
Received July 1, 2019, accepted August 22, 2019, date of publication September 12, 2019, date of current version September 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941083

Recurrent Translation-Based Network for Top-N
Sparse Sequential Recommendation
NUTTAPONG CHAIRATANAKUL 1, TSUYOSHI MURATA1, AND XIN LIU2
1Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo 152-8550, Japan
2National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan

Corresponding author: Nuttapong Chairatanakul (nuttapong.c@net.c.titech.ac.jp)

This work was supported in part by the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and
Technology (CREST) under Grant JPMJCR1687, in part by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for
Scientific Research (B) under Grant 17H01785, in part by the JSPS Grant-in-Aid for Early-Career Scientists under Grant 19K20352, and in
part by the New Energy and Industrial Technology Development Organization (NEDO).

ABSTRACT Fulfilling users’ needs and increasing the retention rate of recommendation systems are
challenging. Most users have consumed a few items in most systems. Translation-based model performs
well on sparse datasets. However, a user and only single previous item are considered for the user suggestion
of next items. Alternatively, recurrent neural network utilizes sequential dependency but performs poorly
on sparse datasets. We unify both and propose Recurrent Translation-based Network (RTN). RTN utilizes
sequences of users’ consumed items without limiting interactions between items to the most recent one. The
results of conducting experiments on real-world datasets show that RTN outperforms other state-of-the-art
approaches on sparse datasets.

INDEX TERMS Recommender system, collaborative filtering, recurrent neural network.

I. INTRODUCTION
Nowadays, since a massive amount of data is available on
the Internet, retailers and providers highly compete with each
other to deliver the best contents to fit each user’s prefer-
ence. Recommendation systems [1] are built for that purpose.
The idea is to build a model from past interactions between
users and items and use it for predicting future interactions.
Top-N recommendation restricts suggesting only to their top
matched items. It is seen almost everywhere in online shop-
ping websites, online video streaming applications, or even
blogging sites. Better at recommending items for users will
increase their satisfaction and encourage them to use the
systemmore. Inmany real-world cases, most users have a few
purchased items, watched movies, or read articles (interac-
tions) in a system. Consequently, building a model for sparse
datasets is important.

With long sequential user behavior data in dense
datasets, recurrent neural networks (RNN)-based models [2]
significantly outperform traditional Matrix Factorization
(MF)-based models [3], [4]. RNN has its advantage over MF
for modeling and capturing sequential patterns. It has been
applied for other recommendation tasks, e.g., explicit rating
prediction [5], session-based recommendation [6], [7] and

The associate editor coordinating the review of this manuscript and
approving it for publication was Madhusanka Liyanage.

next basket recommendation [8]. However, it is difficult to
train and sometimes do not generalize well when there is an
only small amount of data. Therefore, MF-based models are
preferable for sparse datasets.

On sparse datasets, a traditional approach is to build
a model based on two-way interactions embedded in an
inner product space. Matrix Factorization models an interac-
tion between a user and an item. First-order Markov chain
aims to represent transitions between pairs of adjacent items
(a previous item and a next item) in a sequence. Factorized
Personalized Markov Chains (FPMC) [9] incorporates both
of them by the summation of the pairwise interactions from
each of them. Recently, Factorized Sequential Prediction
with Item Similarity Models (Fossil) [10] extends FPMC
to capture long-term dependencies between a user and all
previous items in the user’s sequence by combining similarity
models [11] with high-order Markov chain. Achieving better
results on sparse datasets of Fossil indicates that higher-order
interactions need further investigation and are essential for
predicting the future behavior of a user.

Inspired by knowledge graph embedding [12], Translation-
based Recommendation (TransRec) [13] represents users as
translation vectors moving their previous items’ vectors to
be close to their next items’ vectors in the same embedding
space. The model exploits the distance as its scoring scheme
bringing those vectors to be closer. For this reason, TransRec

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 131567

https://orcid.org/0000-0003-4035-8640

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

FIGURE 1. User short-term preference modeling of RTN. A user’s
embedding vector is created by the sequence of the user’s consumed
items. An update of the vector happens whenever the user interacts with
an item. A recurrent unit is used for the update. The next item is predicted
based on the distance in the embedding space.

performs better than MF-based model on sparse datasets.
However, TransRec cannot handle higher-order interactions
and is limited to only one previous item and a user as prior.

Integrating higher-order interactions between items is chal-
lenging for sparse datasets. Algorithms need to be carefully
designed to tackle sparsity issues. It also needs to balance
between long-term and short-term preferences of a user for
which the signal of sequential patterns are weak but vital for
prediction of next items.

In this work, we tackle those problems and present a
new algorithm named Recurrent Translation-based Network
(RTN).1 RTN aims to model both short-term and long-term of
a user’s preference. For modeling the short-term, we propose
an innovative way to fuse the translation-based model with
RNN, which enables RTN to incorporate higher-order inter-
actions between items for representing a user’s short-term
preference. Figure 1 illustrates how RTN updates a user’s
embedding vector based on the previously interacted items.
In specific, we prefer the model to have the following prop-
erty: when a user interactedwith an item, and this item is close
to another item, then the model will recommend that item
to the user. This means that information on historical items
can directly infer to the next one. However, using existing
recurrent units may not have this property we desire. Then,
we propose our recurrent unit that utilizes the advantage of
the distance as the scoring scheme.

