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ABSTRACT In order to cope with the resource shortage problem brought by cognitive radio technology in
cognitive radio sensor network (CRSN), a new CRSN called heterogeneous CRSN (HCRSN) is proposed,
where cognitive nodes (CNs) and sensor nodes (SNs) are separated and undertake different functions.
Different from the existing clustering algorithms for homogeneous nodes based WSN, the clustering
algorithm for HCRSN needs to consider the distribution of CNs among clusters such that enough high
channel detection probability of each cluster can be guaranteed by the lowest deployment cost. Therefore,
this paper first proposes a heterogeneous nodes based low energy adaptive clustering hierarchy (HLEACH)
algorithm. In the algorithm, the sink node first updates the global information including the optimal number
of clusters and average cluster radius and then broadcast it. Each CN calculates its competition radius
after receiving the broadcasting information, and then start the competition for CHs based on the proposed
competition rules. The elected CHs are finally censored targeting the optimal number of clusters to optimize
the distribution of final CHs. In clusters’ formation stage, non-CH CNs and SNs synthetically consider
the distance and the connection degree of CHs such that the distribution of CNs among clusters and the
energy consumption among CHs can be energy-efficiently balanced. The simulation results show that the
proposed algorithm can not only effectively balance the distribution of CNs among clusters, guaranteeing
enough high channel detection probability of each cluster and network energy utilization, but also balance the
energy consumption among CHs, eventually prolong the network lifetime. Finally, the optimal deployment
proportion of numbers and initial energy of the two types of nodes is also theoretical derived to maximize
the energy utilization efficiency (i.e. the ratio of the network lifetime to the deployment cost).

INDEX TERMS WSN, CRSN, heterogeneous CRSN, clustering algorithm, cooperative spectrum sensing.

I. INTRODUCTION
Wireless sensor network (WSN) generally operates over the
unlicensed public spectrum band, e.g. Industrial, Scientific
and Medical (ISM) spectrum band. With the rapid growth of
wireless new services, the unlicensed spectrum band becomes
increasingly crowded [1]. This makes the communication
performance of WSN sharply drop, which greatly affects the
further development of WSN.

In order to address the spectrum congestion problem over
the unlicensed spectrum band, some researchers propose to
equip the sensor nodes (SNs) with the cognitive radio (CR)
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such that they have the spectrum sensing (SS) capability.
The WSN with SS capability is referred to as cognitive radio
sensor network (CRSN) [2]. Due to the introduction of CR
technology, CRSN can opportunistically operate over the idle
licensed spectrum by means of dynamic spectrum access
technology, which can greatly increase the throughput and
decrease the transmission delay [2]–[4].

Although the CR technology brings CRSN many bene-
fits, it also increases the energy consumption of the nodes
and thus requires nodes to have more powerful computa-
tional capability, which leads to the sharp increase of the
CRSN deployment cost. In order to deal with the challenges
caused by the introduction of CR technology, we propose
to separate the cognitive functions from the cognitive sensor
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nodes (CSNs), thereby forming a type of independent nodes
called cognitive nodes (CNs). The WSN consisting of CNs
and SNs is also referred to as heterogeneous nodes based
CRSN (HCRSN) in the paper.1 In the HCRSN, since CNs
are used for SS, they are required to have more energy
and more powerful computational capability than SNs. This
makes CNs more expensive than SNs, but comparable to
CSNs. However, CNs can be deployed according to a small
proportion in the total numbers of nodes since they don’t
participate in the data sensing. In addition, ordinary SNs need
less energy and lower computational capability than CNs
since they are only used for data sensing. This makes SNs
much cheaper than CSNs and CNs. Therefore, compared with
CRSN, HCRSN have the advantage of lower deployment
cost.

In a HCRSN with very large deployment area, the data
sensed by some SNs far from the sink node has to be for-
warded to the sink node through multi-hop, the multi-hop
HCRSN is thus formed. Clustering has been proved to be an
effective way to prolong the lifetime in a traditional multi-
hop WSN. Especially in HCRSN, where CNs and SNs are
separated by each other and undertake different functions,
CNs and SNs are required to closely coordinate for the data
transmission. Furthermore, cluster structure can greatly facil-
itate cooperative SS (CSS) in multi-hop HCRSN, which is
required to guarantee enough high channel detection prob-
ability. Therefore, forming two level clustering hierarchy
topology structure by partitioning CNs and SNs into different
clusters is the prerequisite and basis of the normal operation
of the multi-hop HCRSN. The clustering routing algorithm is
thus one of the key technologies to implement HCRSN, and
it has extremely important practical significance for HCRSN
deployment.

Since WSN generally operate in a harsh environment, it is
very difficult to manually replace the energy-limited battery
in nodes. The energy-efficient clustering routing protocol is
thus required to prolong the network lifetime [5]. On the
one hand, the existing clustering routing algorithms for WSN
mainly focus on the minimization of the energy consumption
of nodes, they do not consider SS and spectrum management
issues [6]–[8], [14], [17], [18], [23]. On the other hand, CSNs
in the traditional CRSN are homogeneous (cognitive function
is integrated into the SNs) and they are often deployed in very
considerable numbers, and thus there is no need to balance
the distribution of CNs among clusters in their clustering
algorithm [9]–[13], [15], [16], [24]. Therefore, the existing
clustering algorithms for homogeneous nodes based WSN
and CRSN can not be applied to HCRSN.

In view of the aforementioned facts, taking into account
the heterogeneity of nodes in HCRSN, this paper proposes
a heterogeneous nodes based low energy adaptive clustering
hierarchy (HLEACH). In the algorithm, the sink node first
updates and broadcasts the global information such as the

1The conception is also mentioned in the literature [19], but its purpose is
totally different from our work.

optimal number of clusters and average cluster radius, and
then CNs calculate their selves competition radii based on the
deployment density of CNs, followed by the competition of
CHs based on the proposed competition rules in the paper.
The elected CHs are finally censored targeting the optimal
number of clusters to optimize the distribution of final CHs.
In the clusters’ formation stage, non-CH CNs synthetically
consider the distance to CHs and the connection degree of
CHs regarding CNs such that the distribution of CNs among
clusters can be energy-efficiently balanced. Apart from the
distance to CHs and the connection degree of CHs regarding
SNs, SNs also consider the distance betweenCHs and the sink
node such that the energy consumption among CHs can be
energy-efficiently balanced. Finally, to maximize the energy
utilization efficiency, i.e. the ratio of the network lifetime to
the deployment cost, the optimal deployment proportion of
numbers and initial energy of the two types of nodes is also
theoretical derived.

A. RELATED WORK AND MOTIVATION
Literature [19] first proposes HCRSN conception. In the
proposed HCRSN, CNs are responsible for SS and SNs for
data sensing, and the sensed data by SNs is directly transmit-
ted to the sink node over the available channel detected by
CNs. However, the literature cannot consider the clustering
problem in the HCRSN since the proposed HCRSN in the
literature is only a very simple single-hop model where the
sink node act as the coordinator of all nodes. In practical
application scenarios, nodes including CNs and SNs may be
deployed in a large area, some of which may be far from the
sink node. The sensed data by them has to be forwarded to the
sink node through multi-hop, the multi-hop HCRSN is thus
formed.

The literatures [25], [26] proposed dynamical spectrum
allocation algorithms for heterogeneous cognitive radio net-
works, and the literature [27] used the deep reinforcement
learning to select the modulation and coding schemes in cog-
nitive HetNets. However, the ‘‘heterogeneity’’ in the refer-
ences refer to the different cognitive radio users, e.g. multiple
femtocells and WLANs in [25], while the ‘‘heterogeneity’’
in our work refer to the separate nodes in wireless sensor
network, i.e. cognitive nodes and sensor nodes. Furthermore,
the research target is different between the references and our
work. The research target of the former is to allocate resource
such as and spectrum and power in heterogeneous cognitive
radio environment, and that of the latter is the clustering in
the heterogeneous CRSN.

