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ABSTRACT Video content is responsible for more than 70% of the global IP traffic. Consequently, it is
important for content delivery infrastructures to rapidly detect and respond to changes in content popularity
dynamics. In this paper, we propose the employment of on-line change point (CP) analysis to implement
real-time, autonomous and low-complexity video content popularity detection. Our proposal, denoted as
real-time change point detector (RCPD), estimates the existence, the number and the direction of changes
on the average number of video visits by combining: (i) off-line and on-line CP detection algorithms;
(ii) an improved time-series segmentation heuristic for the reliable detection of multiple CPs; and (iii) two
algorithms for the identification of the direction of changes. The proposed detector is validated against
synthetic data, as well as a large database of real YouTube video visits. It is demonstrated that the
RCPD can accurately identify changes in the average content popularity and the direction of change.
In particular, the success rate of the RCPD over synthetic data is shown to exceed 94% for medium and
large changes in content popularity. Additionally, the dynamic time warping distance, between the actual
and the estimated changes, has been found to range between 20 samples on average, over synthetic data,
to 52 samples, in real data. The rapid responsiveness of the RCPD is instrumental in the deployment of
real-time, lightweight load balancing solutions, as shown in a real example.

INDEX TERMS Video content popularity detection, change point analysis, on-line change point detection,

binary segmentation algorithm, load balancing.

I. INTRODUCTION

Video content is projected to account for 82% of the global
Internet traffic by 2020, significantly increased from 72%
in 2016 [1]. In parallel, novel emerging networking, cloud and
edge computing paradigms with significant elasticity capa-
bilities appeared recently, e.g., software-defined networks
(SDN) [2], cloud orchestration proposals [3] and content
distribution networks (CDNs) [4]. These advances offer the
means to respond quickly to changes in content popular-
ity dynamics with appropriate adaptations, e.g., in terms of
efficient server resource allocation schemes, load balancing
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or content caching. As a result, the early detection of changes
in content popularity [5], [6] is proving a highly important
topic and can have a significant impact on the network traffic
and the utilization of servers.

So far, the vast majority of research efforts have focused
on the prediction of content popularity dynamics, as opposed
to their real time detection, which is the focus of this study.
There is a multitude of reasons as to why the precision of even
state-of-the-art prediction algorithms can be impaired. A vari-
ety of factors — both from the digital and the physical world —
can influence the users’ Internet surfing behavior, e.g., [5]:
(1) the quality, type (e.g., commercial or user-provided) and
life-time of content; (ii) its relevance to users and physi-
cal events; (iii) the social interactions between users; and
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(iv) the content promotion strategies involved. Importantly,
mid-term and long-term content popularity prediction [7]
— and corresponding adaptations in the network or cloud
environment — can prove highly inaccurate [8] and thus result
in sub-optimal service planning, provisioning, and utilization
of resources or violation of service level agreements.

In this work, to address the aforementioned shortcomings
of the commonly employed prediction algorithms, we pro-
pose a corresponding detector, referred to as the “‘real-time
change point detector” (RCPD). The RCPD is compatible
with modern, flexible networking and cloud approaches,
that are highly adaptive and can respond to short-term net-
work dynamics. With accurate, on-line content popularity
detection, discrepancies between inaccurate predictions and
actual changes can be alleviated. The RCPD is real-time,
lightweight, accurate and is parameterized autonomously by
analyzing historical data.

In the RCPD, we employ the change point (CP) detection
theory and algorithms; their suitability is confirmed against
a large number of synthetic as well as real YouTube video
datasets. In this contribution, the early detection of changes
in the average content popularity is addressed with a novel
CP detection methodology, consisting of a training phase,
using historical data, and, an on-line phase. In the training
phase, we employ a modified off-line CP detection scheme
to configure the on-line (sequential) algorithm’s parameters.
This approach is shown to greatly improve the accuracy of the
on-line detector, as in essence, the algorithm parameterization
is not arbitrary but rather extracted from corresponding his-
torical data. To the best of our knowledge, it is the first time
in the literature that retrospective (off-line) and sequential
(on-line) CP detection schemes are combined in a single
algorithm operating autonomously (i.e., without manual con-
figuration of parameters).

Besides that, our approach complements the off-line
scheme with an improved time-series segmentation heuris-
tic for the detection of multiple CPs. Furthermore, we pro-
pose two possible variations for the on-line CP algorithm,
the first based on the standard cumulative sum (CUSUM)
procedure [9] and the second on the ratio-type CUSUM
procedure [10]'. Additionally, we introduce two alternative
indicators to detect the direction of changes: the first one
is directly derived from the statistical test of the on-line
CP procedure, while the second is based on a modified expo-
nential moving average filter, extensively used in economet-
rics. As discussed in Sections III and IV, the RCPD combines
all the above mentioned algorithmic elements, and is based
on sufficiently general and convenient assumptions. More-
over, unlike other approaches e.g., [11], we employ methods
that allow dependence between observations (in the form of
t—dependence), leading to more realistic assumptions for the
statistical structure of the content visits.

I The advantage of ratio-type CUSUM is that it does not require the
estimation of long-run covariance (variance) matrices, which is the case for
the standard CUSUM method.
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We evaluate the proposed detector and its individual algo-
rithmic components (i.e., the off-line / on-line test statis-
tics, the time-series segmentation algorithm and the trend
indicator), over synthetic and real YouTube content views
data. Our experiments using synthetic data, generated by an
autoregressive moving average (ARMA) filter, demonstrate:

o The superior performance of the proposed time-series
segmentation heuristic over the standard approach,
improving the true alarm rates by up to 43%.

o The ability of the two proposed trend indicators to iden-
tify the direction of estimated changes, with successful
identification rates exceeding 99%, in all cases.

o The RCPD performance; the true alarm rates surpass
94% for medium / large changes in the mean number of
content views, while the corresponding CP identification
lag ranges between 10 to 20 instances, confirming the
real-time operation of the detector. On the other hand,
the RCPD achieves very small false alarm rates, well
within the limits of the statistical error specified by the
chosen significance level of the CP algorithms.

Furthermore, our tests on real YouTube content views
datasets show that:

« YouTube video views match the underlying assumptions
of the RCPD, i.e., the content popularity time-series
datasets can be modeled as t-dependent.

e The RCPD can detect CPs in more than 70% of the
videos in our dataset, implying a sufficiently high num-
ber of content popularity changes and the suitability
of the CP theory framework for content popularity
detection.

o The successful CP direction identifications exceed 91%,
i.e., the proposed trend indicators work for real data.

o The average dynamic time warping (DTW) dis-
tance [12], [13] between the identified CPs and a bench-
mark off-line algorithm was estimated to be 52 time
instances on average, showcasing the rapid responsive-
ness of the RCPD.

o The overall processing cost of the RCPD is very
low; notably, it took less than one second to process
882 videos on a typical personal computer (PC).

