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ABSTRACT Whispering is a special pronunciation style in which the vocal cords do not vibrate. Compared
with voiced speech, whispering is noise-like because of the lack of a fundamental frequency. The energy
of whispered speech is approximately 20 dB lower than that of voiced speech. Converting whispering
into normal speech is an effective way to improve speech quality and/or intelligibility. In this paper,
we propose a whisper-to-normal speech conversion method based on a sequence-to-sequence framework
combined with an auditory attention mechanism. The proposed method does not require time aligning
before conversion training, which makes it more applicable to real scenarios. In addition, the fundamental
frequency is estimated from the mel frequency cepstral coefficients estimated by the proposed sequence-
to-sequence framework. The voiced speech converted by the proposed method has appropriate length,
which is determined adaptively by the proposed sequence-to-sequence model according to the source
whispered speech. Experimental results show that the proposed sequence-to-sequence whisper-to-normal
speech conversion method outperforms conventional DTW-based methods.

INDEX TERMS Auditory attention mechanism, sequence-to-sequence, speech quality, whisper conversion.

I. INTRODUCTION
Whispered speech refers to low-energy pronunciation with-
out vocal cord vibration. It is a special and essential
style of speech communication [1]. For example, in places
such as libraries and conference rooms where loud speech
is prohibited, people generally use whispered speech for
human-human communication or human-computer interac-
tion. In addition, to protect the privacy of communication con-
tent, people prefer whispering for communication in public
places. In the medical field, for patients with laryngectomy,
whispering is the only means of communication. In recent
years, whispering has become one of the most convenient
silent interfaces in the field of human-computer interaction
compared with the surface electromyogram (EMG) interface
and the magnetic resonance imaging (MRI) interface.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hao Luo.

Whispering is a low-energy signal compared with normal
voiced speech because the vocal cords do not vibrate when
people are whispering. The airflow exhaled from the lungs
directly excites the sound cavity through the narrow half-
opening glottis to generate unvoiced speech signals, so whis-
pering does not contain the fundamental frequency (F0) [2].
Because of the absence of F0, the whisper has noise-like
characteristics, and the energy of a whisper is approximately
20 dB lower than that of normal speech; thus, whispering is
more susceptible to noise interference.

Due to wide applications of whispered speech in vari-
ous communication scenarios, research on whispering has
attracted much attention in recent years. For example, [3]–[5]
studied whispered speech recognition. Reference [6] investi-
gated the effectiveness of phase information for whispered
speech emotion recognition. Production of synthetic whis-
pers from neutral speech recordings has been studied in the
feature spaces in, e.g., [7] to augment limited transcribed
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whispered recordings for whispered speech recognition.
Recently, reconstructing normal voiced speech from whis-
pered speech has attracted the attention of many researchers
[8]–[10]. The aim of whisper conversion is to convert whis-
pered speech to normal speech to improve its intelligibility
and/or perception quality.

Currently, there are two kinds of whisper conversion
technologies. One is rule-based whisper conversion, which
modifies parameters of the source-filter model such as
mixed excitation linear prediction (MELP), code excited lin-
ear prediction (CELP), and linear prediction coding (LPC)
according to transformation rules obtained by experimental
observations or statistical analysis of the acoustic feature
differences between whispered speech and its normal coun-
terpart [11]–[14]. However, transformation rules are always
generated by empirical observation or simple statistical mod-
eling, so the naturalness and speech quality of rule-based
whisper conversion need further improvement.

The other kind of whisper conversion approaches includes
the Gaussian mixture model (GMM) method and the neural
network method. Toda et al. first utilized GMM to model
the joint spectral feature space of whispering and its nor-
mal counterpart. However, the speech spectral envelope esti-
mated by the naive GMM model exhibits discontinuity and
oversmoothing. To solve this problem, the dynamic spectral
parameter is proposed to model dynamic acoustic space and
achieved a performance improvement [15]. In addition, maxi-
mum likelihood parameter generation (MLPG) [16] has been
used to generate smooth speech parameters, and global vari-
ance (GV) has been adopted to enhance the details of spectral
parameters [17], [18], further improving the intelligibility and
naturalness of the converted speech.

