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ABSTRACT In this study, an obstacle avoidance controller based on nonlinear model predictive control is
designed in autonomous vehicle navigation. The reference trajectory is predefined using a sigmoid function
in accordance with road conditions.When obstacles suddenly appear on a predefined trajectory, the reference
trajectory should be adjusted dynamically. For dynamic obstacles, a moving trend function is constructed to
predict the obstacle position variances in the predictive horizon. Furthermore, a risk index is constructed and
introduced into the cost function to realize collision avoidance by combining the relative position relationship
between vehicle and obstacles in the predictive horizon. Meanwhile, lateral acceleration constraint is also
considered to ensure vehicle stability. Finally, trajectory dynamic planning and tracking are integrated into
a single-level model predictive controller. Simulation tests reveal that the designed controller can ensure
real-time trajectory tracking and collision avoidance.

INDEX TERMS Autonomous vehicle, dynamic obstacles, moving trend function, dynamic planning and
tracking, single-level controller.

I. INTRODUCTION
With the rapid development of technology in the 21st century,
autonomous vehicles have become an attainable reality [1].
They have attracted widespread attention because of the con-
tinuous improvement of automatic driving levels [2], [3].
However, with the improvement of automation level, road
traffic accidents occur frequently in recent years [4]. Safety
has become the eternal theme of autonomous vehicles [5], [6].

Active collision avoidance system can effectively improve
traffic safety, and has become a research hotspot in the field
of automotive active safety. In literature [7], distributed con-
trollers were designed to avoid collisions between a group
of underactuated ships. Literatures [8] and [9] presented
a formation maneuver control method to avoid collisions
between each vehicle and its front vehicles. For autonomous
vehicles, obstacle avoidance refers to perceiving environmen-
tal information and generating control commands to navi-
gate a vehicle around obstacles safely [10]–[12]. It can be
roughly divided into the following four steps: environmental
identification and integration, behavioral decision, trajectory
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planning, and trajectory tracking. Among these steps, tra-
jectory planning and tracking are important control seg-
ments [13]. Real-time planning and tracking feasible trajec-
tories are necessary for autonomous vehicle driving [14].

Many research methods have been used for the trajectory
planning and tracking of autonomous vehicles. The reinforce-
ment learning approach is widely applied to autonomous
vehicles and robots for trajectory planning or obstacle avoid-
ance. Such application can usually ensure safety bymastering
a complete state and environment knowledge after experi-
encing failures during training time [15], [16]. However, this
method still requires a lot of training and test data, and the
implementation is complex and costly. An artificial potential
field method is used to generate repulsive potential fields to
obstacles and attractive potential fields to the goal. Using this
method, vehicles can avoid collisions with obstacle bound-
aries while proceeding toward their goals [17]. However,
existing local minimum problems in this method may prevent
vehicles from arriving at their targets.

Model predictive control (MPC) is an attractive method
due to its flexibility and ability to compute optimal solutions
with hard and soft constraints [18], [19]. It has the abilities
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of predicting the future dynamics of a system and receding
horizon optimization [20], [21]. Thus, MPC is a natural
candidate for the trajectory planning and tracking of an
autonomous vehicle in obstacle avoidance [22]. Most of
existing obstacle avoidance controllers are designed on the
basis of hierarchical architecture. In hierarchical controllers,
the higher level is a path planner, whereas the lower level is
a path tracker. Gao proposed a hierarchical obstacle avoid-
ance control architecture in literatures [14], [23]–[25]. In his
literatures, the path reference values obtained by the upper
level re-planning controller were sent to the lower level for
path tracking. However, the high-level path planner may
generate dynamic infeasible trajectories in this case [26].
In addition, collisions with obstacles may occur if the vehi-
cle deviates from the reference track. Compared with the
hierarchical controller, the single-level controller integrates
trajectory planning and tracking in one level. This structure
can usually avoid the generation of inactive dynamic trajec-
tories at the upper level. In literatures [10]–[12], [26]. Liu
presented an obstacle avoidance algorithm that combines
path planning and tracking into a single-level architecture.
In Literature [27], a simultaneous trajectory planning and
tracking controller is presented to address obstacle avoidance.
Meanwhile, the selection of discrete time is crucial for single-
level controllers. A long discrete time is always expected
to predict further in favor of collision avoidance. However,
the discrete time should still be as small as possible to ensure
smooth control action in tracking control. To solve this con-
tradiction effectively, Literatures [13], [28], [29] presented
the strategy of varying discrete steps and realized the good
effects of tracking and collision avoidance.