The low energy adaptive clustering hierarchy
(LEACH) [14] is considered as the most representative algo-
rithm. In the protocol, each node can be selected as a CH
with a certain probability per round, and the task of being a
CH is rotated among nodes. At the data transmission phase,
each CH sends the aggregated data packet to the sink node
through single hop.

In literature [23], a heterogeneity-aware Stable Election
Protocol (SEP) is proposed to prolong the time interval before
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the death of the first node (stability period). SEP is based
on weighted election probabilities that nodes become CHs
according to their residual energy. However, the heterogene-
ity discussed in the literature merely refers to the difference in
the initial energy, i.e. the nodes are still homogeneous except
their initial energy. In contrast, the heterogeneity in HCRSN
is not limited to the difference in the initial energy, it still
includes the difference in their undertaken functions (CNs are
responsible for SS and SNs for data sensing). Therefore,
the algorithm proposed by the literature cannot be applied to
HCRSN.

In literature [24], a novel energy efficient distance-based
clustering and routing algorithm using multi-hop communi-
cation approach is proposed. Based on the distance, the het-
erogeneous CR based WSN are divided into different regions
and are allocated with a unique spectrum. However, as in
literature [23], the heterogeneity considered in the literature
merely refers to the difference in the initial energy, i.e. the
nodes are still homogeneous except their initial energy. The
proposed clustering algorithm in the literature cannot be
applied to the HCRSN.

In literature [17], a hybrid, energy-efficient, distributed
clustering approach (HEED) is proposed to extend LEACH
by considering the constraints on communication range and
the information of intra-cluster communication cost. It coor-
dinates election process to select SNs with more neighbors
and larger residual energy as CHs. In the HEED, the main
parameter is the residual energy of the nodes, the secondary
parameter is the number of adjacent nodes. The HEED
protocol thus has significant improvements in lifetime and
throughput compared to LEACH.

In literature [18], a non-uniform size clustering method
(EEUC) is proposed to balance the energy consumption of
CHs. Its basic idea is to form a multi-hop non-uniform clus-
tering network according to the geographic location of CHs.
The proposed method can make the coverage area of the
cluster follow a certain trend, that is, the closer the cluster is
to the sink node, the smaller the coverage area of the cluster
and further reduces the energy consumption of CHs used for
data aggregation in the clusters. This enables CHs near the
sink node to use more energy to forward data, and further
balance the energy consumption among CHs. The proposed
algorithm can thus effectively solves the hotspot problem
in WSN.

The literature [11] proposed a cognitive LEACH
(CogLEACH) for CRSN. In the protocol, the number of
vacant channels detected by nodes is used as a weight in
the probability that each node becomes a CH during the CHs
election process. The more the number of available channels
detected by nodes, the greater the probability that nodes have
the same channel as the surrounding nodes, and the easier it
forms a cluster. Thus the nodes with more vacant channels
can be elected as CHs with a higher probability.

The literature [13] proposed a distributed spectrum aware
clustering scheme (DSAC) for CRSN. In the scheme,
the communication power model for CRSN consists of intra-

cluster aggregation and inter-cluster relaying. After deriving
the optimal number of clusters, the groupwise constrained
clustering algorithm is proposed to minimize the energy con-
sumption of CRSN, in which the spectrum-aware require-
ment is regarded as groupwise constraint.

The literature [15] proposed an event-driven clustering
algorithm (ESAC). When an event is detected, SNs between
the event occurrence point and the sink is activated as a
qualified nodes. The CHs are selected among the qualified
nodes according to their connection degree, the number of
available channels and the distance to the sink node. The CHs
maximize the number of two-hop neighbor nodes by selecting
single-hop members to increase inter-cluster connectivity.
The clusters can only generated between the event occurrence
point and sink node, and the clusters are dismissed after the
end of the event, thereby reducing the unnecessary formation
andmaintenance costs of clusters and finally greatly reducing
energy consumption.

SCEEM [16] is a routing algorithm suitable for multime-
dia networks. In SCEEM, the optimal number of clusters is
derived to minimize quality distortion due to packet loss and
latency in multimedia transmissions. Under the premise of
determining the number of CHs, CHs are selected according
to the residual energy and SS results.

The literature [20] analyzed the problem about how to
form a stable cluster in Cognitive Radio Ad Hoc Net-
works (CRAHN), and proposed a description of the robust
clustering problem. The problem is proved to be NP-hard
problem, and then the centralized solution is also proposed.
Meanwhile, the authors also propose a distributed solution to
adapt to the dynamics of ad hoc cognitive radio networks.

The literature [21] proposed a cluster-based architecture
to allocate different control channels in various clusters. The
clustering problem is formulated as a bipartite graph problem,
where a class of algorithms is developed to provide different
tradeoffs between the number of common channels in a clus-
ter and the cluster size. Clusters can thus guaranteed to have
a desirable number of common control channels without the
need for frequent reclustering.

As can be seen from the aforementioned discussions,
the clustering algorithms proposed in the literature [14], [17],
[18], [23] can be only applied to WSN. The clustering algo-
rithms proposed in the literature [11]–[13], [15], [16], [20],
[21], [24] take into account the feature of cognitive function
in WSN. However, all the algorithms can be only applied
to homogeneous nodes based CRSN where the cognitive
function is integrated on sensor nodes, thus they can not be
applied to HCRSN.

To address the challenge brought by the heterogeneity of
nodes in HCRSN in the clustering process, this paper pro-
poses the HLEACH.

B. THE MAIN CONTRIBUTION
The main contributions of the paper can be summarized as
follows.
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• The paper first proposes the HCRSN to cope with the
resource shortage problem brought by CR in CRSN,
which consists of CNswith more initial energy andmore
powerful computational capability and ordinary SNs.
In HCRSN, the two types of nodes undertake different
functions, and they can be deployed according to a cer-
tain proportion of numbers and initial energy to reduce
deployment cost. Furthermore, in the proposed HCRSN,
cluster structure based data transmission method and the
work time sequence of nodes are also proposed.

• The paper first proposes HLEACH. In the proposed
HLEACH, there are the following several contributions.
(i) Based on the proposed work time sequence of nodes
in the HCRSN, the paper derives the optimal number of
clusters that can minimize the network energy consump-
tion on the premise of guaranteeing enough high channel
detection probability of each cluster. (ii) The paper pro-
poses a node-density based determination method of the
competition radius. (iii) The paper proposes an iterative
censoring method to optimize the distribution of final
CHs. (iv) The paper proposes an energy-efficient bal-
ance method where the distance and connection degree
are synthetically considered in the clusters’ formation
stage.

• The optimal deployment proportion of numbers and the
initial energy of CNs and SNs is theoretically derived to
maximize the energy utilization efficiency, i.e. the ratio
of the network lifetime to the deployment cost.

• A large number of simulation experiments are done
to prove the effectiveness of the proposed HLEACH.
The results show that the proposed algorithm can
not only energy-efficiently balance the distribution of
CNs among clusters, guaranteeing enough high chan-
nel detection probability and energy utilization, but
also energy-efficiently balance the energy consumption
among CHs, eventually prolong the network lifetime.

The rest of this paper is organized as follows. The
section II introduces the preliminaries including network
model (Section II.A) and energy consumption model
(Section II.B). The section III introduces the proposed clus-
tering algorithm, which includes the determination of the
number of clusters in Section III.A, the determination of CHs
in Section III.B, the clusters’ selection of Non-CH CNs in
Section III.C, the clusters’ selection of SNs in Section III.D,
the stabilization phase in Section III.E and the adaptiveness of
the clustering algorithm in Section III.F. The section IV is the
experimental results and analysis, which include the impact
of weight coefficients on the distribution of CNs among
clusters in Section IV.A, the impact of weight coefficients on
the energy balance among CHs in Section IV.B, the average
channel detection probability of clusters and network energy
consumption in Section IV.C, the comparison of the balance
of the energy consumption among CHs under different algo-
rithms in Section IV.D, the comparison of the number of
clusters under different algorithms in Section IV.E, the com-
parison of network lifetime in Section IV.F, the determination

of the proportion of CNs in total numbers in Section IV.
G, the determination of the initial energy ratio of CNs to
SNs in Section IV. H, and the simulation snapshots of the
proposed clustering algorithm in Section IV. J, followed by
the conclusion, possible future plans and research issues in
the final section.