Unlike GMM, neural networks can fit complex nonlinear
relationships. In the past few years, neural networks have
been widely used for whisper-to-normal speech conversion.
Li et al. adopted the restricted Boltzmann machine (RBM)
to model the joint feature space composed of whispering
and parallel normal speech [19] and obtained a preferable
estimated target normal speech. Recently, deep neural
networks (DNN) have been used to achieve better con-
version performance without a predivided acoustic param-
eter space [20]. To reflect the interframe relationship,
Nisha utilized a deep bidirectional long short time mem-
ory (DBLSTM) for speech conversion, and experimental
results showed that the converted speech is more natural and
is more similar to the target normal speech [21].

However, feature alignment is necessary for state-
of-the-art statistical-based whisper conversion methods.
Researchers frequently use the dynamic time warping (DTW)
algorithm to align features by adding or removing speech
frame features using a dynamic program algorithm where
the speech acoustic and perception characteristics are not
considered [22]. In the training phase, features aligned by
DTW are used for model training, which may cause poor
speech quality and/or speech intelligibility for the converted
speech.

In addition, F0 estimation is another problem when con-
verting whispering to normal speech. Owing to the absence of
F0 in whispered speech, existing conversion methods always
adopt a model to characterize the relationship between the
whisper spectrum and the F0 of its normal counterpart. How-
ever, whispering is noise-like, and the spectrum of different
phonemes has no significant difference. Thus, the relation
between the whisper spectrum and the F0 is not obvious.

To solve these issues, we propose a sequence-to-sequence
mapping framework to characterize the nonlinear relationship
between original whispered speech features and target nor-
mal speech features. In the conversion phase, the converted
normal speech is obtained by the trained model. Once the
mel frequency cepstral coefficients (MFCC) of the estimated
normal speech is obtained, it is used to train a DBLSTM
model to characterize the relationship between the estimated
MFCCs and F0 of the normal speech.

The remainder of this paper is organized as follows.
Section II introduces the proposed sequence-to-sequence
whisper-to-normal conversion model based on the auditory
attention mechanism. Section III gives experimental results
and discussion. The final section is devoted to the conclusion.

II. WHISPER-TO-NORMAL CONVERSION BASED ON
SEQUENCE-TO-SEQUENCE MAPPING
The proposed SEQ2SEQ whisper-to-normal speech conver-
sion framework shown in Fig. 1 consists of model training
and speech conversion. In the training phase, speech trans-
formation and representation using adaptive interpolation
of the weighted spectrum (STRAIGHT) [23] is utilized to
extract the spectral envelope, the aperiodic component and
F0 of normal speech, and the spectral envelope of whispered
speech. The spectral envelope is further transformed into
MFCC. A sequence-to-sequence framework is trained for
mapping the relationship between the MFCCs of a whisper
and those of normal speech. Note that, once the framework is
trained well, the estimated MFCCs of converted speech from
the SEQ2SEQ model are used to train two DBLSTM models
for estimating F0 and the aperiodic component, respectively.
In the conversion stage, theMFCCs extracted fromwhispered
speech are used to estimate MFCCs of the target normal
speech, which are then used to estimate both F0 and the
aperiodic component of the target speech.

The sequence-to-sequence mapping framework is known
as a codec structure, which was originally proposed by
Cho et al. for machine language translation [24]. The encoder
maps the source word features to a high-dimensional
eigenspace for decoding. The encoder of the sequence-
to-sequence framework reads whispered speech features
sequentially and summarizes them into a fixed-length con-
text vector c, which characterizes the entire speech feature
sequence information. Given the current hidden state st ,
the decoder takes the context vector c as the input and gradu-
ally generates normal speech features at each time step.

The sequence-to-sequence framework can encode a speech
feature sequence into a context vector of fixed length and
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FIGURE 1. Scheme of proposed whisper-to-normal speech conversion model based on SEQ2SEQ framework.

