time t and C; is the mem-
ory unit at the time t, and A, is the state of the hidden
layer.

Itis worth noting that relevant literature [15], [20] proposed
forget gate is normally the most important of all gates, and the
larger the initial value is, the better. Please refer to (5) to (10)
for the formula of LSTM:

fi = o(Wrx; + Ughy 1 + by + forgetbias) (®)]

ir =0 (Wix; + Uhy—1 + b)) (6)
C; = tanh Wex; + Ughi—1 + be) (7
Cr =i % 6: +/i % Gy ®)
oy = 0 (Woxy + Upht—1 + by) 9
hy = o; * tanh(Cy) (10)

Cho et al. proposed a modified version of LSTM model
in 2014: Gated Recurrent Unit (GRU) [6], and its structure is
shown in

Cell state and hidden state are combined and the output
gate o; is cancelled, and the three control gates are reduced
to two: the update gate z and the reset gate r. The reset gate
r determines the proportion of /4;_; in the previous step to
become the candidate ﬁ, in the current state, and all of them
are to be reset if r is 0. The update gate z determines the
proportion of updated data, and the output 4, at the current
time t will equal to the output h,_; at the previous point
of time if z is 1, which indicates that the input data at the
current time are not adopted at all.

Compared with LSTM, GRU decreases the number of
parameters to be trained by reducing gates, which can effec-
tively reduce the occurrence of overfitting in addition to
improving the speed of model training and convergence.

z =0Wuxy +Uhy—1 + by) an
rr =0 (Wex; +Uphy—1 + by) (12)
hy =z %1+ (1 —2z)

* (tanh (th, + Uy, (r, * hl_l) + bh)) (13)
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C. PROPOSED METHOD: RNN-BASED VAE

In RNN-based Autoencoder, two RNN networks are used
to respectively replace the general fully connected layers as
the encoder and the decoder, so that the model can incorpo-
rate the temporal characteristics in computation and reduce
the dimension of the time series data more effectively [34].
In this study, Autoencoder in the structure was replaced by
Variational Autoencoder (VAE), and variance and noise were
added to make the generation of model more real, rather than
just to reconstruct the input data.

The structure of RNN-based VAE proposed in this study is
shown in Fig 8. The time domain vibration signals of motor
are input into the Encoder, and then mean and variance of the
latent variable are obtained after passing through RNN and
the dense layer. After that, the latent variable is obtained by
adding up the results gained based on the equations in Fig 8.
Finally, the input data are decoded by using the dense layer
and RNN. During the training, batch normalization is used
to improve the model performance, and the latent space com-
puted in the process is used as the input data of the subsequent
classification model.

The loss function used in RNN-based VAE is designed as
the sum of reconstruction loss and KL divergence. Recon-
struction loss is calculated as the cross entropy of the proba-
bility distribution of the model’s output value and true value,
as shown in Eq. (14). Symbol descriptions: y denotes true
probability, a denotes predict probability, and N denotes the
number of data.

N
— > [yxna+(1 —y) *xIn(1 — a)]

n=1
N (14)

KL divergence is to calculate the differences between
latent variable distribution and standard normal distribution,
to achieve the function of regularization. The equation is
shown in (15), P denotes real distribution, and Q denotes
predicted distribution:

Cross entropy =

Q@)
P (i)

kL (PllQ) ==Y P(i)xIn (15)

For optimizer, after the experiment in this study,
Kingma et al. [21] has the best effect. Integrating the gradient
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descent with momentum and the advantages of Adagrad,
Adam is the most commonly used optimizer at present, and
the mathematical equations are shown in (16) to (20). In the
equation 6 denotes the parameter, 1 denotes the learning rate,
J denotes the loss function, i denotes the indexoff, t denotes
the number of iteration, and & denotes the smooth term.

my = Bime_+(1—-B1)g (16)
vi = Bavio +(1—B)g? (17)
R m;

iy, < 1_—‘13,1 (18)

- v

”“Tf@ (19)
Ot < O—(—— )i (20)

—)m
=)