II. PRELIMINARIES
A. NETWORK MODEL
We assume that K CNs and SNs are randomly deployed in
a large area to periodically collect data from surrounding
environment. The data sensed by the SNs far from the sink
node has to be forwarded to the sink node through multi-hop,
a multi-hop HCRSN is thus formed.

Clustering has been proved to be an effective way
to prolong the lifetime in a traditional multi-hop WSN.
Specially, in HCRSN, CNs and SNs are separated each other
and undertake different functions, thus they must coordi-
nate closely to complete the data transmission. Furthermore,
cluster structure can greatly facilitate cooperative SS (CSS)
in multi-hop HCRSN, which is required to increase the
channel detection probability of each cluster. Therefore,
forming two level clustering hierarchy topology by parti-
tioning CNs and SNs into different clusters is the prereq-
uisite and basis for the normal operation of the multi-hop
HCRSN.

In the HCRSN, since CNs can be designed to have more
power and more powerful computational capability than SNs,
they are more suitable to act as CHs. Though they are more
expensive than SNs, they can be deployed according to a
small proportion in total numbers to reduce the network
deployment cost. For example, there may exist a few CNs
used for CSS and dozens of SNs used for data sensing in
a cluster. The schematic diagram of the clustering for the
HCRSN is shown in Fig. 1.

FIGURE 1. The schematic diagram of the clustering for multi-hop HCRSN.
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In the paper, the following conditions are assumed:
• The sink node is located outside the monitoring area.
• Nodes are randomly and uniformly deployed, and they
are all stationary after deployment.

• The monitoring area is square or quasi square.
• CNs have more initial energy and more powerful com-
putational capability than SNs, and they can be deployed
according to a small proportion in total number of nodes
to reduce the deployment cost.

• CNs and SNs can obtain their coordinates in the network
by means of the positioning algorithm such as three-
point positioning algorithm.

• Each node can automatically adjust the transmit power
according to the distance to its receiver.

• There is at least a common control channel (CCC) in the
network.

• The distance based routing protocol is used between
CHs during the data relay in the multi-hop HCRSN.

• The sensed data by SNs is transmitted to their CHs
according to the allocated slot time over their detected
channel in clusters, and a simple channel negotiation
protocol between CHs is used during data relay, where
the relay CHs wait the transmission from neighbors over
the neighbor’s channel until the data is received, and then
start to relay the data over its own channel.

• The total time used for inter and intro-cluster trans-
mission (including the waiting time) over the licensed
channel in one round is short enough that the coexistence
between the primary users and HCRSN is perfect based
on CR technology.

In the paper, the fusion rule of the detected results by CNs
is assumed to be OR, which can be generalized as ‘‘1-out-
of-N’’ voting based decision fusion [22]. Under this rule, if at
least one CN detects the presence of a primary user (PU), then
the PU is considered as being present. Therefore, the joint
detection probability of the T CNs are:

Fd = 1−
∏
T

(1− pd ) (1)

where pd is the probability that one CN detects one channel
to be busy when a PU exists.

B. ENERGY CONSUMPTION MODEL
The energy consumption model in radio consists of the trans-
mitting mode and the receiving mode, which are shown
in Fig. 2. In the transmitting mode, the transmitter consumes
energy to run the radio electronics and the power amplifier.
In the receiving mode, the receiver consumes energy to run
the radio electronics. In the model, the energy loss can be
divided into ‘‘free propagation’’ and ‘‘multi-path fading’’
transmission models. If the signal transmission distance is
less than d0, the transmission mode is ‘‘free propagation’’,
i.e. the transmitting power is attenuated by d2, where d is the
distance between the transmitter and the receiver. If the signal
transmission distance is greater than d0, the transmission
mode is ‘‘multi-path fading’’, i.e., the transmitting power is

FIGURE 2. The energy consumption model in radio.

attenuated by d4. Therefore, when L-bit data is transmitted,
the energy consumed by the transmitter can be calculated as:

ETx(L, d) =

{
LEelec + Lεfsd2 d < d0
LEelec + Lεmpd4 d ≥ d0

(2)

where Eelec represents the electronics energy, which depends
on factors such as the digital coding, modulation, filtering,
and spreading of the signal. εfs and εmp respectively repre-
sents the energy amplification factor under the free propa-
gation and multi-path fading model, which depend on the
distance to the receiver and the acceptable bit-error rate. d0
is a threshold, and d0 =

√
εfs
/
εmp.

The energy consumed by the radio receiver when the L bit
data is received can be calculated as:

ERx = L · Eelec (3)

III. CLUSTERING ALGORITHM
A. DETERMINATION OF THE NUMBER OF CLUSTERS
In multi-hop HCRSN, the data collected by the SNs is first
sent to their CHs, and then is forwarded to the sink node.
Because the data collected by SNs in clusters has high redun-
dancy, it is often fused into a fixed-length packet in their CHs.
The work of CHs starts fromCSS, and its work time sequence
is in turn SS, the reception of the detected results of non-
CH CNs, the decision and broadcast of available channels,
the reception of the data collected by SNs, the data fusion
and data relay, as shown in Fig. 3.

FIGURE 3. The work time sequence of CHs.

When the clusters are far from the sink node, the aggre-
gated data by their CHs has to be forwarded to the sink node
through multiple hops. According to the energy consump-
tion model (2), when the distance between the transmitter
and receiver is more than d0, extra energy is consumed.
Assuming that the distance from CHs to the next-hop CHs
(relay node) is less than d0, according to the work time
sequence of CHs in Fig. 3 and the energy consumptionmodel,
the energy consumed by CHs in one round can be calculated
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as follows:

ECH = ML1 · Eelec + NL2 · Eelec +ML1 · EDA + Esense
+L3 · Eelec + L3 · εfs · d2toNEXT + L4 · Eelec
+L2 · Eelec + L2 · εfs · d2toCH (4)

where M represents the average number of SNs in clusters,
L1 represents the size of the data sensed by SNs, N repre-
sents the average number of non-CH CNs in clusters, and
L2 represents the size of the detected results by CNs, EDA is
the average consumed energy by CHs when fusing 1 bit
data, dtoNEXT represents the average distance from CHs to the
next-hop CHs, dtoCH represents the average distance between
cluster members and their CHs, Esense is the average con-
sumed energy by CNs when detecting channels, L3 denotes
the average amount of data transmitted by CHs (including the
fused data in their own clusters and the relay data from other
clusters), and L4 denotes the average amount of data received
by the relay CHs.

Besides CHs, there are two types of cluster members in
the clusters in the HCRSN, they are SNs and non-CH CNs,
respectively.
• The SNs for data sensing.
The SNs in turn transmit the sensed data to their CHs
after receiving the broadcasting message about available
channel from their CHs. It is assumed that there are
enough numbers of CNs in each cluster2, which can
guarantee to provide enough high channel detection
probability for each cluster that can satisfy the commu-
nication requirement of the network. Therefore, the con-
sumed energy caused by data retransmission due to error
channel detection is ignored. Assuming that the distance
between SNs and their CHs is less than d0, the energy
consumed by SNs in one round can be calculated as
follows.

ESN = L1 · Eelec + L1 · εfs · d2toCH + L2 · Eelec (5)

• The non-CH CNs for CSS.
All CNs perform SS, and non-CH CNs transmit the
detected results to their CHs over CCC. Assuming that
the distance between non-CH CNs and their CHs is less
than d0, the energy consumed by non-CH CNs in one
round can thus be calculated as follows.

Enon−CH CN = L2 · Eelec + L2 · εfs · d2toCH + Esense (6)

Let m denote the proportion of CNs in total numbers of
nodes in the multi-hop HCRSN, and q the number of final
CHs, then the average number of SNs in each cluster is
K (1 − m)/q, and the number of non-CH CNs in cluster is
(K · m/q)− 1.