In a practical environment, dynamic obstacles may appear
on the desired path. If the actual vehicle trajectory is not
dynamically adjusted, then the vehicle may collide with
obstacles in the course of trajectory tracking. This con-
dition depends on whether the future motion trend of a
dynamic obstacle can be predicted effectively [30]–[32]. Risk
can be predicted by combining the future status of vehicle
and obstacles to adjust the trajectory dynamically. Relative
studies on avoiding moving obstacles based on MPC have
also progressed. In literature [33], a collision-free navigation
function was designed for real-time collision avoidance of
autonomous vehicles in static and dynamic environments.
The proposed approach is applicable to point obstacles and
also has good compatibility with lidar point clouds. In lit-
eratures [34] and [35], a hierarchical predictive trajectory
guidance and control framework was proposed in consid-
eration of moving obstacles in predictive horizon with an
elliptical constraint. In literature [36], an integrated controller
was designed to realize adaptive cruise control coupled with
obstacle avoidance. In this literature, the distance between
an eGO vehicle and a moving object was considered in the
predictive horizon in accordance with their motion states at
the beginning of the horizon.

In this study, an integrated controller considering simul-
taneous dynamic planning and tracking is designed. The

reference trajectory is predefined using a sigmoid function.
For appearing dynamic obstacles that threaten the vehicle
trajectory, a moving trend function is structured to predict the
position of the obstacles in the predictive horizon. Then, the
reference trajectory is adjusted dynamically by combining
the predicted vehicle and dynamic obstacles in the predictive
horizon with a nonlinear model predictive control (NMPC).
The proposed controller controls the vehicle to realize obsta-
cle avoidance and path tracking by optimizing the front
steering angle. Different from literature [36], a method of
varying discrete steps is adopted in this paper to compatible
with path tracking and obstacle avoidance better. At the same
time, lateral acceleration constraint is also considered in the
optimization.

The remainder of this paper is organized as follows:
In Section II, the whole control flow of the proposed con-
troller is described. In Section III, the generation of ref-
erence trajectory based on the sigmoid function is stated.
In Section IV, the 2-DOF bicycle model and the Pacejka
tire model for controller design are introduced. The collision
avoidance with dynamic obstacle is discussed in Section V.
In Section VI, the problem of optimization solution is
obtained. In Section VII, simulations conducted under differ-
ent operating conditions are reported. Finally, in Section VIII,
the conclusions are presented.

II. CONTROL FRAME
The whole control process is shown in Figure 1. The ref-
erence trajectory is predefined using a sigmoid function in
accordance with road environment information. The desired
yaw angle and lateral displacement obtained by the sigmoid
function are sent to the NMPC controller for collision avoid-
ance. When new obstacles appear on the predefined reference
trajectory, a lidar unit mounted on the vehicle can detect their
position information. To realize collision avoidance effec-
tively, a moving trend function is established to reflect the
position changes of point obstacles in the predictive horizon.
In accordance with the position changes of the vehicle and
the obstacles at each step in the predictive horizon, a risk
index is built and imposed to the controller. In keeping with
the given information, the front steering angle is optimized
by the controller to navigate the vehicle safely. Vehicle state
information is fed back to the prediction model to achieve
continuous dynamic planning and tracking control. At the
same time, the lateral acceleration constraint is considered in
the optimization to ensure vehicle stability. Finally, an inte-
grated control process for simultaneous dynamic planning
and tracking is formed.

III. GENERATION OF REFERENCE TRAJECTORY
When a static obstacle or a forbidden area is in front of
the vehicle, a safe avoidance trajectory should be gener-
ated to complete a safe lane-changing operation. A good
avoidance trajectory not only needs to ensure safe and
collision-free driving but must also consider driving com-
fort and real-time updating characteristics of the trajectory.

VOLUME 7, 2019 132075



S. Li et al.: Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on MPC

FIGURE 1. Control flow of the integrated controller.

Therefore, the following conditions should be followed in
setting the reference trajectory:
• Free from collision with obstacles;
• Satisfied vehicle dynamic constraints;
• Smooth trajectory curvature without sudden change;
• Simple trajectory equation that can be quickly updated.
The common planning methods used for reference tra-

jectory include half arc and line matching, sine or cosine
function, trapezoid function based on lateral acceleration, etc.
However, they don’t consider vehicle dynamics constraints
and the smooth transition of curve simultaneously. Com-
pared with these traditional methods, the sigmoid function
has the following advantages: Firstly, the expression form
is relatively simple, and only three parameters need to be
adjusted. Secondly, the curve is continuous, which can avoid
the problem of curvature mutation. Finally, vehicle dynamics
constraints are considered.

In view of the above considerations, the reference tra-
jectory is predefined using the sigmoid function. As shown
in Figure 2, Ytol is an additional parameter which represents
the starting point of the lateral displacement of the vehicle.
The expression of the sigmoid function is as follows:

Y (X ) =
B

1+ e−A(X−C)
(1)

where X and Y are the abscissa and ordinate of the vehicle
centroid in the geodetic coordinate, respectively, which can
be determined by using GPS and electronic map; A is the
slope of the curve midpoint, which can represent the urgency
of avoidance; B is the maximum lateral avoidance distance;

FIGURE 2. Reference trajectory based on the sigmoid function.