Finally, as a proof-of-concept, we demonstrate the appli-
cability of the proposed algorithm in a real load balancing
scenario. We provide a set of measurements showcasing
improvements in terms of the clients’ connectivity time to
download specific content, without a significant impact on
the utilization of the content servers. This is achieved due
to the deployment of additional content caches, an event
triggered by the output of the proposed RCPD detector.

The rest of the paper is organized as follows. In Section II,
we discuss our approach with respect to related works.
In Section III, we present the training phase of the RCPD
algorithm, while the on-line phase is discussed in Section IV.
In Section V, we present four experiments over synthetic
data, providing an extensive validation of the RCPD and its
subroutines, while in Section VI, we discuss corresponding
experiments using a database of real YouTube video views.
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In Section VII, we demonstrate the load balancing gains
achieved through the use of the RCPD, in a realistic content
provisioning scenario. Our conclusions and directions for
future work are presented in Section VIII.

Il. RELATED WORKS

In this Section, we discuss how this work relates to the
literature of video content popularity prediction, on one hand,
and, anomaly detection (i.e., CP analysis), on the other hand.

The topic of content popularity attracted a lot of atten-
tion in recent years, because of its importance in a
number of applications, such as network dimensioning
(e.g., capacity planning or scaling of resources), on-line mar-
keting (e.g., advertising, recommendation systems) or real-
world outcome prediction (e.g., analysis of economical
trends) [5]. The main approaches used for content popular-
ity estimation can be categorized as: (i) cumulative growth
studies, estimating the “amount of attention” from the pub-
lication instance to the prediction moment [6]; (ii) tempo-
ral analysis approaches, i.e., how content visits evolve over
time [14]; and (iii) clustering methods of content with similar
popularity trends [7]. We note that many content popularity
studies consider the aggregate behavior of a particular con-
tent, e.g., [6], [14], whereas we study the real-time behavior
of video views time-series. In addition, studies using clus-
tering methods [7] are based on content popularity prediction
and adopt parametric models, unlike the RCPD algorithm that
is non-parametric.

To the best of our knowledge, our earlier conference
paper [15] is the first in the literature proposing CP tech-
niques [16] for content popularity detection. The RCPD
algorithm falls into the general category of anomaly detec-
tion [17]; in essence, we assume that no changes in popularity
constitutes the normal behavior of video content and search
for deviations from this behavior. Non-parametric anomaly
detection has typically been considered for the detection of
abnormalities in the network traffic. As an example, in [18]
an algorithm was proposed based on the Shiryaev-Roberts
procedure for anomaly detection in computer network traffic.
In [19] and [20], CUSUM based approaches were introduced
for the detection of SYN attacks.

Further examples of parametric anomaly detection meth-
ods include [21], in which a bivariate sequential generalized
likelihood ratio test (LRT) was proposed, accounting for the
packet rate — assumed to follow a Poisson distribution — and
the packet size — assumed to follow a normal distribution.
Other parametric anomaly detection approaches assume a
particular underlying process for the normal behavior and
search for anomalies on the residuals of the process. For
example, in [22], Kalman filtering is combined with several
CP methods, such as CUSUM and LRT, to detect anomalies
in origin-destination flows. In [23], traffic flows (in the form
of TCP’s finite state machine), are modeled using Markov
chains and an anomaly detection mechanism based on the
generalized LRT algorithm is developed.
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As opposed to previous content popularity prediction
works, in this paper we introduce a novel CP detec-
tion methodology that provides accurate, lightweight,
autonomous and on-line CP detection of content popular-
ity. We formulate the detection of a change in the aver-
age content popularity as a statistical hypothesis test and
employ non-parametric procedures to avoid a particular
distribution assumption (such as a specific copula model).
This context ensures low convergence time since it avoids
estimating a large number of model parameters and restric-
tive assumptions that may not match the structure of the
time-series. Furthermore, we avoid problems of paramet-
ric models that require parameters’ fitting and selection,
which become challenging as new data become available.
In the proposed RCPD algorithm, an off-line phase specifies
important parameters for the on-line phase; these parameters
are re-evaluated dynamically after a detected CP. Our load-
balancing experiments, elaborated in [4], demonstrate the
RCPD’s behavior in a real test-bed deployment.

Up to now there are only a handful of proposals address-
ing the challenges of new flexible networking and cloud
architectures accounting for content popularity. Exceptions
include [24] in which a logistic-loss machine learning
approach to content popularity prediction is applied for a Fog
RAN environment, and, our recent papers [4] and [15]. In [4],
the algorithm — outlined in [15] and presented extensively in
the present — is integrated into an elastic CDN framework
based on lightweight cloud capabilities using Unikernels.
[4] focuses on the platform details rather than on the CP algo-
rithm; it confirms experimentally the suitability of the latter
for relevant flexible network and cloud architectures. The first
detailed description of the proposed CP detection algorithm
is presented in the following Sections, along with a rich set
of validation results. We elaborate on the two phases of the
RCPD in Sections III and IV respectively and provide the
corresponding pseudo-code.

IIl. TRAINING (OFF-LINE) PHASE

In this Section, the training phase of the algorithm is
discussed and the fundamental components of the off-
line scheme are presented. We note that standard off-line
CP schemes can only detect a single CP. To address the issue
of detection of multiple CPs, we modify the basic algorithm
with a novel time-series segmentation heuristic, that belongs
to the family of binary segmentation algorithms.

A. BASIC OFF-LINE APPROACH
Let {X,, : n € N} be a sequence of r- dimensional random
vectors (r.v.). The first dimension represents the number
of views for a specific video content within a time period
n € {1,..., N}, while the other dimensions could be option-
ally used to represent other content popularity features, such
as likes, comments, etc. We assume that X, ..., Xy can be
written as,

Xp=pup+Y, 1<n<N (nH
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where {i, :n € N} is the mean value of video visits,
{Y, : n € N} arandom component with zero mean E [Y,,] = 0
and positive definite covariance matrix, E [YnYnT ] = X,
while E[-] denotes expectation. We further assume that the
time-series is r-dependent, implying that for 71, >, € N, ¥y,
is independent of Yy, if [t] — 12| > 1.

The model in (1) and the underlying assumption of
t—dependence are in agreement with statistical characteri-
zations of the distribution of visits, which have been shown
in numerous analyses to follow either a Zipf [25] or a
Zipf-Mandelbrot [26] distribution for both commercial and
user-generated content. Furthermore, it is confirmed in the
real YouTube datasets used in the present work through the
evaluation of the time-series’s Hurst exponents, as will be
discussed in Section VI-A.

The off-line analysis tests the constancy (or not) of the
mean values up to the current time N. Hence, we define the
following null hypothesis of constant mean,

Hy:pp=...=un,

against the alternative,

Hytpn == g, # M+l = -0 = N,
indicating that the mean value changed at the unknown (time)
pointk:ﬁ ef{l,...,N}.