In summary, our contributions are listed as follows:
• We propose a new algorithm RTN, using higher-order
interactions between items in a user’s sequence for
profiling short-term preference of the user. RTN is
a framework that incorporates previous methods like
TransRec [13] and PRME [14] as special cases.

• We build RTN’s recurrent unit by exploiting distance in
the embedding space to satisfy the above property and
improve the performance on sparse datasets.

1The source code is available online at https://github.com/nutcrtnk/RTN.

• We show that RTN outperforms other algorithms,
including the state-of-the-art methods for sparse datasets
on several publicly available datasets.

II. RELATED WORK
Our work is related to the works in multiple areas.
We first introduce and discuss general and sequential
recommendations. Then we describe recurrent neural net-
works in recommender systems. Last, we briefly state about
translation-based models.

A. GENERAL RECOMMENDATION
Recommender Systems aim to predict future behaviors of
users based on their historical feedbacks. User feedbacks
can be explicit (e.g., ratings) [15], [16] and be implicit
(e.g., purchases, views, likes, check-ins). Utilizing implicit
feedbacks is difficult due to heavily imbalance between the
number of observed and unobserved data. To alleviate this
problem, [3] and [17] use different weights for samples’
losses in point-wise manner. Similarly, negative sampling
techniques are also widely adopted. Alternatively, [18] pro-
poses pair-wise ranking using common sense that a user
prefers items in the observed than items in the unobserved.

Since users’ feedbacks can be represented as a matrix,
matrix factorization decomposes the matrix as the dot prod-
uct between low-rank user matrix and item matrix. Those
matrices can be interpreted as latent factors of users’
preferences and items’ features, respectively. With higher
expressiveness and their success for solving similar problems,
neural networks have become a popular approach to recog-
nize such latent factors and modeling complex fine-grained
interactions. For example, [19] and [20] use factorization
machine [21] to approximate the compatibility between
users’ embeddings and items’ embeddings. Reference [22]
uses multi-layer perceptrons. Reference [23] adopts denois-
ing auto-encoders.

B. SEQUENTIAL RECOMMENDATION
The main difference between sequential and general recom-
mendation is in the form of input data. In sequential recom-
mendation, input data must include sequential interactions of
each user in chronological order. Sequential recommender
systems are essentially required to utilize such data. Many
works seek tomodel transitions between previous items to the
next items. For example, FPMC [9] incorporates first-order
Markov Chains to recognize these transitions with matrix
factorization. Because a user’s last interaction is often a
key to predict the next interaction, the model performs well
on sparse datasets. Fossil [10] extends FPMC by fusing
higher-order Markov Chains with similarity models.

Higher order interactions can also be integrated by adopt-
ing common techniques from other areas of machine learn-
ing tasks (e.g., Natural Language Processing (NLP)). For
instance, [24] and [25] adopt the concept of convolution
neural networks. Convolution layers are used to extract fea-
tures of L previous items which are interpreted as images or

131568 VOLUME 7, 2019

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

words. Reference [26] and [27] propose attention mechanism
designed to identify key items for sequential recommenda-
tion. With success of Transformer [28] in NLP, self-attention
has been explored by [29]. A recurrent neural network is
an alternative approach to leverage a user’s sequential of
interactions.

C. RECURRENT NEURAL NETWORK
Recurrent neural network (RNN) is a kind of neural networks
which specializes in processing sequential data. Information
from the past is memorized by its internal cells as cell states.
For each time step, its internal cells are updated according to
a function given the current cell states and the input of that
time step. RNN is optimized to approximate such function.
RNN has its advantage over MF for modeling and capturing
sequential patterns. In the following, we illustrate the areas
in the recommendation tasks in which RNN shows its advan-
tages and achieves state-of-the-art over traditional methods.
Explicit rating prediction [5]: uses Long-Short Term

Memory (LSTM) [30], a popular recurrent neural network
architecture. By slicing timestamps into time windows,
the model uses explicit ratings of each time window in order
to evolve a user’s current state and an item’s current state
to their next states. Reference [31] proposes two layers of
LSTMs for learning textual content and temporal dynamics.
Session-Based Recommendation: While a user is brows-

ing, the session-based recommender system needs to suggest
suitable items right away based on the user’s behavior in
the current session. A notable work on this topic is [6] that
proposes a recurrent neural network using gated recurrent
units (GRU) [32] for predicting next items in a session.
[33] extends the work by propagating a user’s information
across the user’s sessions. Reference [7] improves the work
by including an attention mechanism.

In addition, RNN have been used for next basket recom-
mendation [8], Point-of-Interest (POI) recommendation [34],
scientific paper recommendation [35] and citation recom-
mendation [36].

D. TRANSLATION-BASED MODEL
The first translation-based model (TransE) [12] was proposed
for knowledge graph embedding. In knowledge graph embed-
ding, the goal is to predict missing relationships between a
pair of entities. It is common to represent the data as triples
of (head, relation, tail). For example, (‘‘A’’, ‘‘parent of’’,
‘‘B’’) means ‘‘A’’ is a parent of ‘‘B’’. In TransE, each enti-
ties and relations is embedded in the same low-dimensional
space. Then it is optimized to make summation of a head
and a relation to be close to the tail measured by the
euclidean distance in that space. In spite of its simplicity,
the model can handle anti-symmetric, inversion and com-
position patterns of relations [37]. Many works [38]–[40]
improved TransE by projecting the embedding vectors of a
head and a tail to a target relational space before calculating
the distance. TransRec [13] reinterprets a triple as (previ-
ous item, user, next item) for sequential recommendation.