IV. EXPERIMENT
A. DATASET
In this study, a motor experiment platform was designed to
collect vibration signals. Featured as low temperature rise,
low noise, small size and low maintenance cost, a brushless
gear reduction motor was used, and the detailed specification
is shown in Table 1. As shown in Fig 9, two black cushions are
placed under the corner base of the motor, aiming at reducing
the vibration arising from the slightly uneven floor. In the
choice of coupling, a flexible coupling is used to connect
the motor with the rotating shaft, and the reason why rigid
coupling is not used is to avoid damages to the shaft due
to excessive vibration, but the disadvantages are absorbing
vibration and suppressing signal intensity and performance.
The way to collect signals is to fix the accelerometer at the
position where the vibration is to be measured, to receive and
measure the g value of the accelerated speed generated by
the vibration, and the sampling rate is set to 4500 Hz. Totally
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three accelerometers were used to measure the vibration of
the motor, the bearing and the experiment platform respec-
tively, as shown in Fig 9.

The rotation speed was set at 1800rpm, which is 30Hz.
There are 4 designed experiment scenarios, respectively:
normal, dynamic unbalance, loosening and mixing, and a
total of 15 categories were created after different degrees of
severity were adjusted, the details are described below.

1) Normal: no external load was added on the motor
experiment platform, and all the operation conditions
were normal without any other interference.

2) Dynamic unbalance: if the central axis of mass of a
rotating component is not on the same line with the
central axis of rotation, then vibration will be caused
when the axis rotates, that is dynamic unbalance. In this
study, screws and two nuts were used as a set of load,
with a total weight of 10g. There were respectively
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TABLE 1. Motor specification.

Rated speed Maximum speed Machine length | Rated power Input voltage Phase Rated torque Maximum torque
3000 rpm 3500 rpm 80 mm 200 W AC 220 3 0.66 N-M 1.32N-M
MNormal Loose_1
006 006
004 004
00z 00z
& &
3 om0 B gao
E E
o =]
-0.02 -0.02
-0.04 -0.04
-0.06 —0.08
0 100 200 00 400 0 100 200 00 400
Time [1/4500 sec] Time [1/4500 sec]
(a) (b
FIGURE 10. Time domain vibration signals of motor collected in (a) normal scenario (b) loosening scenario.
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2 2
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FIGURE 11. Transformed the data in Fig 10 into spectrum signals (a) normal scenario (b) loosening scenario.

3 screw holes in all directions from the inner ring to the
outer ring on the load disc, therefore, various rotations
with dynamic unbalance could be created when differ-
ent number of screws were locked on different posi-
tions. Firstly, 1 to 3 screws were locked in Y direction,
and then 1 to 3 screws were also locked in X direction.
A total of 6 scenarios with dynamic unbalance were
created.

Loosening: the screws on the bearing blocks were loos-
ened to simulate the situation of loosening. A total of 2
loosening scenarios were created based on different
positions.

Mixing: the screws on the bearing blocks were loos-
ened from one side and the load was added, to create
6 abnormal scenarios mixing dynamic unbalance with
loosening.

3)

4)

139092

The sampling rate is set to 4500 Hz and the speed of
1800 rpm represent that 150 data points can be collected
per revolution (that is why the time step was set at 150).
The ““normal” scenario and the ‘“‘loosening” scenario are
taken as the examples, time domain data are drawn as shown
in Fig 10, and FFT frequency domain data are drawn as shown
in Fig 11.

Normally, the dominant frequency should appear at the
position of double frequency. However, as can be seen from
Fig 11, with too many noises in the spectrum, the spectrum
features of all experiment scenarios could not be clearly
observed, so that it was difficult for the staff to use traditional
knowledge to determine the fault scenarios. The algorithm
model proposed in this study can avoid this problem, and the
fault scenarios can be distinguished immediately after direct
input of time domain signals.
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TABLE 2. Loss of rnn-based VAE using different encoder/decoder.

RNN LSTM GRU
Loss 1.384 0.325 0.215

TABLE 3. Loss of RNN-based VAE using different hidden unit numbers.

16 32 34 128 256
Loss 0.51 0.49 0.24 0.038 0.0044

A total of 12,150,000 data were collected, with 3 features.
Time step was set to 150, because 150 data points could
be collected every revolution of the motor, which took
1/30 second. The data were converted into time windows
which were slide and segmented by 150 time steps, and
then transformed from 2-dimensional data into 3-dimensional
data, so as to conform to the input structure of the recurrent
neural network, as shown in Fig 12.