FIGURE 2. Context generative model for whisper-to-normal conversion based on SEQ2SEQ framework.

decode it back into another feature sequence with a dif-
ferent length from the input sequence. That is, the feature
sequence length of the source whisper and the normal target
speech are not required to be the same. Thus, in the pro-
posed model, the parallel whisper and normal counterpart
corpus do not require time-aligning in the training stage.
Specifically, the source whisper feature sequence of length
Tx is directly decoded into a target normal speech feature
sequence of length Ty by the proposed sequence-to-sequence
framework.

For speech signal, the speech of the current frame is
strongly related to that of previous speech frames. To this
end, a long short time memory (LSTM) network is utilized as
the encoder of the sequence-to-sequence framework to char-
acterize the implicit relationship between successive frames
of whispered speech [25]. Similarly, for the decoder, we also
adopt an LSTM to decode the speech contexts back into the
feature sequence of target normal speech [26].

Suppose the source whispered speech feature sequence
is represented as {x1,· · · ,xTx} and the target normal speech
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feature sequence as {y1,· · · ,yTy} where Tx and Ty represent
the length of the source and target sequences, respectively.

In the proposed sequence-to-sequence framework, the
LSTM network consists of an input gate, output gate, and
forget gate as follows:

it = δ(Wi · [ht−1, xt ]+ bi), (1)

ft = δ(Wf · [ht−1, xt ]+ bf ), (2)

pt = ftpt−1 + it ∗ tanh(Wp[ht−1, xt ]+ bp), (3)

ot = δ(Wo · [ht−1, xt ]+ bo), (4)

ht = ot tanh(pt ). (5)

where i, f , o, and p denote the input gate, forget gate, output
gate, and cell states, respectively. δ is the sigmoid function.
ht is the hidden state at time step t .
A conventional sequence-to-sequence framework adopts

pt of the last hidden layer as its context vector once the whole
sequence is completely encoded. However, for whisper-to-
normal speech conversion, the length of the whisper feature
sequence is always longer than that of the normal speech, and
different phonemes of normal speech correspond to whisper
frames of different length at different positions, so feature
vectors of whispering used to obtain target feature vectors
of normal speech are dynamically changed at different time
steps. To model these various nonlinear relationships more
effectively, we adopt an auditory attention mechanism to
obtain a self-adaptive context vector, which is used to adap-
tively estimate the current hidden state and output of the
decoder.

In the proposed sequence-to-sequence framework, we sup-
pose that the current state of the decoder is related to all
hidden states of the encoder, each of which has a different
impact on the estimation of the current state of the decoder.
To obtain a self-adaptive context, both past and future hidden
states of the encoder are considered simultaneously to obtain
the current context.

Suppose that {h1, · · · , hTx } represents the hidden state of
the encoder. The time-dependent context ci for obtaining the
ith feature vector of the converted target normal speech is
computed as

ci =
Tx∑
j=1

αijhj, (6)

with

αij =
exp(eij)∑Tx
j=1 exp(eij)

, (7)

eij = a(Si−1, hj). (8)

where a(Si−1, hj) = vT tanh(WSi−1 + Uhj) describes the
similarity between the cell state of the decoder and the hidden
state of the encoder.

The new state Si of current frame is obtained as

(cell_outi, Si) = lstm(yi−1, Si−1, ci). (9)

where Si−1 is the previous state of LSTM, ci is the current
context, cell_outi represents the current LSTM output, and
yi−1 is the feature of the previous target frame. yi is obtained
by

yi = liner(cell_outi, ci+1). (10)

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA PREPARATION AND EVALUATION METHODS
In this paper, 348 parallel whisper and normal speech utter-
ances from the CSTR NAM TIMIT Plus corpus database1

were used to evaluate the effectiveness of the proposed model
for whisper-to-normal speech conversion. Each utterance was
sampled at 8 kHz, with 16-bit PCM storage. Three hundred
forty-eight utterances were randomly separated into a training
set with 300 parallel utterances and a test set with 48 parallel
utterances. The frame length was set to 40 ms with 5ms
frameshifting. The 257-dimensional spectral envelopes were
extracted by STRAIGHT. A 30-dimensional MFCC vector
for each frame was obtained from the spectral envelope. The
first-order differenceMFCC_dynamick of the MFCC feature
vector is derived as