Reference [41] extended TransRec by fusing it with fac-
torization machine. Furthermore, translation-based models
have been used for movie recommendation [42] and top-N
recommendation [43].

III. PROBLEM FORMULATION
For each user u ∈ U , we have a sequence of items which
the user has interacted with in chronological order: Sequ =
(Q1

u,Q
2
u, . . . ,Q

n
u). Our aim is to utilize the above information

and predict the next item which will be interacted by each
user. In this paper, time step t or index t inQtu refers to the t-th
order number, not the real timestamps used in [16] and [44].
Notations which are often used in this paper are indicated
in Table 1. Bold characters indicate vectors or matrices.

TABLE 1. Notation.

IV. RECURRENT TRANSLATION-BASED NETWORK
Our proposed model consists of the following two parts.

1) User short-term preference modeling: It aims to recog-
nize the temporal dynamics of a user’s preference with
higher-order interactions between items in the user’s
sequence.

2) User long-term preference modeling: It captures static
factors of a user’s preference.

A. USER SHORT-TERM PREFERENCE MODELING
Since we extend concepts of the translation-based model to
this model, we restate Translation-based Recommendation
(TransRec) [13]. TransRec embeds users and items into the
same embedding space. It uses three main components which
are a user’s embedding vector, a previous item’s embedding
vector, and a next item’s embedding vector to compute the
recommendation score. A recommendation score S i→j

u of user
u from previous item i to item j is defined as:

S i→j
u = bj − d(Pu +Qi,Qj), (1)

where Pu is the embedding vector of user u, Qi is the
embedding vector of previous item i, and Qj and bj are the
embedding vector and the bias of item j, respectively.

In TransRec, a user’s embedding vector is interpreted as a
translation vector which enables a transition from a previous

VOLUME 7, 2019 131569

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

item to the next item. Conversely, the model can also be
interpreted such that each previous item as a translation vector
enables a transition from a user to the next item. However,
the model cannot deal with sequentially related items when
the gap of their time steps are more than one. The reason is
that a user’s embedding vector cannot keep the information on
past items that are farther than one time step from the current.
For example, after user u interacts with j, the information of
i (Qi) is no longer included in eq. (1) and thus will not affect
Pu any more.

To incorporate higher-order interactions between items,
a simple way to extend TransRec is to directly apply recurrent
units, e.g., LSTM [30] and GRU [32], for updating Ptu and
making Ptu ≈ Qt+1

u , where Ptu is the embedding vector of
user u at time t , and Qt+1

u is the embedding vector of Qt+1u .
However, we also want to exploit distance in the embed-

ding space for next item recommendation. Specifically,
if user u interacted with item i at time t (namely i = Qtu)
and item i and item j are close in the embedding space, then
the model should recommend item j to user u at time t + 1.
This helps the model dealing with sparsity issues by grouping
sequentially related items together.

By triangular inequality, we have:

d(Ptu,Qj) ≤ d(Ptu,Qi)+ d(Qi,Qj) (2)

Note thatQi andQj are close, and Pt−1u andQi are also close
(since we have recommended Qi to u at time t). That is,

d(Qi,Qj) ≤ ε, (3)

d(Pt−1u ,Qi) ≤ ε, (4)

where ε is a small number. If we can have

d(Ptu,Qi) ≤ d(Pt−1u ,Qi), (5)

we will arrive at

d(Ptu,Qj) ≤ 2ε. (6)

That is, Ptu and Qj are close and hence we will recommend
item j to user u at time t + 1 if ineq. (5) is satisfied.

Since the model utilizes euclidean distance, a way to guar-
antee ineq. (5) is to make

∀r : |(Ptu)r − (Qi)r | ≤ |(Pt−1u)r − (Qi)r |, (7)

where 1 ≤ r ≤ k , and the subscript r indicates the r-th
element of respective embedding vectors. By solving the
ineq. (7) to find (Ptu)r , we have:

2(Qi)r − (Pt−1u)r ≤ (Ptu)r ≤ (Pt−1u)r :if (Qi)r ≤ (Ptu)r ,

2(Qi)r − (Pt−1u)r ≥ (Ptu)r ≥ (Pt−1u)r :otherwise.

We can see that (Ptu)r is between 2(Qi)r−(Pt−1u)r and (Pt−1u)r .
Therefore, we can write Ptu as:

Ptu = (1− zt) ◦ Pt−1u + zt ◦ (2Qi − Pt−1u), (8)

or

Ptu = (1− zt) ◦ Pt−1u + zt ◦ (2Qt
u − Pt−1u), (9)

where zt ∈ [0, 1]k , ◦ denotes Hadamard product, and we
have used Qi = Qt

u. z controls the amount of information
to be updated in same manner as the update gate of GRU.
In specific, zt can be obtained by:

zt = σ (WzQt
u + UzPt−1u + bz), (10)

where Wz,Uz ∈ Rk×k denote weights, b ∈ Rk denotes bias
of the gate, and σ denotes the sigmoid function. Moreover,
we found that limiting the range of (Ptu)r to (Qt

u)r instead of
2(Qt

u)r − (Pt−1u)r still satisfies the property and empirically
achieves higher performance for sparse datasets (Please see
Sec. V-D for details). This is because it reduces the influence
of previous item (from zt ◦ 2Qt

u to zt ◦ Qt
u). In summary,

the update of the user’s short-term embedding vector is:

zt = σ (WzQt
u + UzPt−1u + bz), (11)

Ptu = (1− zt) ◦ Pt−1u + zt ◦Qt
u. (12)

B. USER LONG-TERM PREFERENCE MODELING
User Short-term Preference modeling groups sequentially
related items together. However, a user may consider items
based on his/her long-term preference, not sequentially
related to recent items. For example, a user may consider
smartphone accessories if he/she recently bought a smart-
phone, but his/her long-term preference may be others and
purchases them shortly after the smartphone. We assume
that long-term preferences of users do not change over time.
Using latent factor approach [45], [46], we assign each user
u ∈ U and each item i ∈ I a latent factor (embedding)
PL
u ∈ RK and QL

i ∈ RK , respectively. We adopt distance
as the scoring scheme for long-term preference of user u to
item i: −d(PL

u ,Q
L
i).