Before input into the model, the data were randomly split
into training set, validation set and testing set, with the pro-
portion of 60:20:20. The training set was used to train the
model and update the weights. Validation set was used to eval-
uate training curve of RNN-based VAE. After RNN-based
VAE converged or met the conditions of early stopping,
the weight of this model was fixed. After that, the feature
vectors of dimension reduction obtained after the training
data passing through this model were used for training of the
subsequent classification model.

B. HYPERPARAMETER TUNING

This part is to determine the parameters of RNN-based VAE.
RNN, LSTM and GRU are the three models that most widely
used in processing sequential data. Firstly, the latent space
was set at 75 dimensions and time step was set at 150 (Exper-
iments show that time step below 150 will greatly reduce
the model performance), in order to find out the most suit-
able model for encoder/decoder. The final results of the three
models are shown in Table 2, and during the course, 5-fold
cross-validation was used for verification. It can be found that
GRU has the best effect and rapid convergence, so GRU is
used as the encoder and the decoder for RNN-based VAE in
the subsequent experiments.

The comparison on the number of hidden units in GRU is
shown in Table 3, and it can be found that loss continuously
decreases as the number of hidden units increases. However,
in consideration of the fact that overfitting is easy to occur
with long computation time and large number of parameters,

VOLUME 7, 2019

TABLE 4. Loss of RNN-based VAE using different batch sizes.

64 128 256 512
Loss 0.144 0.159 0.038 0.187

TABLE 5. Loss and accuracy of RNN-based VAE using different latent
dimensions.

3 5 10 25 50 75 100
Loss 0.482 0.121 0.067 0.0453 0.083 0.038 0.072
Accuracy 0.495 0.862 0.956 0.984 0.994 0.997 0.992

and it is found in subsequent experiments that hidden units
have slight effects on classification accuracy after they are
increased to a certain amount, 128 is finally determined to be
the number of neurons in encoder/decoder of GRU.

Table 4 shows the results obtained by changing the batch
sizes of all trainings, and it can be seen from the table that the
minimum training loss can be obtained if the batch size is set
at 256.

In the study structure, the most important part was the
latent space obtained after encoding. Table 5 shows the loss
calculated by the latent space which different dimensions are
set, then input into the neural network for comparison of
classification accuracy. It can be found that the information
of original data are hard to be saved at a low latent space
dimension, resulting in unsatisfactory subsequent classifica-
tion accuracy. After weighing, the dimension of the latent
space was set at 25, because increasing the dimension further
will not be obviously beneficial for loss and accuracy, but
contrary to the purpose of “dimension reduction”.

After the structure and the parameters were established
according to the above experiment results, the RNN-based
VAE model was designed based on this parameter com-
bination to reduce the dimension of the motor vibration
data, and then: (1) they were input into the subsequent clas-
sification model to assess accuracy and (2) visualization
analysis was conducted after another dimension reduction.
Encoder/Decoder: GRU with 128 hidden units, Dimension of
latent space: 25, Time step of input data: 150, Batch size: 256.

C. MODEL EVALUATION
In this section, the prediction accuracy calculated by several
state-of-the-art algorithms before and after different dimen-
sion reduction methods are compared, as shown in Table 6.
In row 1, the data are slide by the time window with
150 time steps, which has a total of 450 features. In row 2,
3 and 4, the sequential original data are respectively input
into Autoencoder, Variational Autoencoder and RNN-based
VAE, being reduced to 25 dimensions. Because the results
of dimension reduction obtained from Autoencoder, Varia-
tional Autoencoder, RNN-based VAE are not sequential data,
so RNN, LSTM and GRU are not used for prediction.
According to the results in Table 6, it can be found that
our method achieves the best fault prediction accuracy among
other methods. RNN is the model most widely used in time
series data forecasting, but based on our experimental results,
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TABLE 6. Results of accuracy evaluated using 7 classification models, while data are conducted different dimension reduction methods.