MFCC_dynamick =
1
3
(−2 ∗MFCCk−2 −MFCCk−1

+MFCCk+1 + 2 ∗MFCCk+2). (11)

The mel cepstral distance (CD) [27], the short time objec-
tive intelligibility (STOI) [28], the perceptual evaluation of
speech quality (PESQ) [29], the root mean squared error
(RMSE), and the mean duration differences (MDD) were
used to objectively evaluate the performance of the converted
speech. The mean opinion score (MOS) and ABX preference
test were chosen as subjective evaluation methods for con-
verted speech. CD is a common measurement for spectrum
conversion performance, which is computed as

CD =
10

log10

√√√√2
D∑
d=1

(Cd − C ′d )
2. (12)

where Cd and C ′d represent the dth element of the cepstral
coefficients feature of reference normal speech and converted
normal speech, respectively. D represents the dimension of
the cepstral coefficient feature, which is set to 24. A higher
CD value indicates a greater difference between converted
normal speech and reference normal speech. The STOI score
ranges from 0 to 1, and a larger STOI score indicates a higher
intelligibility of converted normal speech. The PESQ is used
to evaluate the overall speech quality of converted speech,
and the PESQ value ranges from 0 to 5. A larger PESQ value
indicates better quality of converted speech.

RMSE is a frequently used objective method to evaluate
the similarity of the estimated F0 and the ground truth F0.
A smaller RMSE value means more accurate estimation
of F0. MDD is used to measure the time duration differ-
ence between the converted speech and the target speech.

1http://homepages.inf.ed.ac.uk/jyamagis/page3/page57/page57.html
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FIGURE 3. PESQ with different numbers of filters on reconstructed
speech.

FIGURE 4. CD with different numbers of filters on reconstructed speech.

A smaller MDD value means the time duration of the con-
verted speech is more similar to that of the target normal
speech. MOS is a common subjective evaluation method for
speech quality. The ABX preference test aims to determine
which of the two converted speeches (denoted as A and B)
by different conversion methods sounds like the target ground
truth speech X. If it is ambiguous to distinguish between A
and B, "no preference" is chosen.

To verify the effectiveness of the MFCC feature dimen-
sion on the normal speech reconstruction, different numbers
of filters were used to generate the MFCC features, which
were then used to reconstruct the converted speech. As seen
in Fig. 3, Fig. 4, and Fig. 5 when the number of filters was
set to 30, the smallest difference between the reconstructed
speech and the reference normal speech was obtained. Thus,
we used 30 filters for MFCC extraction in subsequent exper-
iments.

For comparison, GMM- [18], DNN- [20], and
DBLSTM- [21] based whisper-to-normal speech conversion
were conducted. The parallel speech corpuses for training the
GMM,DNN, andDBLSTMmodels were time-aligned by the
DTW algorithm.

For the GMM-based whisper-to-normal speech conver-
sion, three GMM models denoted as GMM_dynamic,
GMM_f0, and GMM_ap were trained for MFCC, F0 and
aperiodic component estimation, respectively. The dynamic

FIGURE 5. STOI with different numbers of filters on reconstructed speech.

and static features were combined as the GMM input. The
joint density Gaussianmixturemodel (JDGMM)was adopted
to model the probability distributions of the joint feature
of parallel whispered and normal speech. The number of
Gaussian components was set to 32 for GM_dynamic and
GMM_f0 and 16 for GMM_ap.