Considering (1) and the corresponding assumptions for
the stochastic process X, we develop a non-parametric

CUSUM test statistic following [27]. The test statistic TS4,
can be viewed as a max-type procedure,

To-1
TSofr = 1;nnang C, Qy Cy, 2)

where the parameter C, is the retrospective CUSUM detector,

1 - _
C,= ﬁ <§Xz - nXl,N) , (3)

while X1y = ]l\,Zf;lXi denotes the sample mean.
Qu represents a suitable estimator of the long-run covari-
ance €2, where

Q= Z Cov (X, Xp—i). “4)

i=—o00
The estimator should satisfy,

-~

oo 5)

where LY denotes convergence in probability.

Several estimators have been proposed in the literature that
satisfy (5), including kernel-based [28], bootstrap-based [29],
etc. Considering our requirement for real-time detection (low
computational time), a kernel-based estimator is more suit-
able; in this context, we employ the Bartlett estimator, so that

w
~ ~ w ~ ar
Qy = zo+w2_:1kgr(w+ 1) (EW+EW), (6)
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which satisfies (5), while the function kpr(.) corresponds to
the Bartlett weight,

1— x|, for|x| <1
kpr (x) = - @)
0, otherwise,
and %, denotes the empirical auto-covariance matrix for
lag w,

- 1
Xy = ﬁngl (Xn _m (anw _Y)T . ()

Finally, we chose W = log;,(N) as in [28].

The long-run covariance is involved in the test statistic
to incorporate the dependence structure of the r.v. into the
statistical analysis, through the integration of second order
statistical properties. This approach is suitable for the targeted
context since we avoid a restrictive assumption for the depen-
dence structure of the observations.

Going back to the basic question of rejecting or not Hy,
we need to obtain critical values, denoted by cv, for the test
statistic. We approach this issue by considering the asymp-
totic distribution of the test statistic under Hy,

.
TSOﬁcgcvoff = sup ZBJZ(I) (N — 00), )
’ h 0<r<1 T

where 2) denotes convergence in distribution, while
(Bj(t) : 1 €10,1]),1 < j < r, are independent standard
Brownian bridges B(t) = W(t) — tW(1), and W(¢) denotes
the standard Brownian motion with mean 0 and variance .
The critical values for several significance levels o can be
computed using Monte Carlo simulations that approximate
the paths of the Brownian bridge on a fine grid. The last step
is to estimate the unknown CP, defined previously as k;‘ s
under Hi, given by:

o 1
k¥y = —argmax TS,r. (10)
4N 1<n<N o

B. EXTENDED OFF-LINE APPROACH

The above hypothesis test identifies the existence of at most
one CP and does not ensure that the sample remains statisti-
cally stationary in either direction of the detection. In par-
ticular, by construction (see (2)), the off-line test statistic
detects the CP with the highest magnitude. Therefore, for the
detection of multiple CPs we need to rephrase the hypothesis
test Hy, as follows:

Hyipp == gy & MWg+1 = .o = gy & -
o FE e 1= = ke, FE k] = = UN.

A greedy technique to identify multiple CPs is the binary
segmentation (BS) algorithm. The standard BS algorithm
relies on the general concept of binary segmentation and is
an extension of the single CP estimator. First, a single CP is
searched for in the time-series. In case of no change, the pro-
cedure stops and Hy is accepted. Otherwise, the detected
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Algorithm 1 Modified Binary Segmentation (MBS)

1: procedure MBS(start,end,A)
2: ; A: BS method selection (0: standard, 1: modified)

3: ; TS, : the off-line test statistic (eq. 2)

4: ; Cvopr: the critical value (eq. 9)

5000 léjﬁ,: the identified CP (eq. 10)

6: calculate TS, (start, end) and cvyy

7: if TS,z (start, end) > cv,y then

8: calculate lzjﬁc and store it in array s

9: MBS (start,k *,0)

10: MBS(/%jﬂH,end,O)

11: end if

12: if array_length(s) > 0 and A=1 then
13: S <« {1} U {s} U {N}; N: the time-series length
14: for i=2:N-1 do

15: MBS(Si—1, Si+1,0)

16: keep in [ the validated CPs only
17: end for

18: end if

19: end procedure

CP is used to divide the time-series into two segments in
which new searches are performed. The procedure is iter-
ated until no more CPs are detected. The BS algorithm is
lightweight (computational time O(NlogN)), while its con-
ceptual simplicity leads to efficient implementations. On the
other hand, it has been shown in the literature [30], [31],
that the standard BS algorithm tends to overestimate the
number of CPs, as it does not cross-validate them after their
detection.

In the extended off-line approach, we propose the modi-
fication of the standard BS with a cross-validation step of
the estimated CPs. The cross-validation step is similar to
that used in the iterative cumulative sum of squares (ICSS)
segmentation algorithm [32], which is used to search for CPs
on the marginal variance of independent and identically dis-
tributed (i.i.d.) r.vs. In the extended off-line algorithm we
consider the CPs estimated from the standard BS in pairs
and check if Hp is rejected in the segment delimited by
each pair. If Hy is not rejected in a particular segment, then
no change can be detected in it; as a result, all CPs that
fall in the respective segment are eliminated. The improve-
ment, in terms of accuracy, is shown through simulation
results in Section IV. The pseudo-code of the modified BS
algorithm is given in Algorithm I; note that we integrate
the algorithm with the test statistic 7Sy, given in equa-
tion (2) and the corresponding critical value (cv,f) given
in (9).

IV. ON-LINE PHASE

In this Section, we describe the on-line scheme that includes:
(i) two alternative CUSUM-type approaches for the detection
of a change in the mean; and (ii) two alternative approaches
to estimate the direction of a change.
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A. ON-LINE ANALYSIS
We rewrite equation (1) in the form,

X, = uw+ Yy, n=1,....m+k*—1 (11
w+Y,+1, n=m+k*, ...

where u, I € R” represents the mean parameters before
and after the unknown time of possible change k* € N*
respectively. As a reminder, the first dimension of the time-
series represents the video views; the rest could be likes,
comments, etc., and {Y}, : n € N} is arandom component. The
term m € N denotes the length of the training period, i.e., an
interval of length m over the historical period during which
the mean is assumed to remain unchanged, so that,

mip == m. (12)

To satisfy this assumption, the modified off-line CP test
previously presented is run in order to identify a suitable
m. With m determined, the on-line procedure can be used to
check whether (12) holds as new data become available.