Note that we differentiate items’ long-term and short-term
embeddings because they can be related to different items.
For example, a movie is long-term related to movies in
the same category, but can be short-term related to movies
released in the same year.

Observed by [45], due to the triangular inequality, the rela-
tionships propagated using distance as a scoring scheme are
not only explicit between user-item pairs, but also implicit
between item-item pairs and between user-user pairs. Thus,
user long-term preference modeling will bring items inter-
acted by the same user to be close regardless of their positions
in the user’s sequence.

C. COMBINING SHORT-TERM AND LONG-TERM
PREFERENCE MODELING
By combining both user short-term and long term preference
modeling, we propose our RTN model. Specifically, RTN
computes a recommendation score between user u and item j
at time step t using the following equation:

S tu,j = −α d(P
L
u ,Q

L
j)− (1− α) d(Ptu,Qj)+ bj, (13)

where α is a hyper-parameter for balancing weights of both of
the following terms. The first term indicates the recommen-
dation score of long-term preference, while the second term

131570 VOLUME 7, 2019

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

denotes the recommendation score of short-term preference.
Recommending top N items to user u is done by selecting
items with the top N highest value of the recommendation
scores.

To train RTN, we use the following objective function:

L(2)=
∑
u∈U

|Sequ|∑
t=2

∑
i∈I
i6=Qtu

−ln σ (S tu,Qtu − S
t
u,i)+ λ2

∥∥2∥∥2F , (14)

where λ2 is a regularization hyper-parameter for all of
the model parameters 2. Since the objective of the model
is to rank positives over negatives, we obtain the term
−ln σ (S tu,Qtu − S tu,i) from adjusting Bayesian Personalized
Ranking [9] by including time steps. Back-Propagation
Through Time (BPTT) [47] algorithm can be used for learn-
ing the parameters. Because the number of negative items of
each user is huge for sparse datasets, we instead use random
uniform sampling to sample 9 negatives for each positive.
Regularization term is also applied to only related items.

D. CONNECTIONS TO EXISTING MODELS
By restricting some of its components, we can transformRTN
to the following existing models.
Personalized Ranking Metric Embedding (PRME) [14]: In

PRME, a recommendation score S i→j
u of user u from previous

item i to item j can be written as:

S i→j
u = −α d(PL

u ,Q
L
j)− (1− α) d(Qi,Qj). (15)

Suppose the previous item i = Qtu. By comparing eq. (15)
and eq. (13), we can find that we can transform RTN to
PRME by strictly restricting zt to 1 and remove the bias term.
In this case, user short-term preference modeling of RTNwill
use only a single previous item of a user and cannot hold
information of the past interactions.
Translation-Based Recommendation (TransRec) [13]:

From eq. (1), we can also considerPu as the long-term embed-
ding of user u, namely Pu = PL

u . With slight modification,
we can combine short-term and long-term embeddings of the
user’s preference to the same space in the same manner as
TransRec:

S i→j
u = −d(PL

u + Ptu,Qj)+ bj. (16)

In this way, the number of parameters is reduced. However,
the model will lose the property for recommending next
items based on closeness in the embedding space to a pre-
vious item. Additionally, long-term and short-term relations
between items cannot be separated.

V. EXPERIMENTS
We evaluate our model on a wide range of real-world datasets
to answer the following questions:
Q1: Does the proposed model achieve state-of-the-art per-

formance on sparse datasets?
Q2: What is the influence of each component of RTN on

the performance?

TABLE 2. Dataset statistics.

Q3:CanRTN deal with various lengths of users’ sequences
or the effect of data sparsity?

A. EXPERIMENTAL SETUP
1) DATASETS
We conduct experiments on widely used public datasets:
Amazon, Foursquare, and MovieLens. Amz and Ml are the
abbreviations of Amazon and MovieLens respectively.
Amazon.2 A large group of datasets collected by [48] from

May 1996 to July 2014 from Amazon.com.
Foursquare.3 A dataset commonly used for evaluating a

model performance on POI recommendation. The data is
collected by [49] from December 2011 to April 2012 from
Foursquare.com. We use only check-in information of users.
MovieLens.4 A very popular dataset which is widely used

for many areas of recommendation tasks. We use the Movie-
Lens 1Mwhere each user has rated at least 20 items. Based on
the number of actions per user, the dataset is not sparse, but
we include this for evaluating the performance of our model
on a dataset with long-term dependency.

We utilize only the information of user ids, item ids (or
location ids in Foursquare) and timestamps. We filter out
users and items with less than 10 and 5 interactions, respec-
tively.