2C is the total longitudinal distance between the vehicle and
the target point.

In sigmoid function, the maximum lateral acceleration and
jerk constraints can be taken into account simultaneously
in determining parameter A. The corresponding inequality
expressions are as follows:∣∣ay(X )∣∣ ≤ aymax (2a)

|j(X )| ≤ jmax (2b)

where aymax is the maximum lateral acceleration, which can
represent the lateral stability of vehicle; jmax indicates the
maximum lateral jerk, which can reflect driver’s comfort.

When a vehicle is traveling at a speed of U0, parameter A
can be obtained preliminarily considering the maximum lat-
eral acceleration. And the specific expression is as follows:

Aay = −
(ρ1 + 1)2

√
−ρ1Bρ2aymax

ρ1Bρ2
s.t.

ρ1 =
√
2
s2
√
s1
(6U2

0 + 2aymaxB+
4a2ymaxB

2

3U2
0

)

+
2aymaxB

3U2
0

+1

ρ2 = aymaxρ1B− U2
0ρ

2
1 + U

2
0

s1 = 9U4
0 + 3aymaxBU2

0 + 2a2ymaxB
2

s2 = cos(
1
3
tan−1(

3U2
0

√
81U8

0 + 27U4
0 s

2
3 + 3s43

27U6
0 + 9U2

0 s
2
3 + 4s33 + 27U4

0 s3
))

s3 = aymaxB (3)

Meanwhile, the maximum lateral jerk constraint should
also be considered. The specific expression is as follows:

Aj =
1

6U3
0

( 3
√
s4 +

B2j2max
3
√
s4
+ Bjmax)

s.t.

s4=
jmax

B
(86U6

0+B
4j2max+24U

3
0

√
1296U6

0+3B
4j2max)

(4)
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Finally, the smaller value obtained by the two methods is
taken as the final value of parameter A:

A = min(Aay,Aj) (5)

When parameters A and B are determined, parameterC can
be calculated as follows:

C=
1
A
ln
B− Ytol
Ytol

(6)

More detailed calculations of parameters A, B and C can
be found in literature [37].

When a vehicle needs to complete lane-changing opera-
tion, the maximum lateral avoidance distance B should be
determined on the basis of the safety position to be reached.
In order to consider both vehicle stability and driver’s com-
fort during lane-changing maneuver, the maximum lateral
acceleration and jerk are adopted to determine the slope A
of the curve midpoint. Meanwhile, the total longitudinal dis-
tance 2C should also be confirmed to ensure when the lane-
changing maneuver is completed.

In trajectory tracking, the deviations between actual yaw
angle, lateral displacement and reference are commonly used
to evaluate tracking performance. In this study, the reference
trajectory can be dissociated into several desired lateral dis-
placement and yaw angle values. The specific approach is
shown in Figure 3.

FIGURE 3. Desired yaw angle and displacement obtained from the
reference trajectory.

In Figure 3, L is the preview distance, which is determined
in accordance with the curvature of the road and longitudinal
velocity. The specific determination method can be found in
literature [38]. Yref is the reference lateral displacement, and
ϕref stands for the reference yaw angle. The expression can
be written as follows:

Yref (X + L) =
B

1+ e−A(X+L−C)
(7a)

ϕref (X + L) =
d[Yref (X + L)]

dX
(7b)

IV. ESTABLISHMENT OF MODELS
In this part, the vehicle dynamic and tire models are intro-
duced for controller design. In Section A, the 2-DOF kine-
matic and dynamic bicycle model is introduced. Meanwhile,
in Section B, the Pacejka tire model is used to describe tire
lateral force.

A. VEHICLE MODEL
For model predictive control, the precision of the selected
model can directly affect the control effect. An accurate
model can improve control accuracy but increase the com-
putational burden of a system.

In consideration of the real-time operation and accuracy of
the control system, the 2-DOF bicycle model is suitable for
collision avoidance, which can be referred in literatures [39]
and [40]. As shown in Figure 4, the following assumptions
are mentioned:
• The longitudinal velocity of vehicle is constant;
• The left and right wheels on the same axle are simplified
as one wheel;

• Only the lateral and yaw motion of the vehicle are
considered.

FIGURE 4. Vehicle model for control design.