Therefore, the average energy consumed by one cluster in
one round can be calculated as

Ecluster = ECH +
K (1− m)

q
· ESN + (

K · m
q
− 1)

×Enon−CH CN (7)

2The primary target of the clustering algorithm for HCRSN is to guarantee
enough number of CNs in each cluster.

Due to the random and uniform distribution of nodes in the
considered scenario, we can obtain

E[d2toCH ] =
∫∫

(x2 + y2)ρ(x, y)dxdy

=

∫∫
r2ρ (r, θ) rdrdθ

= ρ

∫ 2π

θ=0

∫ √
S
πq

r=0
r3drdθ

=
ρS2

2πq2
=

S
2πq
=

H2

2πq
(8)

where ρ(x, y) = 1/(S/q) is the node distribution, S represents
the deployment area and S = H2 due to the assumption of
quasi square or square area.

The average communication distance of the one-hop relay,
which approximately equals the average diameter of clusters,
can be thus calculated as

dtoNEXT = 2

√
S
πq
=

2H
√
πq

(9)

Assume H be the deployment width in the direction of
the sink node, then the maximum number of hops from the
farthest CHs to the sink node is

lmaxtr =
H

dtoNEXT
=

H
2H
√
πq

=

√
πq

2
(10)

Theminimum transmission times of the data is one, and the
average transmission times of CHs in the network (including
the transmission times of data relay from other cluster) can
be calculated as folllows.

lavtr =
lmaxtr + 1

2
(11)

In the paper, the redundant data aggregated by CHs is
assumed to be fused into a fixed-size packet, whose size is
assume to equal the size of the data sensed by SNs , i.e. L1,
then we can obtain

L3 = lavtr · L1 (12)

The average maximum number of relay times in the net-
work can be calculated as (e.g. the CHs near the sink node)

lmaxre = lmaxtr − 1 (13)

The remote CHs don’t relay any data, so the minimum
relay times is 0, then the average relay times of CHs in the
network, which is also the average times that CHs receive
data for relay, can be calculated by

lavre =
lmaxre + 0

2
=
lmaxtr − 1

2
(14)

Therefore, L4 = lavre · L1.
The total energy consumption of the entire network in one

round can be written as

Eround = q · Ecluster (15)
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It can be proved that the formula (15) is a concave function
with respect to q (the proof refers to APPEDNDIX).

Taking the partial derivative of the formula (15) and mak-
ing it 0, the optimal number of clusters can be calculated as
follows.

qopt =


2H2Kεfs ((1− m)L1 + mL2)

3π
3
2 L1Eelec

 2
5

+ 0.5

 (16)

where bx + 0.5c represents the closest integer to x, and the
proof of the formula (16) refers to APPEDNDIX A.

B. DETERMINATION OF CLUSTER HEADS
1) THE SELECTION OF CLUSTER HEADS
In HCRSN, CNs and SNs are separated by each other, and
they respectively undertake different functions. Since CNs
can be designed to have more powerful computing power
and more initial energy than ordinary SNs (even may be
equipped with energy harvesting devices in CNs [19]), it is
more reasonable for CNs to act as CHs than SNs. Due to the
limited capability of single CN, the CNs in the clusters are
required to use CSS method to detect the channels.

In CSS, too few CNs in clusters may lead to low channel
detection probability, which cannot satisfy the communica-
tion requirement of the network. Furthermore, the low chan-
nel detection probability can lead to high collision probability
of data transmission, and further increase the network energy
consumption due to the increase of retransmission times.
Therefore, increasing the number of CNs in clusters (this also
means that more CNs need to be deployed in the HCRSN) can
significantly increase the channel detection probability, and
further reduce the collision probability of data transmission.
However, too many CNs within one cluster cannot make the
channel detection probability keep the continuous growth.
Contrarily, they can lead to excessive energy consumption
and extra deployment cost.

Therefore, CNs should be as uniformly as possible dis-
tributed among clusters such that each cluster in HCRSN
can obtain enough high channel detection probability at the
cost of the deployment of the smallest number of CNs. This
can greatly reduce the network deployment cost due to the
decrease of the number of CNs, and further improve the
energy utilization efficiency.

Based on the idea, in the paper, we first propose the
determination method of node-density based non-uniform
competition radius for the candidate cluster heads (CCHs)
such that there are roughly equal numbers of non-CH CNs
in each cluster.
Definition 1 (Competition Radius): The competition radius

of CCH Si, denoted by RSi , is defined as the distance from the
Y th nearest CNs to itself, where

Y =
K · m
qopt

− 1 (17)

It can be seen from the definition that the size of the
competition radius in densely deployed area is less than that
in sparsely deployed area.
Definition 2 (Adjacent CHs Set): The adjacent CHs set of

CCH Si is defined as SSi= {Sj|d(Si, Sj) ≤ RSi }.
Definition 3 (Competitor): All other CCHs in the adjacent

CHs set of CCH Si are referred to as the competitors of
CCH Si.
Competition Rule 1: In the adjacent CHs set SSi , only the

CNs with ESir ≥ Er are eligible to become CHs, where Er
is the energy threshold, which equals the average residual
energy of all CNs in last round. The energy threshold Er is
used to avoid selecting the CNs with low residual energy as
CHs. That is to say, only CNs whose residual energy is higher
than the average residual energy of CNs Er in last round are
eligible for CHs.
Competition Rule 2: In the adjacent CHs set SSi ,

if ESir ≥ Er and its connection degree θ
Si
cs around them regard-

ing SNs and CNs is the highest, i.e. max
{
θ
Sj
cs , Sj ∈ SSi

}
=

θ
Si
cs , then CCH Si becomes CHs. Note that ‘‘around them’’
refers to the average cluster radius Rc rather than the compe-
tition radius for the fair competition, where Rc = H

√
πq .

Competition Rule 3: The CCH Si can make its decision
only when all its competitors with more residual energy and
higher connection degree make their decisions.

After all nodes including CNs and SNs are deployed,
they can calculate and exchange their selves coordinates,
which are respectively represented by pcn(x, y) and psn(x, y).
Therefore, CNs can calculate the distance to other CNs and
the connection degree regarding CNs and SNs based on the
coordinates of nodes. After the initiation process finishes, all
CNs become the CCHs and constructs their own adjacent CHs
set SSi , and then the CCHs make their own decisions as to
whether they become CHs according to the competition rule
1, 2 and 3. The competition algorithm for CHs is detailedly
described in the algorithm 1.

2) THE CENSORING OF CLUSTER HEADS
Since there may exist the overlap area among the competition
radius of different CCHs, the number of elected CHs is gen-
erally more than the optimal number of clusters we expect.
Different from the traditional clustering algorithm, another
important idea of the proposed HLEACH algorithm is that
the clusters should be as uniformly as possible distributed
in HCRSN. Therefore, optimizing the distribution of CHs
by deleting some redundant CHs can contribute to balance
the distribution of CNs among clusters, and further guarantee
enough high channel detection probability of each cluster and
reduce the energy consumption.

As can be seen from Fig. 4, the competition radius of
CH2 overlaps with those of CH1 and CH3. Assuming that
ECHlr ≥ Er , l = 1, 2, 3, E

Sj
r ≥ Er , j = 4, 5, 6 and θCH2

cs <

θ
Sj
cs < θ

CHl
cs , l = 1, 3, j = 4, 5, 6, CH1 and CH3 always make

their decisions prior to CH2. When CN Sj within the compe-
tition radius of CH1 and CH3 receive the election message
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Algorithm 1: The Competition Algorithm for CHs
Initialization or update: pcn(x, y), psn(x, y), L1, L2, Eelec,
εfs, d0, δ, Er , m,K , S, and H ;
step 1: Calculate qopt and Rc;
step 2: The sink node broadcasts the global information
such as Er , Rc and etc;
step 3: All CNs become CCHs;
step 4: CCH Si calculates RSi and θ

Si
cs regarding CNs and

SNs within Rc;
step 5: CCH Si forms SSi within RSi ;
step 6: Start to compete for CHs:
while ESir < Er do

CCH Si quits the competition for CHs and
broadcasts its quitting competition message to its
competitors;

end
while ESir ≥ Er do

repeat

if max
{
θ
Sj
cs , Sj ∈ SSi

}
= θ

Si
cs then

Si becomes a final CH and broadcasts its
election message to its competitors;

else
CCH Si waits for the decisions of its
competitors;
while CCH Si receives the election message
from its competitors do

it quits the competition for CHs and
broadcasts a quitting-competition
message;

end
while CCH Si receives the
quitting-competition message from its
competitor Sj do

SSi = SSi\Sj;
end

end
until All CCHs make their decisions;

end
step 7: Select and delete the redundant CHs;
All newly elected CHs send their local information such
as their coordinates, RCHi , E

Si
r and etc. to the sink node

(the number of current CHs qc can be thus obtained) and
the sink node calculates the number of the redundant
CHs qr according to the censoring rule;
repeat

if qr < qc − qopt then
ω = ω + 1 and recalculate qr

else
ω = ω − 1 and recalculate qr

end
until qr = qc − qopt ;
The sink node broadcasts the censoring information of
current ω, the qr redundant CHs thus become ordinary
non-CH CNs again and other CHs become the final CHs.