SVM R]f;‘fe‘;‘[n XGBoost Neural Network RNN LSTM GRU

None (original data) 0.565 0.555 0.940 0.850 0.601 0.833 0.948
Autoencoder 0.461 0.554 0.914 0.821
Variational Autoencoder 0.504 0.597 0.932 0.848
RNN-based VAE (ours) 0.792 0.889 0.966 0.998

2} -3 -2 -1 o 1 2 k] 4

FIGURE 13. Visual results obtained from reducing from 25 dimensions to 2 dimensions by PCA, and purple denotes the normal scenario.
(a) 6 dynamic imbalance scenarios and normal scenario (b) 2 loosening scenarios and normal scenario (c) 6 mixing scenarios and normal scenario.

(b) (©)

FIGURE 14. Visual results of reducing 25 dimensions to 15 dimensions by PCA, then reducing 15 dimensions to 2 dimensions by LDA. The
purple points denote the normal scenario. (a) 6 dynamic imbalance scenarios and normal scenario (b) 2 loosening scenarios and normal

scenario (c) 6 mixing scenarios and normal scenario.

the performance of RNN is less than ideal, and even LSTM
and GRU can only achieves the accuracy of 83.3% and 94.8%.
This result may be attributed to the sequence length being
too long, causing the information to be diluted during the
propagation.

However, after dimension reduction by RNN-based VAE,
a simple double-layer neural network can achieve the high
accuracy of 99.8%, increased by 14.8%. Other dimension
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reduction methods, such as Autoencoder and Variational
Autoencoder, cannot effectively extract the features of
the sequential data, only the accuracy of random for-
est is slightly improved, while the others all get lower
accuracy. As for sequential original data, by using our
method, the prediction accuracy of SVM, random forest
and XGBoost can be improved by 22.7%, 33.4% and 2.6%
respectively.
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D. LATENT SPACE VISUALIZATION

In order to visually represent the dimension reduction results,
the data set of new features with the dimensions reduced to
25 by RNN-based VAE are further reduced to 2 dimensions
for visualization by using the dimension reduction algorithm,
such as PCA and LDA. Different categories (load, loosening
and mixing) are compared with normal categories respec-
tively through drawings. Fig 13 shows the visual results of
reducing the data from 25 dimensions to 2 dimensions by
PCA, and it can be found that the data points of normal
scenarios (purple) are mixed with other fault scenarios and
are not well separated. In Fig 14, PCA is firstly used to
reduce 25 dimensions to 15 dimensions, and then LDA is used
to reduce 15 dimensions to 2 dimensions to get the visual
results. The effect is significantly better than that achieved
by simply using PCA for dimension reduction. In addition
that normal scenario and other fault scenarios can be clearly
distinguished, the fault scenarios in the same category with
different order of severity also can be distinguished. In the
future, such visual results of dimension reduction can deter-
mine which fault scenario is close to, by observing the posi-
tions of new data points in the 2-dimensional space, so as to
assist in determining unknown fault modes.

V. CONCLUSION
In most of the fault detection methods at present, time

domain signals are required to be transformed into frequency
domain or statistics and other high-level data, highly relying
on the professional knowledge such as signal processing
and fault mode pattern recognition. While, in this paper,
we can achieve the purpose of fault detection by input the
original time domain vibration data of motor and extract
the feature based on the proposed RNN-based VAE model,
so that the computing cost will be reduced, and on top of
that, the classification accuracy of fault detection can be well
improved. In this study, we designed a motor experiment
platform, 15 fault scenarios were simulated. Accelerometers
were placed in 3 different positions to collect vibration sig-
nals, and there are totally 12,150,000 data. The experiment
results show that the traditional classification models, such
as SVM and Random Forest, and even XGBoost, RNN,
LSTM and GRU cannot achieve ideal accuracy. If Autoen-
coder and Variational Autoencoder are used to reduce the
dimension of sequential data, the classification accuracy can-
not be improved effectively or even decreased, indicating
that the two commonly used dimension reduction meth-
ods cannot effectively extract the features of time series
data. However, after the dimensions of signals are reduced
by RNN-based VAE, the prediction effects of all classi-
fication models can be significantly improved. Moreover,
by cooperating with the dimension reduction in the subse-
quent stages, such as PCA and LDA, the visual results can
be used to assist in determining the scenarios of unknown
faults.

For future work, we plan to extend our experiment using
the motor with larger power and implement more fault
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scenarios to strengthen the stability and robustness of our
model. At last, we will work with the company to obtain real
data from the production line for further evaluation.
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