2) EVALUATION PROTOCOL
For each dataset, we split it into three sets for training, valida-
tion, and testing. Following [10], [13], the last interaction of
each user is held for testing while the second last is held for
validation. The remaining data is used for training purpose.
We remove items which do not appear in the training set
from the validation set and the test set. We train models
on the training set while tuning their hyper-parameters on
the validation set. The model achieving the highest score
on the validation set is then evaluated on the test set, and
finally, we report the performance. The statistics of datasets
are indicated in Table 2.

2http://jmcauley.ucsd.edu/data/amazon/
3https://archive.org/details/201309_foursquare_dataset_umn
4https://grouplens.org/datasets/movielens/

VOLUME 7, 2019 131571

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

3) EVALUATION METRICS
Following [22], [50], we evaluate each methodology using
following metrics:
Hit Ratio @K (HR@K): Given a list of top K predicted

items for each user, HR@K measures whether the test item
is in the list.
Normalized Discounted Cumulative Gain @k

(NDCG@K): It is similar to HR@K with consideration of
the position of the test item in the list.

We setK to 50 as same as [13].We report the average scores
over users for both metrics.

B. COMPARISON METHODS
To evaluate the performance of our proposed algorithm,
we compare our model to several popular methods and stan-
dard baselines. We also compare with recent state-of-the-art
methods in sparse datasets. We list methods evaluated in this
work in the following.
Popularity (Pop): It is a naive baseline method. The

method always ranks items and make recommendations
based on their popularity only.
Matrix Factorization with Bayesian Personalized Rank-

ing (MF) [18]: The method uses the matrix factorization
technique with the inner product between a user and an item
as its scoring scheme.
Factorized Personalized Markov Chains (FPMC) [9]:

The method uses combination of Matrix Factorization and
first-order Markov chains.
Personalized Ranking Metric Embedding (PRME) [14]:

Instead of using the inner product as scoring scheme like
FPMC, the model uses Euclidean distance and has an addi-
tional hyper-parameter for weighting between two of them.
Factorized Sequential Prediction with Item Similarity

Models (Fossil) [10]: Instead of learning user embedding
vectors directly, Fossil uses item similarity model to represent
long-term preference of a user, while high-order Markov
Chains handles short-term preference.
GRU4Rec [6]: This was proposed for session-based rec-

ommendation. The model uses GRU to capture sequential
dependencies and make a prediction.
Translation-based Recommendation (TransRec) [13]:

The model is described in eq. (1).
Self-Attentive Sequential Recommendation (SAS) [29]:

SAS uses self-attention mechanism to capture higher-order
interactions between items in a user’s sequence.
Recurrent Translation-based Network (RTN): Our pro-

posed method.
Hyper-parameters are tuned with grid search with the val-

idation set. The number of embedding dimensions k is tuned
among {16, 32, 64}. Regularization terms are tuned among
{0, 0.1, 0.01, 0.001}. α and L of Fossil are set to 0.2 and
3 respectively. α of PRME and RTN is search from {0.2,
0.5, 0.8}. Dropout of GRU4Rec is tuned among {0, 0.25,
0.5}. BPRMF, FMPC, Fossil, and TransRec are trained with
Stochastic Gradient Ascent with learning rate 0.05. We use

the code provided by [10], [13] for training them. We train
SAS with the code provided by the authors [29] with its
default setting, which also used for evaluating the model in
their paper (except the number of embedding dimensions).
We have implemented GRU4Rec and RTN using PyTorch5

library. GRU4Rec and RTN are trained with mini-batch gra-
dient descent and optimized by Adam [51]. We set the batch
size of both to 100 and learning rate to 0.001.

C. PERFORMANCE COMPARISON
The results are collected and illustrated in Table 3. Our pro-
posed model, RTN, clearly achieves the best performance on
all datasets. Performing on par with GRU on the dense dataset
indicates that RTN is flexible in dealing with several lengths
of users’ sequences. Achieving state-of-the-art performance
beyond all baselines on sparse datasets answers to Q1.

Furthermore, we make several observations on the com-
parison between our baselines. Unsurprisingly, Pop model
performs the worst on all datasets and both metrics. This
indicates the importance of each user’s personal preference.
Achieving higher performance of FPMC over MF shows that
the latest item is also crucial. Fossil constructs user preference
vector by aggregating the user’s history instead of learning
the user preference vector directly like FPMC. This seems
to be a weakness of the model when applying on the dense
dataset, MovieLens-1M. GRU4Rec performs inconsistently
due to its complexity. Performing worse than best baselines in
most cases of GRU4Rec implicitly informs the difference in
data from session-based recommendations. In session-based
recommendation, items in the same session highly correlate
to each other and GRU4Rec exploits those relations. We can
see the importance of modeling higher-order interactions of
RTN from its superior performance over PRME and Tran-
sRec. SAS performs on the top among the baselines for
several cases. This validates that the attention mechanism is
an alternative way to incorporate higher-order interactions
effectively.

In Figure 2, we analyze the effect of a key hyper-parameter,
the number of embedding dimensions k from 8 to 64. We can
observe that all models are benefited from a large number
of embedding dimensions. RTN performs well compared to
other methods in low dimensional space. This supposedly
dues to the separated components, long-term and short-term
modules, of RTN. Similarly, FPMC and TransRec also per-
form well as RTN in low dimensional space.