FIGURE 4. Schematic diagram of the redundant CHs.

from CH1 and CH3, they quit the competition for CHs and
become their non-CH CNs. Therefore, when CH2 become a
CH, there is no non-CH CNs for CSS in its cluster, which
lead to very low channel detection probability in the cluster.
This cannot satisfy the communication requirement of the
network.

In order to avoid the occurrence of the above cases,
the redundant CHs need to be removed to optimize the dis-
tribution of clusters (i.e. the location of CHs).
Censoring Rule: One of two CHs would be deleted and

become the ordinary non-CH CN if the following censoring
condition is satisfied.{

d(CHi,CHj) < RCHi + ω∗δ
d(CHi,CHj) < RCHj + ω∗δ

(18)

where d(CHi,CHj) is the distance between CHi and CHj, ω
is the adjustment factor, and δ is the step size.

The censoring algorithm of CHs is shown in step (8) in
algorithm 1. It can be seen that the censoring algorithm is an
iteration algorithm. The powerful computational capability
of the sink node can greatly facilitate the execution of the
algorithm. Note that δ can be designed to be small enough
in the algorithm 1 such that qr = qc − qopt .

C. THE CLUSTERS’ SELECTION OF NON-CH CNs
When CHs receive the broadcasting message, some CHs
become the final CHs, and other CHs become ordinary
CNs again. The final CHs broadcast their election messages
including their IDs, coordinates and the connection degree
within the average cluster radius Rc. When the non-CH CNs
and SNs receive the electionmessage from the final CHs, they
start to perform their own clusters’ selection algorithm.

In order to energy-efficiently balance the distribution of
CNs among clusters, the distance between non-CH CNs
and CHs and the connection degree of CHs regarding CNs
(i.e. the number of nearby CNs) within the average cluster
radius Rc are simultaneously considered when non-CH CNs
choose clusters to join. Therefore, we propose to calculate the
weighted summation of the two factors and select the cluster
with the minimum value to join. The calculation formula of
the weighted summation of the two factors corresponding to
CHi can be represented as

f CCHi = wcdpcddCCHi + wccpccc
C
CHi (19)
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where dCCHi is the distance between non-CH CNs and CHi,
and cCCHi is the connection degree of CHi regarding CNs.
wcd and wcc are the weighted coefficients corresponding to
the two factors, respectively. Since dCCHi is generally much
larger than cCCHi , the balance factors pcd and pcc are added in
the formula in order to enable both factors to exert significant
influence on the clusters’ selection. Considering the actual
scenarios, dCCHi is generally 10 times larger than cCCHi , thus
pcd/pcc = 1/10 in the paper.

The clusters’ selection algorithm of non-CH CNs can be
summarized as follows.

Algorithm 2: The Clusters’ Selection Algorithm of
non-CH CNs and SNs
Initiation: After CHs receive the broadcasting message,
some CHs will become ordinary CNs again, and other
CHs become the final CHs;
step 1: The final CHs broadcast their election messages
including their ID, coordinates, connection degree and
etc;
step 2: Non-CH CN Si calculates the weighted
summations of nearby CHs according to formula (19);
step 3: SNs calculates the weighted summations of
nearby CHs according to formula (20);
step 4: Non-CH CN Si select CH with the minimum
value to join;
step 5: SNs selects the CH with the minimum value to
join.

D. THE CLUSTERS’ SELECTION OF SNs
When SNs wake up from sleeping according to their work
time sequence and receive the broadcasting message from the
final CHs, they start to perform their own clusters’ selection
algorithm.

In order to improve the energy utilization efficiency of SNs
in data transmission, the distance between SNs and CHs is
considered in the clusters’ selection algorithm. In HCRSN,
since the CHs near the sink node need to relay data from
other CHs, they may consume more energy. Therefore, apart
from the distance between SNs and CHs, we also consider
the distance from CHs to the sink node and the connection
degree regarding to SNs to balance the energy consumption
among CHs.

Therefore, in order to energy-efficiently balance the the
energy consumption among CHs, we proposed to calculate
the weight summations of the three factors of nearby CHs
and select CHs with the minimum value to join. The calcu-
lation formula of the weight summation of the three factors
corresponding to CHi can be represented as follows.

f SCHi = wsdpsddSCHi + wscpscc
S
CHi + wskpsk

(
dsk
d toBSCHi

)
(20)

where wsd , wsc and wsk are respectively weight coefficients
of dSCHi , c

S
CHi and d

toBS
CHi . d

S
CHi is the distance between SNs

and CHi, cSCHi is the connection degree of CHi regarding SNs
within the average cluster radiusRc, d toBSCHi is the distance from
CHi to the sink node, and dsk is the distance from SNs to the
sink node. Since 1

d toBSCHi

is related to the location of CHi and

is always very little, it multiplies by dsk to remain a relative
constant value. psd , psc and psk is the balance factor, which are
introduced to enable the three factors to have the significant
impact on clusters’ selection of SNs.

The clusters’ selection algorithm of SNs is shown in
algorithm 3.

E. STABILIZATION PHASE
• When the sensing time arrives, both CHs and non-CH
CNs simultaneously detect the target channels.

• Non-CH CNs send their detect results to their CHs over
CCC and then enter into the sleeping state.

• CHs make their decisions based on the aggregated
detected results and broadcast the message including the
decision result regarding available channels and allo-
cated time slot to their SNs, and then wait to receive the
sensed data by SNs.

• SNs receive the broadcasted message from their CHs
and start to in turn send their sensed data to their
CHs over the available channel according to the allo-
cated time slot, and then enter into the sleeping
state.

• CHs in turn receive the sensed data by SNs and start to
fuse the aggregated data.

• CHs wait to receive the fused data from other CHs and
then send the data to next CHs or the sink node.

• CHs enter into the sleeping state until the beginning of
the next work cycle.

F. THE ADAPTIVENESS OF THE CLUSTERING ALGORITHM
In step 8 in algorithm 1, each newly elected CH sends its local
information to the sink node before censoring the redundant
CHs. The local information includes the current information
of all CNs within the competition radius such as the residual
energy, IDs of newly elected CHs and etc. Therefore, at the
beginning of clustering in each round, the sink node can
always obtain the current information of all CNs. It can
thus calculate and broadcast the current global information
such as the average residual energy and average cluster
radius to all CNs, which can make the clustering algorithm
adaptive.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed algorithms are simulated by using MATLAB
simulation tool. We assume 200 CNs and SNs to be deployed
in the area of 200m × 200m, which can opportunistically
operate over 5 licensed channels. The initial energy of the
nodes is assumed to be 0.5J . Other simulation parameters are
shown in Table 1.
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TABLE 1. The key notations.