In the form of a statistical hypothesis test, the on-line
problem becomes,

Hy:1=0,
Hy:1#0. (13)
The on-line sequential analysis belongs to the category
of stopping time stochastic processes. In general, a chosen

on-line test statistic 7S,,(m, [) and a given threshold F(m, [)
define the stopping time t(m):

fomy — {min{l € N: TS, D2 Fom DL, (|

00, if TSyu(m, )< F(m, )Vl € N,

implying that 7S,,(m, [) is calculated on-line for every [/ in
the monitoring period. The procedure stops if the test statistic
exceeds the value of the threshold function F(m, [). As soon
as this happens, the null hypothesis is rejected and a CP is
detected. The following properties should hold for 7(m),

lim Pr{t(m) < oo|Hp} = «,
m—00

ensuring that the probability of false alarm is asymptotically
bounded by « € (0, 1), and,

lim Pr{r(m) < oo|H1} =1,
m—0o0

ensuring that under H the asymptotic power of the statistical
test is unity. The threshold F(m, ) is given by,

F@m, ) = cvonag(m, 1), (15)

where: (i) the critical value cvy, , is determined from the
asymptotic behavior of the stopping time procedure under Hy
by letting m — oo; and (ii) the weight function,

i I\
gm, 1) = /m (1 + Z) <_1 +m) (16)

depends on the sensitivity parameter y € [0, 1/2).
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We use two different CUSUM approaches; the
standard [9], with test statistic denoted by TS/, on» and, the ratio-
type [10], with test statistic denoted by TS.,. Their corre-
sponding critical values are denoted by cvon o and vy o,
respectively, and their stopping rules by t.,(m) and t,(m),
correspondingly. Both tests are based on the sequential

CUSUM detector, E(m, 1),

E(m, 1) = (Ym+1,m+l _Yl,m) (17)
The standard CUSUM test is expressed as:

TS (m, 1) = IQ, 2E(m D), (18)

on

where ?zm is the estimated long-run covariance, defined as
in (4), that captures the dependence between observations.
Then, the stopping rule 7., (m), is defined as:

Te(m) =min{l e N : ||TS”(m D1 > cv[m Lm, DY, (19)

where the ¢; norm is involved to modify 7SS, so that it can
be compared to a one dimensional threshold function. The
critical value, ¢vg, ., is derived from the asymptotic behavior
of the stopping rule under Hy:

lim Pr{z(m) < oo}
m—0o0

IS¢ (m, 1 ,
= lim Pr{ sup 170, (m. Dllt v o
m=00 | 1<i<oo  &m,1) ’

= Pr{ sup
t€[0,1]

Unlike standard CUSUM tests, ratio type statistics do not
require to estimate the long-run covariance and are also con-
sidered for this reason in this analysis. The precise form of
the chosen statistic is given in the following quadratic form,

TS (m, I)

Wi
W@k t(V)Hl > cvg;,a} =a. (20)

-1

T . - .
2 (X =X i) (K1 = Xi)'

% E(m, 1), . 1)

2
= —ET(m, )
m

with its equivalent stopping rule,

T(m) = min{l € N: TS}, > cvl} ,&*(m, D}.  (22)

on —

Similarly to the standard CUSUM, the critical value, cv'’
is estimated by,

on,a’

lim Pr{z(m) < oo}

m— 00

= Pr { sup Ay (1) > cv(rfna}

1€[0,00) '
=a, (23)
where,
1 ‘ -
Ay(t) = ——B"(1+ t)(/ B(r)BT(r)dr> B(1 +1),

15, (1) 0

t Y
ny(r>—<1+r>(1+t>,

and B(¢) is a standard Brownian bridge, ¢ € [0, 00) .
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Similarly to the off-line case, the on-line critical values
for both test statistics can be computed using Monte Carlo
simulations, considering that,

. Wit
eV o = Sup —)(/ ), (24)
ref0.1] 1
Ve = sup Ay(0). (25)
t€[0,00)

The estimated on-line CP, k7, is derived directly from the

value of the stopping time t(m), as,

kZ, = m+ {z(m)|t(m) < oo}. (26)

B. TREND INDICATOR

Considering the on-line procedure, the hypothesis Hj in (13)
is two-tailed because the test statistics 7S/, and 7S¢, a
formulated in a quadratic form and a ¢; norm, respectlvely
This means that the stopping time rule 7. (m) (or t,4(m))
cannot be an indicator of the direction of a detected change.
Thus, to estimate the direction of a change we introduce two
indicators: i) based on the CUSUM detector in (17), denoted
by Tl;; and ii) based on the moving average convergence
divergence (MACD) filter [33], denoted by T1r.

Focusing on T1js, the indicator is directly derived from the
form of the sequential CUSUM detector E(m, [). As shown
in (17), the detector compares the mean value of the obser-
vations that are collected on-line for a chosen monitoring
period [, with the mean value of a subsample of the historical
data over the predetermined training sample. Hence, for a
detected CP, we have that,

{E (m,1) > 0, denotes an upward change

denotes a downward change.

E@m,1) <0, @7)

However, in certain cases, limiting the window over which
the direction of a change is estimated to the immediate neigh-
bourhood of a detected CP can be unreliable due to the con-
tinuous variability of the time-series. In such cases, we have
to estimate the direction of a change by incorporating more
elaborate filters; in this context, we estimate the direction
of detected changes by applying the MACD indicator. The
MACD is based on an exponential moving average (EMA)
filter, of the form,

2 -1
EMA ——EMA , 28
p(n) +l n+ P+ p(n 1)) (28)
with p denoting the lag parameter. The MACD series can be
derived from the subtraction from a short p; lag EMA (sensi-
tive filter) of a longer p3 lag EMA (blunt filter), as described
below:

MACD(n) = EMAp, — EMA,,. (29)

The trend indicator 71y is then obtained by the subtraction of
a short p; lag EMA filter of a MACD series from the raw
MACD series, as described below:

Tl (n) = MACD(n) — EMA,, (MACD(n)),
p1 <p2<p3 (30)
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In the evaluation of TIy three exponential filters are
involved. In essence, TIy is an estimation of the second
derivative over an interval around the change (considering
that the subtraction of a filtered variable from the variable
generates an estimate of its time derivative). In contrast to
other works [33], we only adopt 71y to characterize the direc-
tion from the specific value of TI at the estimated time of
change. We announce an upward change if Tlf(lgjn) > 0,
otherwise, if TIf(lgjn) < 0, a downward change.

Finally, we propose a modification of the trend indica-
tor T1y, converting it from a point estimator to an interval esti-
mator; instead of evaluating TIf(IQ;“n), we propose to evaluate
the trend indicator at a time interval (k*,, k*, 4 h), where h is
a threshold parameter:

ks, +h
Tl (i, h) = Z Tl (1). (31)

1=k}

on

on?’
tor’s accuracy; the calculation of the sum of a multitude of

observations, after a CP, can smooth out a potential false one-
point estimation, especially in the case of small changes.

The proposed Ty (k*., h) modification improves the estima-

C. OVERALL ALGORITHM

We outline in Algorithm 2 the RCPD algorithm, as a com-
bination of the off-line and the on-line phase, in the form
of pseudo-code. Beginning from the initial value set for the
monitoring starting period, denoted by m, the modified off-
line algorithm is applied over the whole historical period; the
training period m is then defined as the interval elapsed from
the last detected off-line CP (if one exists) to m;. In pseudo-
code this step is described in lines 14 — 18. As a second step,
the on-line test statistic, TS,,(m, [) in (14), is applied for a
specified monitoring time frame /. If a content popularity
change is detected at time instance kZ,, the trend indicator
subroutine is called to reveal the direction of change.” At this
point the procedure stops and a new starting point for the
monitoring window is defined as m; = l%;',‘n +d, whered is a
constant value specifying a period assuming no change. This
step is described in lines 19 — 29. Otherwise, if no change
is detected after a maximum of [ instances, the procedure
restarts from the last time point, mg; = mg + [.