The dynamic equation can be expressed as:

ÿ =
(
Fyf + Fyr

)
/m− U0ω (8a)

ω̇ =
(
lf Fyf − lrFyr

)
/Iz (8b)

ϕ̇ = ω (8c)
Ẏ = U0 sinϕ + ẏ cosϕ (8d)
Ẋ = U0 cosϕ − ẏ sinϕ (8e)

where ẏ and ÿ are the lateral velocity and acceleration of
vehicle, respectively; Fyf and Fyr represent the lateral forces
of the front and rear axles, respectively; m and U0 indicate
the constant mass and longitudinal velocity of the vehicle,
respectively; ϕ is the yaw angle of the vehicle; ϕ̇ and ω̇ stand
the yaw rate and yaw acceleration of the vehicle, respectively;
lf and lr are the distances from the vehicle’s center of mass to
the front and rear axles, respectively; Iz denotes the rotational
inertia of the vehicle; Ẋ and Ẏ are the longitudinal and lateral
velocity of the vehicle centroid in the geodetic coordinate
system, respectively.

The dynamic model can be written as a nonlinear
function:

ξ̇ (t) = f N2DOF (ξ (t), u(t)) (9a)
yc(t) = ηξ (t) (9b)
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where

ξ (t) =


ẏ
ω

ϕ

Y
X

 u(t) = [δf ]

η = [ 0 0 1 1 0 ] yc(t) =
[
ϕ

Y

]
where ξ (t) and u(t) are the vehicle states and control input
of the system, respectively; yc(t) is the predicted output of
the system; η is the coefficient matrix, which can determine
the number of predicted outputs. The system has five state
variables, one control input, and two predicted outputs. The
five state variables include vehicle lateral velocity, yaw rate,
yaw angle, and lateral and longitudinal displacements in the
geodetic coordinate system. The system input is the front
steering angle δf . The predicted outputs are the yaw angle ϕ
and lateral displacement Y of vehicle.

B. TIRE MODEL
When tire slip angle is small, tire lateral force has a linear
relationship with slip angle. However, when tire slip angle
exceeds a certain value, the relationship between slip angle
and lateral force becomes nonlinear. In this study, the Pacejka
tire model is used to reflect the nonlinear characteristics of
tire force and is expressed as follows:

Fy = µDy sin(Cy arctan(Br − Ey(Br − arctanBr ))) (10)

where

Br = By − α
Cy = a0
Dy = a1F2

z + a2Fz

By =
a3 sin(2 arctan(Fz/a4))

CyDy
Ey = a5Fz + a6

where Fy is the tire lateral force, and α is the tire slip angle.
By, Cy, Dy, and Ey depend on the normal force of the tire,
where a0 = 1.75, a1 = 0, a2 = 1000, a3 = 1289, a4 = 7.11,
a5 = 0.0053, and a6 = 0.1952.
Tire lateral force and slip angle under different

adhesion coefficients and vertical loads are shown in
Figures 5(a) and 5(b), respectively.
The tire slip angles are defined as:

αf = arctan(
ẏ+ ϕ̇lf
U0

− δf ) (11a)

αr = arctan(ẏ− ϕ̇lr ) (11b)

Fz is the total vertical load of the vehicle, which is dis-
tributed between the front and rear axles on the basis of the
geometry of the vehicle model (described by parameters lf
and lr ):

Fzf =
mglr
lf + lr

(12a)

Fzr =
mglf
lf + lr

(12b)

FIGURE 5. Tire force characteristics.

V. DETECTION AND AVOIDANCE FOR DYNAMIC
OBSTACLES
In Section III, a sigmoid function is predefined as the ref-
erence trajectory. However, when dynamic obstacles appear
on the predefined trajectory, the reference trajectory may
be threatened. In this case, the vehicle may collide with
dynamic obstacles. Therefore, the reference trajectory should
be dynamically adjusted. Moreover, the vehicle should be
controlled to track the adjusted safety trajectory.

A. POSITION DETECTION OF DYNAMIC OBSTACLES
Obstacle position information is usually detected by lidar.
Performing lidar on an autonomous vehicle can obtain the
absolute distance to the border of obstacle. Obstacle posi-
tion information can be described by lidar point clouds.
Thus, obstacles are discretized into several points (pXj, pYj),
as shown in Figure 6.
Normally, the lidar mounted on vehicle can measure the

distance rm to obstacle and the angle θ between obstacle and
X -axis of vehicle coordinate system. If the distance rm and
angle θ have been obtained, the obstacle position (pXj, pYj)
in the geodetic coordinate system can be calculated by
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FIGURE 6. Position detection of the point obstacles.

coordinate transformation:{
pXj = rm cos(θ + ϕ)+ X
pYj = rm sin(θ + ϕ)+ Y

(13)

where X and Y are the longitudinal and lateral position of
vehicle in the geodetic coordinate system.

B. MOVING TREND ESTABLISHMENT FOR OBSTACLES
In model predictive control, vehicle states in the predictive
horizon can be predicted in accordance with current feedback
information from the vehicle. However, the obstacle infor-
mation can be only acquired by a lidar point at each sample
time rather than in the predictive horizon. Collision avoidance
is an urgent process, the future states of the vehicle and the
obstacles should be all predicted to realize safe driving.