A. THE IMPACT OF WEIGHT COEFFICIENTS ON THE
DISTRIBUTION OF CNS AMONG CLUSTERS
The non-CH CNs select the clusters with the minimum value
to join according to the formula (19), which synthetically
considers the distance between CNs and CHs and the con-
nection degree of CHs regarding CNs within the average
cluster radius Rc. The weight coefficients wcd and wcc can
impose great influence on the balance of the distribution of
CNs among clusters. We use the variance of the number of
CNs in clusters to represent the balance of the distribution
of CNs among clusters. The smaller the value, the better the
balance, and vice versa. Fig. 5 shows the impact of the weight
coefficients on the distribution of CNs among clusters.

FIGURE 5. The impact of weight coefficients on the distribution of CNs
among clusters (pcd /pcc = 1/10).

It can be seen from Fig. 5 that when wcd = 0.8 and
wcc = 0.2, the variance value is the smallest, this is to say,
the balance of the distribution of CNs among clusters is the
best. This indicates that the appropriate weight allocation can
help to balance the distribution of CNs among clusters.

It can be seen from Fig. 5 that in the special case ofwcd = 1
and wcc = 0, i.e. the selection is completely dependent
on the distance between CHs and CNs, the balance is good

in some rounds, but it is very bad in some rounds (i.e. the
stability is very poor). In another special case of wcd = 0 and
wcc = 1, i.e., the selection is completely dependent on the
connection degree (i.e. the number of CNs within the average
cluster raius Rc), all non-CH CNs always select CHs with
the minimum connection degree, which can lead to the worst
balance. Because the variance value under the case is much
larger than that under other cases, it is not shown in the Fig. 5.

B. THE IMPACT OF WEIGHT COEFFICIENTS ON THE
ENERGY BALANCE AMONG CHs
The SNs select the clusters with the minimum value to join
according to the formula (20), which synthetically considers
the distance between SNs and CHs, the connection degree
of CHs regarding SNs within the average cluster radius Rc
and the distance between CHs and the sink node. The weight
coefficients wsd , wsc and wsk can impose great influence
on the balance of the energy consumption among CHs. We
use the variance of the energy consumption of CHs to repre-
sent the balance of the energy consumption among CHs. The
smaller the value, the better the balance, and vice versa. Fig. 6
shows the impact of weight coefficients on the balance of the
energy consumption among CHs.

FIGURE 6. The impact of weight coefficients on the balance of the energy
consumption among CHs (pcd /psc/psk = 1/1/30).

It can be seen from Fig. 6 that when wsk = 0, i.e. the
distance from CHs to the sink node is not considered, the bal-
ance of the energy consumption among CHs is the poorest.
When three kinds of factors are simultaneously considered,
the balance can be improved. It can be seen from Fig. 6 that
when wsd = 0.5,wsc = 0.2 and wsk = 0.3, the balance of the
energy consumption among CHs is the best. This indicates
that the appropriate weight allocation can help to balance the
energy consumption among CHs.

C. AVERAGE CHANNEL DETECTION PROBABILITY OF
CLUSTERS AND NETWORK ENERGY CONSUMPTION
To the best of our knowledge, there are not clustering algo-
rithms for HCRSN in existing literatures. To more deeply
understand the performance of the proposed algorithm,
we apply the idea of several representative clustering
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algorithms for WSN such as LEACH [14], EEUC [18] and
CogLEACH [11] to HCRSN, and compare them with the
proposed algorithm in the paper.

The modified LEACH algorithm, where the idea of
LEACH is applied to HCRSN, is referred to as LEACH-G in
the paper. In the LEACH-G, according to the idea of LEACH,
CNs are selected as CHs with a predefined probability, and
then the non-CH CNs and SNs select their nearest CHs to
join.

The modified EEUC algorithm, where the idea of EEUC
is applied to HCRSN, is referred to as EEUC-G in the paper.
In the EEUC-G, according to the idea of EEUC, each CN first
generates a random number, and then CNs with less number
than the predetermined threshold T become CCHs. All CCHs
form their own adjcent CHs sets within their competitive
radii, which depends on the distance between the sink node
and them, and then the final CHs are determined by the
residual energy of the nodes. Non-CH CNs and SNs choose
their nearest CHs to join.

The modified CogLEACH algorithm, where the idea
of CogLEACH is applied to HCRSN, is referred to as
CogLEACH-G in the paper. In the CogLEACH-G, according
to the idea of CogLEACH, the number of vacant channels
is used as a weight in the probability Pi(t) that each node
becomes a CH. Non-CH CNs and SNs select their nearest
CHs to join.

Fig. 7 and Fig. 8 show the average channel detection prob-
ability of clusters and network energy consumption under the
four algorithms in the randomly selected 15 rounds.

FIGURE 7. The average channel detection probability of clusters under
different algorithms.

It can be seen from Fig. 7 that the proposed algorithm can
provide a higher average channel detection probability than
other algorithms in most rounds. In the 15 randomly selected
rounds, the average channel detection probability under the
proposed algorithm in 12 rounds is greater than 99%, and that
in other 3 rounds approaches 99%. The proposed algorithm
not only considers the distribution of CHs inHCRSN, but also
the distribution of CNs among clusters, and thus it provides
better balance in the distribution of CNs among clusters
than other algorithms, which lead to higher and more stable
channel detection probability of clusters.

FIGURE 8. The network energy consumption under different algorithms.

The EEUC-G algorithm provides lower channel detection
probability than the proposed algorithm in most rounds, but
higher than CogLEACH-G. EEUC-G considers the distance
between CHs and the sink node, and thus it provide more
even distribution of CHs than CogLEACH-G. This can lead to
better balance in the distribution of CNs among clusters, and
further higher and more stable channel detection probability
than CogLEACH-G.

Comparedwith other algorithms, the location of CHs under
LEACH-G is the most random, it thus provides the most
unstable channel detection probability of clusters among the
algorithms.

Just because of the aforementioned reasons, it can be seen
from Fig. 8 that the network energy consumption under the
proposed algorithm is the least, and those under EEUC-G and
CogLEACH rank second and third.

It can be observed from Fig. 7 and 8 that the average
channel detection probability of clusters and network energy
consumption under LEACH-G algorithm have a large fluc-
tuation. This is because the selection of CHs has great
randomicity in the LEACH-G algorithm. That is to say,
the number of CHs produced in each round is not fixed. The
number of CHs in some rounds is very small, and that in some
rounds is very large. In the first case, the size of the clusters
becomes very large. This may make the distance between the
cluster members (CNs and SNs) and CHs become very large,
and further lead to the increase of the energy consumption
inter and intra the clusters. In the second case, the size of
the clusters becomes very little. This may make the number
of CNs in the clusters be far less than the number of CNs
required by the detection threshold even there is only one
CN (CH) in the clusters, and further lead to low channel
detection probability of clusters, which cannot satisfy the
communication requirement of the network, and which can
lead to the increase of energy consumption intra the clusters
due to the data retransmission.

D. THE COMPARISON OF THE BALANCE OF THE ENERGY
CONSUMPTION AMONG CHS UNDER DIFFERENT
ALGORITHMS
It can be seen from Fig. 9 that the proposed algorithm is
the best in term of the balance of the energy consumption
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FIGURE 9. The comparison of the balance of the energy consumption
among CHs under different algorithms.

among CHs, and EEUC-G, CogLEACH and LEACH-G algo-
rithms rank second, third and fourth, respectively. This is
because the proposed algorithm not only considers the dis-
tribution of CHs in the multi-hop HCRSN, but also the distri-
bution of CNs among clusters, while EEUC-G only consider
the distribution of CHs. Both CogLEACH-G and LEACH-G
algorithms don’t take into account the two points. Further-
more, the selection of CHs in LEACH-G is more random than
that in CogLEACH-G since the latter considers the number of
idle channels detected by CNs.

E. THE COMPARISON OF THE NUMBER OF CLUSTERS
UNDER DIFFERENT ALGORITHMS
Fig. 10 shows the comparison of the number of clusters under
different algorithms before 100 rounds. It can be seen from
the figure that the proposed algorithm can provide the most
stable number of clusters compared with other algorithms.

FIGURE 10. The comparison of the number of clusters under different
algorithms.

This contributes to guarantee enough high channel detection
probability of each cluster in all rounds.