V. VALIDATION OF THE RCPD USING SYNTHETIC DATA
In this Section, we validate the performance of the overall
algorithm by performing a series of four different experi-
ments on synthetic data. The use of synthetic data allows
us to regulate the parameters of the time-series in terms of
mean changes and thus obtain quantitative metrics for the
performance of the proposed algorithms.

The choice of the time-series model for the generation of
the synthetic data is based on the fact that several studies have

21n the load balancing scenario discussed in Section VII, in the case of
an increase in the content popularity a new content cache is being deployed,
while conversely a decrease leads to the removal of an existing cache.
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Algorithm 2 The Real-time CP Detector (RCPD)
1: procedure RCPD(X,,,m;.k)
2 ; X,,: time-series of video views
3 ; mg: running end of training period
4 ; m: training period
5: ; I: monitoring time frame
6
7
8
9

; d: period assuming no change

; TSon: on-line test statistic (eq. 18 or 21)
; CVon: critical value (eq. 24 or 25)

: k* : the estimated on-line CP (eq. 26)

10: ; TL: trend indicator (Tl or Tly)

11: for nin X, do

12: if n = m; then

13: s = MBS(1,my,1) ; calculate off-line CPs

14 if array_length(s) > O then

15: m = {max(s), my} ; max(s) is the latest CP

16: else

17: m = {max(1,mg —u), mg} ; u a large
value

18: end if

19: else if m; < n < m; + [ then

20: calculate TS, (m, 1)

21: if TSy, (m, 1) >cv,, then

22: calculate TT

23: signal CP and estimated direction

24: mg = Cp,,+d ; keep a distance from cp,y,,

25: end if

26: else if n = m; + [ then

27: mg = my + [ ; start a new training period

28: end if

29: end for

30: end procedure

shown that ARMA models capture very well content popu-
larity evolution. For example, in [7] it has been concluded
that an ARMA model can efficiently describe the daily access
patterns of YouTube content, based on an extensive analysis
of 100, 000 videos. Similarly, in [34] an ARMA model has
been proposed for the estimation of the popularity of video
content. Motivated by these findings, for the validation of
the proposed algorithm we use an ARMA(I, 1) time-series.
We generate 1, 000 time-series of length N = 600 samples.
Without loss of generality, we assume an initial mean value
no = 0, noting that the performance of the RCPD is inde-
pendent of the initial mean value and only depends on the
magnitude of the variation of the mean value before and after
aCP.

In the first experiment, we begin with a comparison of
the standard BS to the proposed modified BS algorithms
described in Section II-B. We perform two tests; in the first
test we introduce two CPs at the instances k' = (iN)/3,
i = 1,2, while in second test, we introduce four CPs at
k;k = (iN)/5,i = 1,...,4. The two tests are repeated for
three different values of the magnitude of a change u; = 1,
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TABLE 1. Percentage of the successful CP detections for the standard and
modified BS algorithm.

Test 1: two CPs Test 2: four CPs
1 BS modified BS BS modified BS
True (false) alarm rate True (false) alarm rate
p1=1 0.94 (0.06) 0.95 (0.05) 0.5 (0.258) 0.7 (0.05)
p2=1.5 | 0.95(0.05) 0.95 (0.05) 0.5 (0.258) 0.9 (0.08)
p3=2 0.95 (0.05) 0.95 (0.05) 0.47 (0.53) 0.9 (0.1)

TABLE 2. Success rates of trend indicators.

Test 1: two CPs Test 2: four CPs

o Tlis Ty Tlis TIy
Success rate Success rate
pi1=1 0.99 0.99 0.99 0.99
po=1.5 1 1 1 1
n3=2 1 1 1 1

ur = 1.5, uz = 2, i.e., we randomly increase or decrease
the mean value by u;,j = 1,...,3 at the time of change.
Table 1 summarizes our findings regarding the true and false
alarm rates of the two algorithms.

Both the standard and the modified BS algorithms pro-
vide similar true alarm rates, exceeding 94%, in the first
test. On the contrary, in the more challenging second test,
the superiority of the modified BS over the standard BS
algorithm is clear. The modified BS algorithm achieves true
alarm rates in excess of 70%, even in the demanding scenario
of arelatively small change in the mean p; = 1. On the other
hand, the standard BS algorithm has in all cases a true alarm
rate of less than 50%, rendering any CP detection highly
questionable. The second test confirms that the standard
BS algorithm is prone to an overestimation of the number
of CPs as shown by the high false alarm rates (in excess
of 25% in all cases), an issue that can be effectively addressed
by the modified BS algorithm which scores false alarm rates
below 10%.

Next, in the second experiment, using the same test sets as
above, we measure the success rates achieved by the proposed
trend indicators 17 in (27) and Tl in (31) for h = 0 (larger
thresholds provided the same true identification rates). The
results are summarized in Table 2. The two trend indica-
tors successfully identify the direction of a change in more
than 99% of the cases, which shows that they can be inter-
changeably employed. In the assessment of the performance
using real datasets in Section VI, we solely employ the
Ty trend indicator.

We proceed by assessing the proposed RCPD algo-
rithm using both the standard and the ratio type CUSUM.
In this third experiment, we measure the average number of
CPs detected, averaged over 1, 000 simulations when a sin-
gle CP is introduced in the ARMA time-series at the time
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instance % = 300. We consider different values for the

magnitude of change u € {0,0.5,0.7, 1, 1.2, 1.5, 2} and the
monitoring window length [ € {25, 50, 100}. We note that
we included the case 4 = 0 — which corresponds to the
absence of a change — to evaluate the false alarm rate of the
overall algorithm. We omit results with true alarm rates lower
than 50% as they are statistically unreliable. In terms of the
remaining algorithmic parameters, we have set the minimum
distance between two successive CPs to d = 50,% the sensi-
tivity parameter to y = 0.25 [35] (we choose a neutral value
as the behaviour of y is well studied), and, the significance
level to « = 0.05. In each test of the third experiment we
measure the exact number of CPs detected, tabulated as one
the following three values: i) 0 when (falsely*) no CP is
detected; ii) 1 when (correctly) a single CP is detected; and
iii) > 1 when (falsely) multiple CPs are detected. Finally,
we measure the median of the time instance of the single
CP detection, denoted by k*.5 The results of this experiment
are presented in Table 3 and are discussed below.

Firstly, we observe that both the standard and the ratio
type CUSUM achieve very small false alarm rates, inferior
to 6% when no CP is inserted, irrespective of the choice of [.
On the contrary, the choice of / readily affects the algorithm’s
success rate for > 0; for small changes in the mean
value, © = 0.5, 0.7, a larger monitoring window [ increases
the algorithm’s true alarm rates in identifying correctly the
existence of the CP. For medium and high changes in the
magnitude of change n = 1, 1.2, 1.5, 2, it is observed that
a high true alarm rate — in excess of 93% for the standard
CUSUM -is achieved, while choosing a smaller / can slightly
increase the true alarm rates. As a result, depending on the
application, a choice of a larger / can be appropriate if the
algorithm is to be employed as a universal CP detector. Alter-
natively, a smaller / can be chosen when the focus is on the
identification of large changes in the mean value, i.e., we are
interested primarily in detecting CPs of larger magnitude.