A moving trend function is constructed to predict point
obstacle position in the predictive horizon. During an MPC
predictive horizon, all objects are assumed to move with the
speeds and accelerations at the beginning of the horizon.
Literatures [27], [33] and [34] also adopted similar methods
to predict the position of obstacles in the predictive horizon.
Better obstacle avoidance effects were achieved in these lit-
eratures.

If the position of a point obstacle detected by lidar is
(pXj,t , pYj,t ) at time t , then its position coordinate in the
predictive horizon is as follows:

pXj,t+kTs = pXj,t+(k−1)Ts + ρx

k = 1, 2, · · · · ·,P

pYj,t+kTs = pYj,t+(k−1)Ts + ρy

k = 1, 2, · · · · ·,P

(14)

where

ρx =


pẊj,tTs Uniform Speed

pẊj,t+(k−1)TsTs +
1
2
pẌj,tT 2

s Variable Speed

k = 1, 2, · · · · ·,P

ρy =


pẎj,tTs Uniform Speed

pẎj,t+(k−1)TsTs +
1
2
pŸj,tT 2

s Variable Speed

k = 1, 2, · · · · ·,P

where P represents the predictive horizon; Ts represents the
predictive step size in the predictive horizon; pẊj,t and pẎj,t
are the longitudinal and lateral speed of a moving obstacle
at time t , respectively; pẌj,t and pŸj,t are the longitudi-
nal and lateral acceleration of a moving obstacle at time t ,
respectively.

C. RISK INDEX DESIGN FOR COLLISION AVOIDANCE
A risk index between the vehicle and the point obstacles is
designed to avoid dynamic obstacles effectively in trajectory
tracking. The risk index is imposed into a cost function to
optimize the front steering angle, thereby realizing collision
avoidance.

In Figure 7, lf , lr , and c are the external dimensions of the
vehicle. c denotes half the width of the vehicle. Then, j points
are acquired at the edge of obstacle at each predictive step,
which are marked as

(
pXt+kTs,j, pYt+kTs,j

)
. If these points are

predicted in the geodetic coordinate, they can be transformed
into the vehicle body frame as follows:

Dx,j,t+kTs =
(
pYt+kTs,j − Yt+kTs

)
sinϕt+kTs

+
(
pXt+kTs,j − Xt+kTs

)
cosϕt+kTs (15a)

Dy,j,t+kTs =
(
pYt+kTs,j − Yt+kTs

)
cosϕt+kTs

−
(
pXt+kTs,j − Xt+kTs

)
sinϕt+kTs (15b)

The minimum distance to all obstacle points is defined as
dmin,t+kTs in the predictive horizon, which can be determined
by the following segmentation function:

Case 1

if Dy,j,t+kTs ∈ [−c, c] and Dx,j,t+kTs > lf ;

dmin,t+kTs = min(Dx,j,t+kTs − lf )

Case 2

if Dy,j,t+kTs ∈ [−c, c] and Dx,j,t+kTs ∈ [−lr , lf ];

dmin,t+kTs = 0

Case 3

if other conditions

dmin,t+kTs = inf (16)

where inf is a sufficiently large number.
In order to further elaborate the significance of equa-

tion (16), the scenarios of the three segmented functions are
illustrated graphically in Figure 8.
In Case 1, the host vehicle has a certain distance from

the obstacles. In this case, the minimum deviation Dx,j,t+kTs
between the abscissas of point obstacle in a vehicle body
frame and the body size is taken as the minimum distance.
In Case 2, the host vehicle overlaps with the obstacles and

the abscissas of point obstacles in a vehicle body frame is
in the range of [−lr , lf ]. In this case, the host vehicle will
collide with the obstacle. The value of the minimum distance
dmin,t+kTs is set to be zero.
In other conditions, the value of dmin,t+kTs is set to be a

sufficiently large value to disregard obstacles that do not lie
within the vehicle’s line of sight.
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FIGURE 7. Schematic of obstacle dangerous distance.

FIGURE 8. The diagram of segmented functions.

Thus, the risk index is defined as follows in the predictive
horizon:

Jt+kTs =
Kobsvt+kTs

dmin,t+kTs + e
(17)

where Kobs is an adjustable weight coefficient. When the
value of Kobs increases, the value of risk index Jt+kTs will
become larger. It means that the risk index accounts for a
larger proportion in the cost function. In this case, the effect
of obstacle avoidance will be more obvious in the process
of optimizing. vt+kTs is the vehicle speed at each step in
the predictive horizon, which can be expressed as v2t+kTs =
ẋ2t+kTs + ẏ

2
t+kTs ; e is a small number, which is used to prevent

the denominator from being zero. The smaller the closest
distance dmin,t+kTs is, the greater the risk index Jt+kTs is.
Therefore, collisions are likely to happen.