D. ABLATION STUDY
To answerQ2, we conduct further experiments to analyze the
model components. Table 4 shows the performance of RTN
with the default configuration and its eight variants on three
categories of Amazon dataset (with k = 64).We analyze their
effect, respectively:

(1) w/o Short-term (without Short-term preference model-
ing): Unsurprisingly, the performance is tremendously worse

5https://pytorch.org

131572 VOLUME 7, 2019

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

TABLE 3. Top-N recommendation results on datasets (higher is better). Bold texts indicate the best performance in each case. Underline texts indicate the
best among baselines. GRU refers to GRU4Rec, and TR refers to TransRec. The last two columns (%Improve) show the improvement of RTN over other
methods and TransRec.

FIGURE 2. Performance (NDCG@50) of all models with varying numbers of embedding dimensions k .

TABLE 4. Ablation analysis (HR@50) on three categories of Amazon
dataset. Performance better than the default version is boldfaced. ↓

indicates a significant drop in performance (more than 10%).

without short-term preference modeling because the model
cannot capture and utilize sequential information without it.

(2) w/o Long-term (without Long-term preference mod-
eling): Without Long-term preference modeling, the per-
formance drops significantly but not as much as without

short-term preference modeling. Because the short-term pref-
erence modeling can hold the information of multiple recent
items, therefore, it partially captures the long-term preference
of a user.

(3) w/o Bias (without bias term): The performance slightly
changes without the bias term.

(4) w/o Limit (without limiting the update to Qt
u, namely

updating Ptu by (9) instead of (12)): In this setting, the per-
formance is much inferior. We investigate the influence of
previous items on the update of user’s short-term vectors by
monitoring the average value of zt in the equation (9) and (12)
across all embedding dimensions as the influence. We find
that the influence of previous items is much stronger without
the limit. For example, in the App category, the average
influence is 1.024 (2zt) without the limit and 0.639 with the
limit. This affects in less reliance on past user’s preference
vectors of the model and hinders the performance.

VOLUME 7, 2019 131573

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

(5) Tied weights: By tying Qi to QL
i , the performance

is increased in the Game category. This may be due to a
weaker signal of sequential patterns in the category compared
to the others (as can be observed from the difference in the
performance between GRU4Rec and MF). However, we can
see the decline of performance when the signal is stronger in
App and Office categories.

(6)-(8) Recurrent units: We change our modified recurrent
unit to RNN (simple with the hyperbolic tangent activation),
LSTM and GRU respectively. As can be seen, the perfor-
mance drops significantly. By comparing the performance
of the model with GRU variance to GRU4Rec (in Table 3),
it achieves higher performance and can be benefited from
using distance as a scoring scheme.

E. EFFECT OF DATA SPARSITY
To evaluate the effect of data sparsity for answering Q3,
we follow the test used in [10]. We perform experiments
on MovieLens-1M dataset. For converting the dataset to be
sparse, we truncate each user’s sequence by taking only the
latestN interactions and dropping the rest. We conduct exper-
iments with the decreasing of N from 200 to 5, leading the
data to be more sparsity and inspect the change of perfor-
mance of each model. The experiment results are collected
in Table 5.

TABLE 5. Performance (HR@50) of five models on Ml-1M dataset with
varying N .

As can be seen from the table, the performance of RTN,
SAS, and GRU4Rec which utilize high-order sequential
information drops as decreasing of N. This is due to the
length of sequences which the models can exploit is lower.
With long sequences, N = 200, GRU4Rec performs on par
with RTN. However, the drop in performance of GRU4Rec is
significantly larger than RTN. With N = 10, RTN and Tran-
sRec accomplish similar results which are enormously higher
than GRU4Rec. With N = 5, RTN performs slightly worse
than TransRec and Fossil. It cannot benefit from sequential
information in this case. In contrast to RTN, with higher N,
the performance of Fossil and TransRec are not improved
and are declined instead. This shows that both cannot han-
dle long sequences of users’ items properly. Achieving top
performance of RTN on various lengths of users’ sequences
of items answers to Q3. SAS performs nearly as well as
RTN in multiple N . The self-attention mechanism is worth
considering for tackling sparsity issues.

F. EMBEDDING VISUALIZATION
For understanding the model, we visualize the item embed-
ding space (Q∗) in a two-dimensional space using t-SNE [52].

It is shown in Figure 3 and 4. It is intuitively known that users
prefer watchingmovies from their favorite genres.We can see
that movies are clustered according to their genres. Note that
this information has not been presented to the model. There-
fore, the model implicitly learned that from users’ sequences
of movies in order to predict their next watched movies, since
the model groups sequentially related items via its recurrent
unit and distance as its scoring scheme. In addition, from the
difference between Figure 3 and Figure 4, the model is better
at categorizing those when it is fed with longer the sequences.
This indicates that the model can handle long sequences of
users’ items as well.

FIGURE 3. Visualization of item embedding space on Ml-1M_20 dataset.

FIGURE 4. Visualization of item embedding space on Ml-1M_100 dataset.

VI. CONCLUSION
In this paper, we proposed RTN, a novel higher-order
interactions approach for sparse sequential recommenda-
tion. RTN models both temporal dynamics factors and static
factors of user preference. RTN combines the idea of the
translation-based model, making user transition from one
item to another, with recurrent neural network architecture.
For utilizing distance in an embedding space, we use our
recurrent unit for modeling user’s short-term preference.
It makes sequentially related items to be close in the embed-
ding space and helps the model tackle sparsity issues. Our
thorough experiments on many sparse datasets demonstrate
that RTN outperforms the state-of-the-art methods for sparse
sequential recommendation.