Secondly, we observe that overall, the ratio type CUSUM
is outperformed by the standard CUSUM in all tests. Con-
sequently, the standard CUSUM based detector can be con-
sidered as an efficient universal choice. Finally, we observe
that the lag between k* and the actual instance of change at
the point 300 decreases with increasing (., ranging from 343
to 307, while it appears less sensitive to changes in /. This
demonstrates that, intuitively, larger magnitude changes can
be detected faster. This result is important for load balancing
applications as it provides us with the means to quickly
respond to significant changes in the network traffic.

Subsequently, in Table 4 in the following page, we present
the outputs of the fourth experiment in which we assess
the performance, averaged over 1,000 simulations, of the
RCPD algorithm when two CPs are inserted in the ARMA

3This choice is justified by our observations of the minimum distance
between successive CPs in real data sets, presented in Section VI.

4Except for the © = 0 case.
5We omit the results with true detection rate lower than 50%.
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TABLE 3. Results of the RCPDs’ algorithm CPs detection for one change in the mean value.

ARMA(1,1)
o l standard CUSUM ratio-type CUSUM
Number of detected CPs k* Number of detected CPs E*
0 1 >1 med 0 1 >1 med
25 0.95 0.05 0 - 0.95 0.05 0 -
pnw=0 50 0.95 0.05 0 - 0.95 0.05 0 -
100 0.94 0.06 0 - 0.95 0.05 0 -
25 0.7 0.29 0.01 - 0.8 0.19 0.01 -
pn=205 50 0.16 0.8 0.04 343 0.55 0.43 0.02 -
100 0 0.93 0.07 341 0.2 0.76 0.04 348
25 0.26 0.73 0.01 332 0.69 0.3 0.01 -
pn=0.7 50 0 0.96 0.04 326 0.3 0.65 0.05 328
100 0.01 0.91 0.08 331 0.05 0.89 0.06 335
25 0.01 0.97 0.02 327 0.52 0.46 0.02 -
p=1 50 0 0.96 0.04 316 0.08 0.86 0.06 321
100 0 0.92 0.08 321 0 0.95 0.05 323
25 0.01 0.97 0.02 323 043 0.54 0.03 331
w=12 50 0 0.95 0.05 316 0.02 0.93 0.05 317
100 0 0.93 0.07 318 0 0.93 0.07 318
25 0 0.97 0.03 320 0.36 0.6 0.04 329
p=15 50 0 0.95 0.05 310 0 0.94 0.06 313
100 0 0.93 0.07 314 0 0.94 0.06 318
25 0 0.97 0.03 310 0.26 0.71 0.03 317
p=2 50 0 0.95 0.05 307 0 0.93 0.07 310
100 0 0.94 0.06 310 0 0.94 0.06 313

time-series. We introduce a change at the time instance

ki“ = % = 200 and a second CP at the time instance

ky = % = 400. We investigate the true and false alarm
rates for u € {0.5,0.7,1,1.2,1.5,2} and [ € {25, 50, 100},
while the rest of the parameters retain the values of the
third experiment. In each test of the fourth experiment we
measure the exact number of CPs detected, tabulated as one
the following three values: i) < 2 when (falsely) less than two
CPs are detected, ii) 2 when (correctly) two CPs are detected,
and iii) > 2 when (falsely) more than two CPs are detected.
Finally, we measure the median of the detection instances of
the two CPs, denoted by 121“ and 123‘ , respectively (we omit the
results with true detection rate lower than 50%).

Similarly to the third experiment, we observe that increas-
ing [ increases the true alarm rates for small magnitudes in
the mean changes u = 0.5, 0.7, while this trend is reversed in
high magnitudes u = 1.5, 2. For medium values p© = 1, 1.2
the effect of / on the true alarm rates is less than 2%.
Furthermore, in agreement with the outputs of the third
experiment, with increasing u the algorithms achieve increas-
ingly high success rates, over 93% for the standard CUSUM
when u > 1.

In addition, the superior performance of the standard
CUSUM is re-confirmed in all the tests of the fourth exper-
iment. Finally, with respect to the lag in the estimation of
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the time instances of the CPs, we observe that, as in exper-
iment three, larger magnitude changes can be detected faster,
e.g., for 4 = 2 a lag inferior to 11 instances is observed
for both CPs with the standard CUSUM, irrespective
of [.

Concluding this Section, we have presented an extensive
set of experiments that provide strong evidence for the effi-
ciency of the proposed algorithms. We have explicitly demon-
strated the superiority of the modified BS over the standard
BS algorithm and confirmed the validity of the proposed trend
indicators. Subsequently, we evaluated the performance of
the overall algorithm for various values of p and /. We have
shown that the RCPD algorithm achieves extremely high true
alarm rates for larger values of 1, while increasing the length
of the monitoring window / can significantly impact the per-
formance for small values of w. Finally, overall, the standard
type CUSUM outperforms the ratio type CUSUM and should
be preferred.

VI. PERFORMANCE EVALUATION USING REAL DATA

In this Section we investigate the performance of the pro-
posed algorithms using a real dataset provided within the
framework of the CONGAS project [36]; the dataset consists
of the number of views of 882 YouTube videos, observed over
N =1, 000 instances.
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TABLE 4. Results of the RCPDs’ algorithm CPs detection for two mean changes.

ARMA(1,1)
n l standard CUSUM ratio-type CUSUM
Number of detected CPs I%{ fcg Number of detected CPs I%{ 1%3
<2 2 >2 med <2 2 > 2 med
25 0.88 0.12 0 - - 0.95 0.05 0 - -
p1 = 0.5 50 0.38 0.60 0.02 251 440 0.79 0.2 0.01 - -
100 0.1 0.87 0.03 242 443 0.54 0.44 0.02 - -
25 0.41 0.58 0.01 230 427 0.9 0.1 0 - -
pn1=0.7 50 0.06 0.91 0.03 223 427 0.58 0.41 0.01 - -
100 0.01 0.93 0.06 227 428 0.25 0.72 0.03 231 439
25 0.04 0.93 0.03 219 420 0.74 0.25 0.01 - -
p1 =1 50 0.03 0.93 0.04 215 419 0.26 0.71 0.03 221 423
100 0 0.94 0.06 217 420 0.05 0.9 0.05 220 424
25 0.01 0.96 0.03 214 414 0.56 0.42 0.02 - -
p1 =12 50 0 0.95 0.05 212 416 0.17 0.79 0.04 215 428
100 0 0.94 0.06 217 420 0.02 0.93 0.05 216 421
25 0 0.98 0.02 211 411 0.33 0.63 0.04 213 417
p1 =15 50 0 0.94 0.06 209 413 0.1 0.85 0.05 213 415
100 0 0.94 0.06 211 415 0 0.96 0.04 216 419
25 0 0.98 0.02 208 407 0.12 0.85 0.03 210 412
p1 =2 50 0 0.95 0.05 207 410 0.3 0.91 0.06 209 413
100 0 0.94 0.06 209 411 0 0.96 0.04 211 414