VI. OPTIMIZATION SOLUTION
In this section, the cost function is constructed. Meanwhile,
the corresponding stability constraint is also considered to
achieve effective collision avoidance. Accordingly, the flow
diagram of the whole algorithm used for obstacle avoidance
is presented in Figure 9.

Firstly, parameters A, B, and C are initialized to deter-
mine the sigmoid function as the reference trajectory. The
vehicle is then controlled to track this trajectory. Afterwards,
the reference trajectory is checked if new obstacles appear as

FIGURE 9. Flow diagram of the obstacle avoidance algorithm.

a threat. If no obstacle is found, the vehicle will continue to
follow the reference trajectory. Otherwise, a risk index will
be structured into the cost function for obstacle avoidance.
Finally, the optimal solution can be obtained.

A. COST FUNCTION DESIGN
Equation (9a) is discretized with a fixed sampling time Ts.
The discrete model of equation (9a) can be expressed as
follows:

ξ (k) = f N2DOF (ξ (k), u(k)) (18a)

g(1u(k)) = u(k)− u(k − 1) (18b)

yc(k) = Cξ (k) (18c)
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At each predictive step, the state variable can be expressed
as follows:

x(k + 1 |k ) = f (x(k), g(1u(k)))

x(k + 2 |k ) = f (x(k + 1), g(1u(k + 1)))

= f (f (x(k), g(1u(k))), g(1u(k + 1)))
...

x(k + P |k ) = f (x(k + P− 1), g(1u(k + P− 1)))

= f (· · ·f (x(k), g(1u(k)), g(1u(k +M − 1)))

(19)

where ξ (k) is the state variable at step k; u(k) and 1u(k)
are the control input and the increment of control input of
step k , respectively; yc(k) is the predicted output at step k;
M represents the control horizon in model predictive control.
The specific expressions are as follows:

u (k) = [δf (k)]

1u (k) = [1δf (k)]

ξ (k) = [ẏ(k), ω(k), ϕ(k),Y (k),X (k)]

yc(k) = [ϕ(k),Y (k)]

The optimized problems to be solved in NMPC can be
obtained:

min
U(k)

JN2DOF (ξ̄t , ut ) =
t+P−1∑
k=t

0yi[yc (k + 1 |k )

− Re(k + 1)]2 + 0ui1u(k)2 + Jt+kTs
s.t. ξk+1,t = f N2DOF (ξk,t , uk,t)

k = t, . . . , t + P− 1
yc(k + 1 |k ) = [ 0 0 1 1 0 ] · ξk+1,t
k = t, . . . , t + P− 1
uk,t = ut+M ,t
k = t +M + 1, . . . , t + P− 1
1uk,t ∈ [−1umax,1umax]
k = t, . . . , t +M − 1
uk,t ∈ [−umax, umax]
k = t, . . . , t + P− 1
ξt,t = ξ (t) (20)

where JN2DOF is the optimized objective function based on
the nonlinear 2-DOF model; ξ̄t = [ξ̄t,t , ξ̄t+1,t , . . . , ξ̄t+P−1,t ]
is the sequence including five state variables; Re (k) is the
reference value obtained from the sigmoid function at step k ,
which can be expressed as Re (k) = [ϕref (k),Yref (k)]; u (k)
is the control input at step k; 0yi and 0ui are the weighting
matrices corresponding to the controlled output and input,
respectively.

The cost function is composed of three parts, whose mean-
ings are as follows:

• JN2DOF1 =

t+P−1∑
k=t

0yi[yc (k + 1 |k )− Re (k + 1)]2

indicates that the deviation between the predicted output
and reference should be as small as possible. It can be

expanded as 0y1[Yk,t − Yrefk,t ]2 + 0y2[ϕk,t − ϕrefk,t ]2.
0y1 and 0y2 are the weighting factors corresponding to
lateral displacement and yaw angle output, respectively;

• JN2DOF2 =
t+P−1∑
k=t

0ui1u(k)2 ensures that the control

input increment is as small as possible to make the con-
trol action smooth. 0ui represents the weighting factor
corresponding to control input increment;

• JN2DOF3 =
t+P−1∑
k=t

Jt+kTs represents the risk index

between the vehicle and the dynamic obstacle. When the
vehicle approaches the obstacle, the weight of this term
in the cost function will increase. In this case, collision
avoidance will become the primary task for safe driving.

The Fmincon nonlinear programming algorithm of the
MATLAB tool is used to solve the above optimization func-
tion. After solving the optimal control sequences, the first
element is taken as the obtained control input value. Then,
rolling horizon repeat optimization is performed. The built-in
sequence quadratic program can effectively solve the above
optimization problem.