131574 VOLUME 7, 2019

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

REFERENCES
[1] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems

Handbook, 1st ed. New York, NY, USA: Springer-Verlag, 2010.
[2] T. Donkers, B. Loepp, and J. Ziegler, ‘‘Sequential user-based recurrent neu-

ral network recommendations,’’ in Proc. 11th ACM Conf. Recommender
Syst., 2017, pp. 152–160.

[3] Y. Hu, Y. Koren, and C. Volinsky, ‘‘Collaborative filtering for implicit
feedback datasets,’’ in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008,
pp. 263–272.

[4] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009.

[5] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, ‘‘Recurrent
recommender networks,’’ in Proc. 10th ACM Int. Conf. Web Search Data
Mining, 2017, pp. 495–503.

[6] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, ‘‘Session-based
recommendations with recurrent neural networks,’’ in Proc. ICLR, 2016,
pp. 1–10.

[7] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J.Ma, ‘‘Neural attentive session-
based recommendation,’’ in Proc. ACM Conf. Inf. Knowl. Manage., 2017,
pp. 1419–1428.

[8] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘A dynamic recurrent model
for next basket recommendation,’’ in Proc. 39th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., 2016, pp. 729–732.

[9] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, ‘‘Factorizing person-
alized Markov chains for next-basket recommendation,’’ in Proc. 19th Int.
Conf. World Wide Web, 2010, pp. 811–820.

[10] R. He and J. McAuley, ‘‘Fusing similarity models with Markov chains for
sparse sequential recommendation,’’ in Proc. IEEE 16th Int. Conf. Data
Mining (ICDM), Dec. 2016, pp. 191–200.

[11] S. Kabbur, X. Ning, and G. Karypis, ‘‘FISM: Factored item similarity
models for top-N recommender systems,’’ in Proc. 19th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2013, pp. 659–667.

[12] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modeling multi-relational data,’’ in Proc.
26th Int. Conf. Neural Inf. Process. Syst., vol. 2, 2013, pp. 2787–2795.

[13] R. He, W.-C. Kang, and J. McAuley, ‘‘Translation-based recommenda-
tion,’’ in Proc. 11th ACM Conf. Recommender Syst., 2017, pp. 161–169.

[14] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, ‘‘Personalized
ranking metric embedding for next new POI recommendation,’’ in Proc.
24th Int. Conf. Artif. Intell., 2015, pp. 2069–2075.

[15] R. Salakhutdinov and A. Mnih, ‘‘Probabilistic matrix factorization,’’ in
Proc. 20th Int. Conf. Neural Inf. Process. Syst., 2007, pp. 1257–1264.

[16] Y. Koren, ‘‘Collaborative filtering with temporal dynamics,’’ in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009,
pp. 447–456.

[17] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, ‘‘Fast matrix factorization for
online recommendation with implicit feedback,’’ in Proc. 39th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., 2016, pp. 549–558.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, ‘‘BPR:
Bayesian personalized ranking from implicit feedback,’’ in Proc. 25th
Conf. Uncertainty Artif. Intell., 2012, pp. 452–461.

[19] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, ‘‘DeepFM: A factorization-
machine based neural network for CTR prediction,’’ in Proc. 26th Int. Joint
Conf. Artif. Intell., 2017, pp. 1725–1731.

[20] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, ‘‘xDeepFM:
Combining explicit and implicit feature interactions for recommender
systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2018, pp. 1754–1763.

[21] S. Rendle, ‘‘Factorization machines,’’ in Proc. IEEE Int. Conf. Data Min-
ing, Dec. 2010, pp. 995–1000.

[22] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘‘Neural
collaborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web, 2017,
pp. 173–182.

[23] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, ‘‘Collaborative denoising
auto-encoders for Top-N recommender systems,’’ in Proc. 9th ACM Int.
Conf. Web Search Data Mining, 2016, pp. 153–162.

[24] J. Tang and K. Wang, ‘‘Personalized Top-N sequential recommendation
via convolutional sequence embedding,’’ in Proc. 11th ACM Int. Conf. Web
Search Data Mining, 2018, pp. 565–573.

[25] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, ‘‘A simple
convolutional generative network for next item recommendation,’’ in Proc.
12th ACM Int. Conf. Web Search Data Mining, 2019, pp. 582–590.

[26] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and
J. Wu, ‘‘Sequential recommender system based on hierarchical attention
networks,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., 2018, pp. 1–7.

[27] C. Zhou, J. Bai, J. Song, X. Liu, Z. Zhao, X. Chen, and J. Gao, ‘‘ATRank:
An attention-based user behavior modeling framework for recommenda-
tion,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–8.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[29] W.-C. Kang and J. McAuley, ‘‘Self-attentive sequential recommendation,’’
in Proc. IEEE Int. Conf. Data Mining, Nov. 2018, pp. 197–206.

[30] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[31] J.-D. Zhang and C.-Y. Chow, ‘‘SEMA: Deeply learning semantic mean-
ings and temporal dynamics for recommendations,’’ IEEE Access, vol. 6,
pp. 54106–54116, 2018.

[32] K. Cho, B. van Merrienboer, C. Gülçehre, F. Bougares, H. Schwenk, and
Y. Bengio, ‘‘Learning phrase representations using RNN encoder-decoder
for statistical machine translation,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2014, pp. 1724–1734.

[33] M.Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, ‘‘Personalizing
session-based recommendations with hierarchical recurrent neural net-
works,’’ in Proc. 11th ACM Conf. Recommender Syst., 2017, pp. 130–137.