A. STATISTICAL PROPERTIES OF THE REAL DATASET

First, we evaluate the validity of the most important under-
lying assumption of this analysis, that the content popularity
can be modelled as the sum of a constant mean and a weak-
dependent (¢-dependent) stochastic process, as given in (1).
A first intuitive method to test whether the time-series is
short-range dependent (SRD) is through its autocorrelation
function (ACF). The ACF for a weakly-stationary process
{X; : t € N} with mean value u is given by,

X — WXk — 1)

p(k) = =

Note that if ) 72 p(k) — oo the process has long-
range dependence (LRD), while if Z,fi_oo lp(k)] < oo it
exhibits SRD. To distinguish between these two phenomena,
we use the following functional form of the ACF,

pk) ~ CiZHfz, asi — 0o,

where C; > 0 and H € (0, 1) is the Hurst exponent charac-
terizing the LRD.,i.e., H € (1/2, 1) indicates the presence
of LRD. It is challenging to accurately estimate the Hurst
exponent out of real data [37] and several methods have been
proposed in the literature [38]. In this work, we apply two
semi-parametric tests, identified as accurate options among
others presented in the survey paper [38]. The first method
uses the discrete second order derivative in the time domain
while the second uses the discrete second order derivative
in the wavelet domain. Both methods estimate an H < 0.5
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for 95% of the YouTube time-series, indicating the validity
of our assumptions related to the equation (1).

B. PERFORMANCE OF THE OFF-LINE TRAINING PHASE
First, we test the hypothesis Hyp of no change in the mean
structure on our dataset. Hy is rejected in approximately 70%
of the cases, for a significance level of a 0.05. This
outcome indicates that CP algorithms can identify changing
content dynamics in real times series.

Next, we estimate the number of CPs, by applying the
extended off-line algorithm. The corresponding results are
illustrated in Fig. 1 and indicate a sufficiently high number
of content popularity anomalies (i.e., mean changes). Hence,
a CP analysis is indeed a suitable tool for content popularity
detection.

To evaluate the performance of the proposed trend indi-
cator Ty, we need a baseline independent assessment of the
direction of change. We declare that a real increase in the
mean value of content visit exists if

ELX k| o) : Xk )] < EIXK ) XKy o))

or, that a real decrease in the number of visits exists if

ELX (') o)« Xk o)) > EIXG o)« XKy o))

(32)

(33)

where i 1, --- ,card(l@jﬂ), 126“ = 1, l;:ﬁrl N and
E[-] denotes the numerical average. We test the modified
MACD TIy on two sets of videos. The first set, Video
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TABLE 5. Success rates of T/ trend indicator.

FIGURE 2. Frequency values of the number of upward and
downward CPs, per time-series.
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Set 1, comprises the whole dataset, while the second set,
Video Set 2, comprises only the videos with a consid-
erable average number of visits (> 10), i.e., for which,
E[X (1) : X(1000)] > 10.

The percentage of successful T/ identifications are tabu-
lated in Table 5 for five values of the parameter s, namely
h =20, 3, 5, 7and 10, where & denotes the TI;’s calculation
threshold introduced in Section IV-B. Commenting on the
results for Video Set 1, the Tl trend indicator works well,
except for &~ = 0, providing at least 90% correct direction
identifications. As expected, as h increases the procedure
works better. More specifically, an & > 5 parameter choice
yields a success rate of 95%, while if a more agile estimation
is needed then an A > 3 still maintains a 91% accuracy.
Considering the interim time between consecutive changes,
we deduce that an i < 7 is preferable. Regarding Video Set 2,
we see that the results are highly improved, indicating that
the procedure works even better for the most popular videos.
In practice, this represents the more interesting scenario as
it will have a greater impact in terms of the applied load
balancing mechanism.

Furthermore, in Fig. 2, the time instances of upward and
downward changes are shown in the form of a boxplot. It is
intuitive that upward changes occur earlier than downward
changes. Moreover, Fig. 2 demonstrates that the multitude of
upward changes is greater than the respective of downward
changes, indicating that decreases in popularity are sharper
than increases. In particular, we estimated that out of the total
number of changes, 67% are upward.

Finally, we analyze the interim time between consecu-
tive CPs. The results presented in Fig. 3 illustrate the exis-
tence of a sufficiently large gap between consecutive potential
changes. 90% of the intervals corresponding to consecutive
CPs exceed 70 time instances and only 5% of them are
shorter than 50 time instances, ensuring that a sufficiently
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FIGURE 3. a) Boxplot including the interval (5% — 95%) (dashed line) and
(10% — 90%) interval (dotted line), b) Cumulative frequency for the
interim time of consecutive CPs.
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FIGURE 4. DTW distances for the two on-line detection schemes.

large training window can be applied. The results depicted
in Fig. 3 allow adjusting parameters of the on-line phase,
in particular the minimum time interval between consecutive
changes, denoted by the parameter d.

C. EVALUATION OF THE RCPD ALGORITHM

In the previous subsection we have evaluated the performance
of the off-line algorithm and demonstrated its efficiency as
well as how it is employed in determining parameters of the
on-line phase, such as the interval assuming no change d and
the threshold parameter of 71y h.

We further employ the off-line algorithm as a benchmark
against which the performance of the RCPD algorithm will
be evaluated. We note that the off-line analysis provides the
best possible statistical detection of the actual mean changes,
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FIGURE 5. Outputs of the RCPD algorithm; using standard CUSUM (upper row) and ratio type CUSUM (lower row) for four different time-series. Solid and

dashed lines depict an upward and a downward change, respectively.

as off-line algorithms operate retrospectively over the entirety
of each of the time-series. Thus, in absence of a priori knowl-
edge of the actual CPs in the real data (as opposed to the
synthetic data in which the CPs were controlled), we evaluate
the performance of the RCPD procedure by measuring the
“similarity” of its outputs (detected CPs, instances of detec-
tion and trends) to the corresponding outputs of the off-line
version.

As the number of detected CPs and / or their exact positions
are likely to differ at the output of the retrospective (off-line)
and of the RCPD algorithm, in order to obtain a measure
of their similarity, we estimate their dynamic time warping
(DTW) distance. The DTW is a dynamic programming tool
that measures distances between asynchronous sequences
and is widely used by the speech processing community [12].