B. VARYING DISCRETE STEPS
In model predictive control, the selection of discrete time
will determine the effectiveness and efficiency of the sys-
tem. In vehicle control, the discrete time should be as small
as possible to make the control actions accurate. However,
in collision avoidance control, a long prediction distance is
expected to predict the future further. If a small discrete time
is chosen, more discrete steps will be required. The compu-
tational burden of the control system will be increased in this
case. On the basis of the above considerations, the method
of varying discrete steps is used in accordance with litera-
tures [13], [28], [29].

The prediction horizon consists of two components.
A small discrete time Ts,short = 0.01s is chosen for the
accurate vehicle control comprising of P1 time steps. Then,
a large discrete time Ts,long = 0.1s of P-P1 steps is in the
predictive horizon for long distance prediction.

C. STABILITY CONSTRAINT
Lateral acceleration should be constrained to prevent from
reaching the limit of tire adhesion.∣∣ay (k + i)∣∣ ≤ aymax i = 1, 2 . . . . . .P− 1

s.t. aymax = µg (21)

where µ is the road adhesion coefficient. The value of ay at
each step k in MPC can be calculated in accordance with
equation (8a).

VII. SIMULATION AND RESULTS
The effectiveness of the proposed controller is veri-
fied in different situations using MATLAB/Simulink and
CarSim. Generally, the longer the predictive horizon P is,
the more vehicle dynamic information will be obtained.
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However, long predictive horizon will intensify unknown
interference and increase the computational burden of
NMPC. Likewise, the optimized control action will be
smooth when a large control horizonM is selected. However,
the optimization efficiency of NMPC will be affected in
this case. In this paper, the simulation parameters are shown
in Table 1.

TABLE 1. Simulation parameters.

To show the reference trajectory tracking effect, two sets
of vehicle state curves are given in Figures 10 and 11, respec-
tively. The black and blue solid curves represent the reference
and actual tracking values, respectively. Figure 10 shows
the comparison of the actual lateral displacement curve with
the reference when no obstacles appear on the predefined
trajectory. The actual value achieves a maximum of 3m at
X = 140m. As shown in Figure 11, the maximum value of
the actual yaw angle is 8.3◦ at X = 90m. It can be seen that
both the actual maximum lateral displacement and yaw angle
can track the reference values well. If new obstacles threaten
vehicle safety in actual scenes, then the trajectory should
be adjusted dynamically to avoid obstacles. In the following
sections, two scenes are listed to verify the effectiveness of
the proposed controller.

FIGURE 10. Lateral displacement of tracking.

A. SINGLE DYNAMIC OBSTACLE SCENE
In this section, a single dynamic obstacle scene is shown.
The simulation time is set to 10s. When the vehicle travels
along the reference trajectory to X = 100m, a dynamic
obstacle appears at (140, −1) in the geodetic coordinate

FIGURE 11. Yaw angle of tracking.

system. It moves along the Y -axis at a speed of 2m/s. In this
case, the vehicle will collide with a dynamic obstacle at X =
140m if the reference trajectory is not dynamically adjusted.
Dynamic trajectory planning that considers the motion states
of obstacles or not in the predictive horizon are obtained,
as depicted in Figure 12.

FIGURE 12. Partial enlargement of the dynamic planned trajectory.

In Figure 12, the blue and green solid curves represent
the trajectory and shape of the vehicle, respectively. The
red dotted line describes the dynamic obstacle. The vehi-
cle collides with a dynamic obstacle at X = 140m in
Figure 12(a). In comparison with Figure 12(a), the motion
states of the obstacle are considered in the predictive horizon

132082 VOLUME 7, 2019



S. Li et al.: Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on MPC

in Figure 12(b). The vehicle achieves a maximum lateral dis-
placement of 4m, thereby avoiding collision with obstacles.

Figure 13 shows the front steering angle considering the
dynamic obstacles in the predictive horizon. The vehicle
starts turning and tracking the reference trajectory at t = 3s to
achieve a lane change operation. At t = 5.9s, a new steering
operation is implemented to avoid the dynamic obstacle. The
front steering angle achieves the maximum and minimum
values of 3◦ and −4◦ at t = 6.5s and 7s, respectively. Slight
jitters can be observed in the curve at t = 6 − 7s. Because
in this case, obstacle avoidance plays a crucial role, and the
discrete step size is 0.1s for long distance prediction, thereby
affecting controller optimization.

FIGURE 13. Front steering angle of the proposed controller.

Under the effect of the front steering angle shown in
Figure 13, the vehicle’s state response curves are obtained.
As shown in Figure 14(a), the maximum and minimum
values of the yaw angle are 7.5◦ and −3.8◦, respectively.
The maximum absolute value of lateral acceleration curve is
5m/s2 at t = 7s in Figure 14(b). As shown in Figure 14(c),
the maximum absolute value of vehicle slip angle achieves
0.32◦ at t = 7.6s. Themaximum absolute values of the lateral
acceleration and the slip angle are within the stable area.
Therefore, the vehicle can maintain stability when avoiding
collision.