F. THE COMPARISON OF NETWORK LIFETIME
The network lifetime is an important performance indicator
of WSN, and it is often represented by the survival time
of nodes. In HCRSN, the proportion of numbers and initial
energy of two types of nodes can impose significant impact
on the network lifetime. We thus show the comparison of
the network lifetime under different proportion of numbers
and initial energy of two types of nodes (the total energy of
nodes in the network is 100J ) in Fig. 11, Fig. 12 and Fig. 13.
Different from the existing homogeneous nodes based WSN,
there are two completely different types of nodes in HCRSN.
Therefore, we show the survival time of the two types of
nodes in the comparison of the network lifetime.

FIGURE 11. The comparison of numbers of alive nodes under different
algorithms (m = 0.2, ECN /ESN = 8.5).

FIGURE 12. The comparison of numbers of alive nodes under different
algorithms (m = 0.3, ECN /ESN = 8.5).

In the Fig. 11, m is the proportion of CNs in total numbers,
and ECN /ESN is the initial energy ratio of CNs to SNs.
It can be seen from Fig. 11 that under the condition of
m = 0.2,ECN /ESN = 8.5, the network lifetime under the
proposed algorithm is the longest among the algorithms, and
no nodes die before 1018 rounds. In the case, the first and last
death nodes of the two types of nodes almost simultaneously
occur. This indicates that the proposed algorithm can provide
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FIGURE 13. The comparison of numbers of alive nodes under different
algorithms (m = 0.2, ECN /ESN = 7).

the best balance of the energy consumption among CNs and
SNs in the case.

It can be seen from Fig. 11, Fig. 12 and Fig. 13 that
under the condition of m = 0.2 and ECN /ESN = 8.5, the
lifetime of the two types of nodes in the proposed algorithm
is equivalent. When the initial energy ratio of CNs to SNs
remains unchanged and the number of CNs increases (i.e,
under m = 0.3, ECN /ESN = 8.5, as shown in Fig. 12),
the lifetime of the two types of nodes is different. In the case,
when all SNs die, some CNs survive due to the increase of the
number of CNs. However, under the condition ofm = 0.2 and
ECN /ESN = 7 (Fig. 13), many SNs survive when all CNs die
since the initial energy of CNs to SNs is reduced.

It can be seen from Fig. 11, Fig. 12 and Fig. 13 that under
the condition of m = 0.2 and ECN /ESN = 8.5, some CNs
under EEUC-G, CogLEACH-G and LEACH-G algorithm
survive when all SNs die. Under the condition of m = 0.3
and ECN /ESN = 8.5, more CNs survive when all SNs die
since the number of CNs increases. Under the condition of
m = 0.2 and ECN /ESN = 7, the lifetimes of the two types of
nodes under EEUC-G algorithm are almost equivalent, some
SNs under CogLEACH survive when all CNs die, and less
CNs under LEACH-G survive when all SNs die since the
initial energy ratio of CNs to SN is reduced.

It can be seen from Fig. 11, Fig. 12 and Fig. 13 that though
the network lifetimes under the proposed algorithm in all
three cases are different, they are always the longest among
the four algorithms. This proves that the proposed algorithm
can more efficiently employ energy than other algorithm.

It can be seen from Fig. 11, Fig. 12 and Fig. 13 that under
the proposed algorithm, the proportion of numbers and initial
energy of CNs and SNs can have significant impact on the
balance of the energy consumption between CNs and SNs,
and further affect the network lifetime and deployment cost.

Therefore, the optimal deployment proportion of numbers
and initial energy of CNs and SNs should be studied to
balance the energy consumption between CNs and SNs such
that the energy of CNs and SNs can be completely employed
(i.e. maximize the energy utilization efficiency).

G. DETERMINATION OF THE PROPORTION OF CNs IN
TOTAL NUMBERS
Unlike traditional homogeneous WSN, HCRSN consists of
two types of nodes. In the HCRSN, CNs in turn act as CHs,
which undertakes many functions such as SS, data fusion,
data forwarding and the management and maintenance of the
clusters. Therefore, the deployment proportion of CNs in total
numbers has great impact on the network performance and it
can greatly affect the deployment cost.

According to the formula (16), when the number of CNs
is very small (i.e. the proportion of CNs in total numbers of
nodes is very low), the number of clusters in the network is
very large. This maymake the average size of clusters be very
small, and further there may be only very few CNs in each
cluster. This can lead to very low channel detection probabil-
ity, which cannot satisfy the communication requirement of
the network.

According to the formula (16), when the number of CNs
is very large (i.e. the proportion of CNs in total numbers of
nodes is very high), the number of clusters in the network
is very small. This may make the average size of clusters be
very large, and further there may be too many CNs in each
cluster. This can lead to the sharp increase of the deployment
cost, which contradicts the low-cost deployment requirement
of HCRSN.

Therefore, the proportion of CNs in total numbers nodes
should be well designed such that each cluster in the network
can obtain enough high channel detection probability at the
lowest deployment cost.

Fig. 14 shows the average channel detection probability of
clusters under different numbers of CNs. It can be seen from
Fig. 14 that when the number of CNs is 10 (the deployment
proportion is 5%), the average channel detection probability
is very low. With the growth of the deployment proportion,
the channel detection probability increases. When the num-
ber of CNs is 40 (i.e. the deployment proportion is 20%),
the channel detection probability reaches 99%. When the
number of CNs continues to increase, the increase of the
average channel detection probability is very little.

FIGURE 14. Average channel detection probability of clusters under
different numbers of CNs.
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Fig. 15 shows the average network energy consumption
per round under different numbers of CNs. It can be seen
from Fig. 15 that the average network energy consumption
increases with the growth of the number of CNs. This is
because though the increase of the number of CNs partici-
pating in CSS can increase the channel detection probability
and further decrease the energy consumption caused by data
retransmission, it can greatly increase the energy consump-
tion caused by SS.

FIGURE 15. The average network energy consumption per round under
different numbers of CNs.

It can be seen from Fig. 14 and Fig. 15 that less CNs
is required to decrease the energy consumption but more
CNs is required to increase the channel detection probability.
Therefore, there exists a compromise in the number of CNs,
and further it can be concluded that the minimum number
of CNs that can satisfy the requirement of channel detection
probability in HCRSN (e.g. 99%) is the optimal compromise,
which lead to the least energy consumption.

Therefore, we have

1− (1− pd )
K ·m
qopt = 0.99 (21)

Substituting formula (16) into the above formula, we can
obtain the following equation regarding m.

ξ · m5
− (L1 − L2)2m2

+ 2L1 · m · (L1 − L2)− L12 = 0

(22)

where ζ = ( ln 0.01
ln(1−pd )

)5( 1
3
2π
√
π ·L1Eelec

)2, ξ = K5

ζ ·(K ·εfs·H2)
2 .

The equation (22) is a Quintic Equation, which has been
proved that there is no analytical solution. However, we can
easily solve its numerical solution since m ∈ (0, 0.5).

H. THE DETERMINATION OF THE INITIAL ENERGY RATIO
OF CNs to SNs
The initial energy ratio of CNs to SNs can impose great
impact on the balance of the energy consumption between
CNs and SNs, thus it can not only affect the network lifetime,
but also network deployment cost. In order to balance the
energy consumption between CNs and SNs (i.e. the energy
resource of CNs and SNs can be completely utilized), intu-
itively, the initial energy settings of CNs and SNs should be

proportional to the speed of their own energy consumption
(i.e. the energy consumption per round). Based on the pro-
portion of CNs in total numbersm, the theoretic initial energy
ratio of CNs to SNs can thus calculated as follows.

Rinitheo =
SC
SS

=
(q · ECH + (K · m− q) · Enon−CH CN ) / (K · m)

ESN
(23)

Note that the formula (23) is based on the casewithout dead
nodes.When CNs start to die, the total energy consumption of
CNs is always less than before due to the decrease of energy
consumption caused by SS, and further the average speed of
the energy consumption of CNs is always lower than before,
as can be seen from Fig. 16. In Fig. 16, CNs start to die in the
330th round, the speed of their energy consumption starts to
decrease. Therefore, the calculation value of the formula (23)
is always higher than the actual value.