The results are presented in Fig. 4, where the estimated
DTW distances are depicted for several values of the mon-
itoring window length [ € [40, 150], to investigate the con-
sistency of parameter / over different values. In the RCPD
algorithm we use d = 50 (minimum distance between two
changes) and have set the sensitivity parameter to y = 0.25.
The estimated mean DTW distance for the standard CUSUM
is 52 and for the ratio-type CUSUM is 73. For comparison
purposes, we note that the corresponding DTW distance over
the synthetic data is 20 for medium / large changes, while the
true CP detections are around 95%. As a result, we can infer,
that the outputs of the on-line algorithm, using the standard
CUSUM, are “very close” to the outputs of the benchmark
off-line algorithm. In agreement with our observations over
the synthetic data, the DTW distance using the ratio-type
CUSUM is clearly larger.

We also study the magnitude of the detected CPs.
We define as the CP magnitude the percentage-wise change
in the mean values before and after the CP. We group
the measured magnitudes for all change points using the
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TABLE 6. Empirical percentiles of mean values change rate.

Percentiles Threshold
10% 15% 25% 50%
Standard 9% 13.1% 20.8% 42.21%
Ratio type 9.5% 14.82% 28.22% 67.40%

four percentile threshold values 10%, 15%, 25% and 50%,
i.e., reflecting the frequency of magnitudes exceeding the
respective thresholds. The results are summarized in Table 6.
According to our results, both the standard and ratio type
CUSUM algorithms detect the most significant changes
in the content popularity. Moreover, ratio-type CUSUM
detects, in general, CPs with the largest magnitude of change,
in agreement with synthetic data results.

Additionally, for illustration purposes, we depict the RCPD
algorithm’s outputs for four different time-series. We set the
beginning of the monitoring period at mg; = 200 and moni-
toring horizon [ = 50, the on-line parameter g = 0.25 and
the significance level to a = 0.05. The corresponding results
are depicted in Fig. 5, showing the estimated CPs by applying
the standard CUSUM and the ratio type CUSUM procedures,
respectively. In both cases, the estimated changes correspond
to the real content popularity changes; visual inspection sug-
gests that the performance of the standard CUSUM is more
reasonable (e.g., Fig. 5d). The RCPD, as it is illustrated
in Fig. 5b seems to be adaptable to ““fast” changes; without
getting ““confused’ by random peaks in the time-series, such
as those in Fig. 5a or in Fig. Sc.

D. TIME DEPENDENCIES OF PIECEWISE TIME-SERIES
We also measure the autocorrelation function of the piece-
wise - divided by the detected CPs - time-series. Results are
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TABLE 7. Percentages of time-series with time dependencies exceeding t
samples.

t >1 >5 > 15 > 30 > 50
piecewise 0.93 0.57 0.23 0.05 0.04

tabulated in Table 7 and verify the short dependence structure
of the dataset; significant lags in time dependencies higher
than 30 instances can be found in less than 5% of the time-
series. Furthermore, the fact that the ACF of the piecewise
time-series drops to zero quickly indicates that the detected
CPs split the time-series into stationary segments, which,
additionally, confirms indirectly the accuracy of the off-line
CP estimations over the changes in the real data.

E. COMPUTATIONAL COMPLEXITY AND SCALABILITY
Finally, we present a MATLAB ® implementation of
the overall algorithm with a large number of time-series
(882 in this experiment) to quantify its performance in terms
of processing cost. The computational time is measured on
a Lenovo IdeaPad 510-15IKB laptop, with an Intel Core
i7-7500U @ 2.70 GHz processor and 12 GB RAM. In Fig. 6,
we show the aggregate processing cost per time instance for
the two on-line methods and the total number of time-series.
For the first 100 time instances, the algorithm collects the
initial data, since it bootstraps. The peaks indicate the off-
line part of the algorithm, which is more processing demand-
ing mainly due to the segmentation algorithms running in
parallel. The on-line part in the standard on-line algorithm
indicates a linear complexity, since it is based on (18), while
the equivalent quantity in (21) of the ratio-type is more CPU
intensive, justifying the comparatively higher processing cost
of the latter algorithm. In both cases, the aggregate processing
cost is typically much less than a second, which demonstrates
the lightweight nature of the proposed scheme. Such results
could be further improved with a distributed deployment
of scheme replicas since each of the time-series could be
processed independently.

VII. THE RCPD ALGORITHM IN A LOAD BALANCING
SCENARIO
In this Section, we demonstrate our proposal in a real con-
tent distribution scenario, balancing the traffic between web
clients and content caches with a bespoke DNS-based load-
balancer. We implement the RCPD algorithm as a client-
server MATLAB ® application. The RCPD engine receives
periodic content popularity measurements; if a CP is detected,
the corresponding upward or downward changes are signalled
to the load balancer. The load balancer: (i) distributes the
load between the deployed content caches, in a round-robin
fashion; (ii) tracks content visits and communicates them to
the RCPD engine; and (iii) deploys or removes content caches
based on the RCPD outputs.

We implement the web clients using with the httpperf tool
(https://github.com/httperf/httperf). The number of clients at
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each time instance is based on a real time-series of YouTube
content views, illustrated in Fig. 7a. In practice, an experi-
mental run without the RCPD mechanisms uses three con-
tent caches constantly and a run with the RCPD mechanism
enabled uses initially two and then three, four and five con-
tent caches, after each of the three detected change points,
respectively. As we show in Fig. 7b, the web clients improve
their connectivity times to download the content, while as
demonstrated in Fig. 7c the CPU utilization in the servers
hosting the content remains almost the same. A relevant
experimental platform is presented in [4].

VIIl. CONCLUSION AND FUTURE WORK

In this paper, we developed the RCPD, a novel algorithm
for the real-time detection of changes in the mean value
of content popularity. Approaching the problem statistically,
we efficiently combined off-line and on-line non-parametric
CUSUM procedures to avoid restrictive assumptions for
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content popularity behavior and to reduce the overall com-
putational cost. We divided the algorithm in two phases. The
first phase is an extended retrospective (off-line) procedure
with a modified BS algorithm and is used to adjust on-line
parameters, based on historical data of the particular video.
The second phase integrates one of two alternative trend
indicators to the sequential (on-line) procedure, to reveal
the direction of a detected change. We provided extensive
simulations, using synthetic and real data, that demonstrated
the performance of the proposed algorithm for the success-
ful identification of content popularity changes in real-time.
We also demonstrated through experimental measurements
that the RCPD’s processing cost is almost imperceptible.
Finally we provided proof-of-concept by applying the algo-
rithm in a load balancing application, highlighting its effi-
ciency in a realistic setting.

In future work, we will evaluate the proposed scheme using
multi-dimensional time-series to capture more accurately the
dynamics of content popularity better (e.g., incorporate addi-
tional dimensions with the number of likes, comments, etc.)
and in different contexts, such as on the real-time resource
utilization of servers. We will also investigate and further
extend the algorithm’s scalability properties, theoretically
and experimentally, i.e., estimate the number of videos that
can be analyzed in parallel. Our aspiration is to conduct real
large-scale CDN experiments utilizing a distributed architec-
ture with multiple content popularity analyzers, monitoring in
real-time clusters of videos at a minimum overall processing
cost.
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