In Figure 15, the computation burden of the proposed
controller at each time step is exhibited. The maximum time
of all iteration steps is 0.217s. The computation efficiency can
also ensure the vehicle of avoiding dynamic obstacles.

B. TWO DYNAMIC OBSTACLES SCENE
The scenario in this section considers two dynamic obstacles.
The simulation time is set to be 15s. When the vehicle arrives
at X = 105m, a dynamic obstacle A is detected at (145, 0) in
the geodetic coordinate system. At this moment, it is moving
along the Y -axis with an acceleration of 1.5m/s2 from a
stationary state. In this case, the vehicle should adjust the
predefined trajectory to avoid collision with this obstacle.
Afterwards, another dynamic obstacle B, with a velocity of
2m/s along the X -axis and 1m/s along the Y -axis, is detected
at (224, 0) when the vehicle drives at X = 170m. At this
moment, the vehicle should also perform steering operation
to avoid it in tracking the predefined trajectory.

FIGURE 14. Status response curves of the vehicle.

FIGURE 15. Computational burden of the proposed controller.

In Figure 16, two control strategies are adopted to avoid
collision. The blue and green solid curves describe the vehi-
cle trajectory and shape, respectively. And the pink and red
dotted lines stand for dynamic obstacle A and B, respectively.
LXVH and LXobs represent the position of vehicle and obstacle
under vehicle’s longitudinal displacement X , respectively.
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FIGURE 16. Partial enlargement of the dynamic planned trajectory.

Simulation curve without considering obstacles motion in the
predictive horizon is shown in Figure 16(a). It can be seen that
the vehicle will collision with obstacle A at X = 145m. And
there is a lateral deviation between vehicle and obstacle B
at X = 230m. In this case, collision avoidance optimization
has been identified as a failure. Collision phenomenon can
be avoided by considering obstacles motion state in the pre-
dictive horizon. In Figure 16(b), when the vehicle drives from
X = 130m to X = 160m, no collision occurs with obstacle A.
For obstacle B, the vehicle achieves a lateral displacement
of 4m to avoid collision at X = 230m. Simulation results
show that the proposed method can achieve better collision
avoidance effect in this scene.

The optimized front steering angle of the proposed con-
troller is exhibited in Figure 17. Before t = 6s, the vehicle
performs a lane change operation by tracking the reference
path. At t = 6s, the vehicle starts to turn right to avoid
obstacle A. From t = 10s to t = 12s, collision avoidance
with obstacle B is operated by turning left. The front steering
angle reaches its maximum value of 3.2◦ at t = 10.4s and its
minimum value of −4◦ at t = 11.5s. Some slight jitters are
also found in the curve between t = 6−7s and t = 10−11s.
Figures 18(a)-(c) display the state response curves of

vehicle. The maximum and minimum values of vehicle yaw
angle are 7.5◦ at t = 4.7s and−4.1◦ and at t = 12s, as shown
in Figure 18(a). The maximum absolute value of the lateral
acceleration curve is 4.9m/s2 at t = 11.6s, as shown in

FIGURE 17. Front steering angle of the proposed controller.

FIGURE 18. Status response curves of the vehicle.

Figure 18(b). As shown in Figure 18(c), the maximum abso-
lute value of vehicle slip angle achieves 0.3◦ at t = 10.4s.
The maximum absolute values of the lateral acceleration and
slip angle are also within the stability area. The results show
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FIGURE 19. Computational burden of the proposed controller.

that the vehicle can ensure driving stability in the process of
obstacles avoidance.

The computational burden at each step of the proposed
controller is shown in Figure 19. It can be seen that the
maximum time of all iteration steps is 0.219s. In this study,
the optimal problem is solved using the solution tool from
the MATLAB toolbox. In the future work, we will exploit the
ACADO toolkit and the accompanying code generation tool
to reduce actual computational time further.

VIII. CONCLUSION
In this study, an integrated controller is developed for col-
lision avoidance. Simultaneous trajectory dynamic planning
and tracking are integrated as a single-level NPMC controller.
The reference trajectory is predefined using a sigmoid func-
tion. When dynamic obstacles suddenly appear, the trajec-
tory should be dynamically adjusted. Collision avoidance is
realized effectively by constructing a moving trend function
to predict the obstacle position variances in the predictive
horizon. A risk index is constructed to reflect the relative
position relationship between vehicle and obstacles in the
predictive horizon. Then the designed risk index is introduced
into the cost function to realize collision avoidance better.
The proposed controller also considers lateral acceleration as
vehicle stability constraint. Simulations are conducted under
two typical conditions to reveal the effectiveness of the pro-
posed controller. However, sometimes the motion of obstacle
is random in actual scenes. In the future, we will consider
the random movement of moving obstacles in the predictive
horizon. Collision avoidance optimization control based on
spatial MPC is also a research direction in the future.
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