[34] Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘Predicting the next location: A recur-
rent model with spatial and temporal contexts,’’ in Proc. 13th AAAI Conf.
Artif. Intell., 2016, pp. 194–200.

[35] T. Bansal, D. Belanger, and A. McCallum, ‘‘Ask the GRU: Multi-task
learning for deep text recommendations,’’ in Proc. 10th ACM Conf. Rec-
ommender Syst., 2016, pp. 107–114.

[36] L. Yang, Y. Zheng, X. Cai, H. Dai, D. Mu, L. Guo, and T. Dai, ‘‘A LSTM
based model for personalized context-aware citation recommendation,’’
IEEE Access, vol. 6, pp. 59618–59627, 2018.

[37] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, ‘‘RotatE: Knowledge graph
embedding by relational rotation in complex space,’’ in Proc. ICLR, 2019,
pp. 1–18.

[38] Z.Wang, J. Zhang, J. Feng, and Z. Chen, ‘‘Knowledge graph embedding by
translating on hyperplanes,’’ in Proc. 28th AAAI Conf. Artif. Intell., 2014,
pp. 1112–1119.

[39] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, ‘‘Learning entity and relation
embeddings for knowledge graph completion,’’ in Proc. 29th AAAI Conf.
Artif. Intell., 2015, pp. 2181–2187.

[40] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, ‘‘Knowledge graph embedding via
dynamic mapping matrix,’’ in Proc. 53rd Annu. Meeting Assoc. Comput.
Linguistics 7th Int. Joint Conf. Natural Lang. Process., vol. 1, 2015,
pp. 687–696.

[41] R. Pasricha and J. McAuley, ‘‘Translation-based factorization machines
for sequential recommendation,’’ in Proc. 12th ACM Conf. Recommender
Syst., 2018, pp. 63–71.

[42] M. He, B. Wang, and X. Du, ‘‘HI2Rec: Exploring knowledge in hetero-
geneous information for movie recommendation,’’ IEEE Access, vol. 7,
pp. 30276–30284, 2019.

[43] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, ‘‘Knowledge graph
convolutional networks for recommender systems,’’ in Proc. World Wide
Web Conf., 2019, pp. 3307–3313.

[44] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai, ‘‘What to
do next: Modeling user behaviors by time-LSTM,’’ in Proc. 26th Int. Joint
Conf. Artif. Intell., 2017, pp. 3602–3608.

[45] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin,
‘‘Collaborative metric learning,’’ in Proc. 26th Int. Conf. World Wide Web,
2017, pp. 193–201.

[46] J. Yu, M. Gao, W. Rong, Y. Song, and Q. Xiong, ‘‘A social recommender
based on factorization and distance metric learning,’’ IEEE Access, vol. 5,
pp. 21557–21566, 2017.

[47] P. J. Werbos, ‘‘Backpropagation through time: What it does and how to do
it,’’ Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[48] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, ‘‘Image-based
recommendations on styles and substitutes,’’ in Proc. 38th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr., 2015, pp. 43–52.

[49] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel, ‘‘LARS:
A location-aware recommender system,’’ in Proc. IEEE 28th Int. Conf.
Data Eng., Apr. 2012, pp. 450–461.

[50] X. He, T. Chen, M.-Y. Kan, and X. Chen, ‘‘TriRank: Review-aware
explainable recommendation by modeling aspects,’’ in Proc. 24th ACM
Int. Conf. Inf. Knowl. Manage., 2015, pp. 1661–1670.

VOLUME 7, 2019 131575

N. Chairatanakul et al.: Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation

[51] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. ICLR, 2014, pp. 1–15.

[52] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

NUTTAPONG CHAIRATANAKUL is currently pursuing the Ph.D. degree
with the Tokyo Institute of Technology. His research interests include rec-
ommender systems, machine learning, and graph embeddings.

TSUYOSHI MURATA is currently an Associate Professor with the Depart-
ment of Computer Science, Tokyo Institute of Technology. His current
research interests include artificial intelligence, especially complex net-
works, machine learning, and data mining.

XIN LIU received the master’s degree in computer science from Wuhan
University and the Ph.D. degree in computer science from the Tokyo Institute
of Technology. He is currently a Research Scientist with the Artificial Intel-
ligence Research Center (AIRC), National Institute of Advanced Industrial
Science and Technology (AIST), Japan. His current research interests include
graph mining, representation learning, and neural networks.

131576 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	GENERAL RECOMMENDATION
	SEQUENTIAL RECOMMENDATION
	RECURRENT NEURAL NETWORK
	TRANSLATION-BASED MODEL

	PROBLEM FORMULATION
	RECURRENT TRANSLATION-BASED NETWORK
	USER SHORT-TERM PREFERENCE MODELING
	USER LONG-TERM PREFERENCE MODELING
	COMBINING SHORT-TERM AND LONG-TERM PREFERENCE MODELING
	CONNECTIONS TO EXISTING MODELS

	EXPERIMENTS
	EXPERIMENTAL SETUP
	DATASETS
	EVALUATION PROTOCOL
	EVALUATION METRICS

	COMPARISON METHODS
	PERFORMANCE COMPARISON
	ABLATION STUDY
	EFFECT OF DATA SPARSITY
	EMBEDDING VISUALIZATION

	CONCLUSION
	REFERENCES
	Biographies
	NUTTAPONG CHAIRATANAKUL
	TSUYOSHI MURATA
	XIN LIU