FIGURE 16. Average residual energy of CNs and SNs under m = 0.2 and
the same initial energy.

Fig. 16 shows the average residual energy of CNs and SNs
under m = 0.2 and the same initial energy.
It can be seen from Fig. 16 that when the energy of CNs

has been exhausted, the average residual energy of SNs is
0.4411 J . The actual initial energy ratio of CNs to SNs can
thus be calculated as follows.

Riniactu =
0.5

0.5− 0.4411
= 8.5 < Rinitheo =

ECN
ESN
= 9 (24)

Therefore, the calculation value of the formula (23) can
considered as the reference value. In reality, the initial energy
ratio of CNs to SNs can be designed to equal the calculation
value of the formula (23) or the lower value than it.

I. MESSAGE COMPLEXITY
The clustering algorithm is message-driven, thus the message
complexity of the proposed algorithm is calculated and com-
pared with those of other algorithms, as shown in table 2.
It can be seen from table 2 that the message complexity of all
the algorithms per round is O(K ). The complexity under our
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TABLE 2. Parameter setting.

TABLE 3. Message complexity.

proposed algorithm is a little higher than other algorithms.
However, the performance is the best, as mentioned in the
previous text.

J. SIMULATION SNAPSHOTS OF THE PROPOSED
CLUSTERING ALGORITHM
Fig. 17 shows a simulation snapshot where there are not
dead nodes, and Fig. 18 shows the simulation snapshot of
the 1280th round where there are many dead nodes. It can
be observed from Fig. 18 that when the clustering algorithm
is executed in the 1280th round, the number of clusters in the

FIGURE 17. Simulation snapshot without dead nodes (‘o’ denotes a SN,
‘+’ is a CN, ‘x’ is the sink node, and ‘4′ is a CH).

FIGURE 18. The simulation snapshot of the 1280th round (the black point
denotes dead SNs, and the red point denotes dead CNs).

network is decrease to 6 and the dead CNs and SNs are almost
evenly distributed in the HCRSN.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a HLEACH algorithm for multi-
hop HCRSN. In the algorithm, the sink node first updates
and broadcasts the global information, and then each CN
calculates itself competition radius after receiving the broad-
cast information based on the deployment density of CNs,
followed by the competition for CHs based on the proposed
competition rules. In order to enable CHs to more evenly
distribute in the HCRSN, some redundant CHs are deleted
targeting the optimal number of clusters in the CHs’ cen-
soring stage. To energy-efficiently balance the distribution
of CNs among clusters and the energy consumption among
CHs, the non-CH CNs and SNs select the nearby CHs with
the minimum value to join based on the calculation formulas
of weights summation of several factors such as the distance
and connection degree. Experimental results show that the
proposed algorithm has the best performance in terms of
channel detection probability, network lifetime and the bal-
ance of the distribution of CNs among clusters and the energy
consumption among CHs. Finally, the optimal deployment
proportion of numbers and the initial energy of CNs and
SNs are theoretically derived to maximize the energy utiliza-
tion efficiency, i.e. the ratio of the network lifetime to the
deployment cost. In future work, we plan to further study the
deployment proportion of numbers and the initial energy of
CNs and SNs, which is of significance for the actual deploy-
ment of HCRSN. Furthermore, we also plan to study the
spectrum sensing algorithm in the HCRSN to reduce energy
consumption and deployment cost. The research issues for
potential researchers include but not limit to the message-
interaction protocol betweenCNs and SNs, theMACprotocol
for HCRSN and energy-efficient cooperative SS for different
application scenarios.
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APPENDIX
THE EQUATION (15) IS A CONCAVE FUNCTION WITH
RESPECT TO q
Substituting equation (7) into equation (15), we can get

Eround = q (ECH + A+ B) (25)

where

A = (
K · m
q
− 1)Enon−CH CN

B =
K (1− m)

q
· ESN

Eround = q · ECH + K · m · Enon−CH CN

− q · Enon−CH CN + K (1− m) · ESN (26)

Substituting equations (4-14) into the equation (26), we can
get

Eround = q · C + q · D+ K (1− m) · E + K · m · F − q · G

(27)

where

C =
K (1− m)

q
· L1 · Eelec + (

K · m
q
− 1) · L2 · Eelec

+
K (1− m)

q
· L1 · EDA + L3 · Eelec + L3 · εfs ·

4H2

πq
+Esense + Eelec · L4

D = L2 · Eelec + L2 · εfs ·
H2

2πq

E = L1 · Eelec + L1 · εfs ·
H2

2πq
+ Eelec · L2

F = L2 · Eelec + L2 · εfs ·
H2

2πq
+ Esense

G = L2 · Eelec + L2 · εfs ·
H2

2πq
+ Esense (28)

Rewriting the above equation can get

Eround = 2K (1− m) · L1 · Eelec + K · m · L2 · Eelec

− q · L2 · Eelec + K (1− m) · L1 · EDA

+ q(
√
πq

4
+

1
2
) · L1 · Eelec

+ (
√
πq

4
+

1
2
) · εfs ·

4H2

π

+ q(
√
πq

4
−

1
2
) · L1 · Eelec

+K (1− m) · L1 · εfs ·
H2

2πq
+ K · m · L2 · Eelec

+K (1− m) · L2 · Eelec + K · m · Esense

+K · m · L2 · εfs ·
H2

2πq
(29)

Taking the partial derivative of the equation (29) with
respective to q can get

E ′round =
3
√
π

4
· L1 · Eelec ·

√
q− L2 · Eelec

+
H2

2
√
π
· εfs ·

1
√
q

+K · m · L2 · εfs ·
H2

2π
·

(
−

1
q2

)
+K (1− m) · L1 · εfs ·

H2

2π
·

(
−

1
q2

)
(30)

Its second-order partial derivative with respect to q can be
written as:

E ′′round =
3
√
π

8
· L1 · Eelec ·

1
√
q
−
H2εfs

4
√
π ·
·

1
q
√
q

+
H2εfs(K · m · L2 + K (1− m) · L1)

2π
2
q3

(31)

Let γ denote the ratio of the latter two items in for-
mula (31), we can get

γ =
4
√
π

K (mL2 + (1− m)L1)

q
3
2

4
√
π
>1
>

K (mL2 + (1− m)L1)

q
3
2

L1>L2
>

KL2

q
3
2

Let K=nq
−−−−−−→

nL2

q
1
2

=
(nL2)2

q
� 1 (32)

where m ∈ (0, 1), q > 1, n > 1.
Therefore, we can get

−
H2εfs

4
√
π ·
·

1
q
√
q
+
H2εfs(K · m · L2+K (1−m) · L1)

2π
2
q3
> 0

(33)

Furthermore, we can obtain Eround ′′ > 0, which can prove
that the function Eround (q) is a concave function. That is to
say, the function Eround (q) has the minimum value.
Let E ′round=0, we get

E ′round (q) =
3
√
πL1Eelec
4

√
q+

H2εfs

2
√
π

1
√
q

−
KH2εfs

2π
(m · L2 · +(1− m) · L1)

1
q2

−L2 · Eelec = 0 (34)

Let z =
√
q, then

E ′round (z) = az5 − bz4 + cz3 − d
= az5 + (−bz+ c)z− d = 0 (35)

where

a =
3
√
πL1Eelec
4

b = L2 · Eelec

c =
H2εfs

2
√
π

d =
KH2εfs

2π
(m · L2 · +(1− m) · L1) (36)
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The formula (35) is a Quintic Equation, which has been
proved that there is no analytical solution. In reality, it is
not hard to understand that L1 � L2,Eelec � εfs,

H ∈ [100, 10000],K > 100, we can thus obtain

d � a, b, c

a � b, c or a� (−bz+ c) (37)

Therefore, E ′round (z) is mainly dominated by the term
az5−d , and further the term−bz4+cz3 in (35) can be ignored.
The solution to equation (31) can thus be solved, which can
be represented as follows.

qopt =


2H2Kεfs ((1− m)L1 + mL2)

3π
3
2 L1Eelec

 2
5

+ 0.5


(38)
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