For the DNN-based whisper-to-normal speech conversion,
three DNN models were used to perform whisper-to-normal
speech conversion: the spectral envelope mapping network
(denoted as DNN_Dynamic), the F0 estimation network
(denoted as DNN_f0), and the aperiodic component esti-
mation network (denoted as DNN_ap). To verify the per-
formance of dynamic features, we also used a DNN_static
model where only static features were considered to esti-
mate the spectral envelope. The network configurations
of DNN_Dynamic, DNN_f0, DNN_ap, and DNN_static
were 60-120-60-120-60, 60-120-60-30-1, 60-120-257-120-
257, and 30-120-60-120-30, respectively. For all DNN mod-
els, the dropout was set to 0.8, the learning rate was 0.0001,
the batch size was 100, and the training epochwas set to 1000.

The DBLSTM-based whisper-to-normal speech conver-
sion model consisted of a spectral envelope estimation
module (denoted as DBLSTM_dynamic), F0 estimation
module (denoted as DBLSTM_f0), and aperiodic compo-
nent estimation module (denoted as DBLSTM_ap). Fur-
thermore, an additional spectral estimation model (denoted
as DBLSTM_static) using only static features was con-
structed to evaluate the interframe relationship descrip-
tion ability of DBLSTM. The network configurations
of DBLSTM_dynamic, DBLSTM_f0, DBLSTM_ap, and
DBLSTM_static were 60-128-256-256-128-60, 60-128-128-
128-128-1, 60-128-256-256-128-257, and 30-128-256-256-
128-30, respectively. In the training stage, the dropout was set
to 0.3, with a learning rate of 10-4, batch size of 10, time step
of 100, and training epoch of 500 times. The backpropagation
through time (BPTT) algorithm was adopted for DBLSTM
model training.

For the proposed sequence-to-sequence whisper-to-normal
speech conversion framework, a two-layer LSTM (256-256)
was adopted as the encoder, and a two-layer LSTM (256-
256) was used as the decoder. In the training stage, we used
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TABLE 1. Objective evaluation results of converted speech based on
different models.

the target speech features of the previous frame to train the
hidden state of the current frame, which was then used to
obtain the converted speech feature of the current frame.
In the speech conversion stage, we performed two types of
conversion experiments. In the first experiment, we used the
ground truth speech feature of the previous frame to obtain the
speech feature of the current frame (denoted as SEQ2SEQ).
In the second experiment, the estimated speech feature of
the previous frame was used to the obtain speech feature of
the current frame (denoted as SEQ2SEQ_pre). The estimated
MFCCwas used to compute the speech spectrum envelope of
the converted normal speech.

The estimated MFCC from the sequence-to-sequence
framework was also used to train two DBLSTM models
i.e., DBLSTM_seqf0 and DBLSTM_seqap for estimating
F0 and the aperiodic component of the normal speech,
respectively. The configuration of DBLSTM_seqf0 was the
same as that of DBLSTM_f0, and the configuration of
DBLSTM_seqap was the same as that of DBLSTM_ap.

B. RESULTS
Table 1 shows the objective evaluation results of normal
speech converted by different conversion models. It can be
seen that the capability of described interframe characteristics
of the conversion model have an essential effect on whisper-
to-normal speech conversion performance. In fact, the GMM
is a segment linear model that has a weak ability to describe
nonlinear relationships, so the performance of the GMM-
based whisper-to-normal speech conversion method is poorer
than the other three methods. Although the DNN model has
excellent nonlinear relation description ability, its interframe
relation characterizing ability is simulated by a dynamic fea-
ture that is implemented by considering the feature difference
between neighboring successive frames.

Compared with the DNN model, the DBLSTM model has
a better interframe characterizing ability due to DBLSTM
can take advantage of the relationship between long distance
frames. To this end, there is no need for a dynamic feature
in the DBLSTM method. As seen in Table 1, the DBLSTM-
based whisper-to-normal speech conversion method obtained
better conversion performance than the GMM and DNN
methods. This implies that the static features of MFCC are
adequate to characterize the difference between whisper-
ing and normal speech for the LSTM-based speech conver-
sion model. Since LSTM was also adopted in the proposed
SEQ2SEQ method, we adopt an MFCC static feature vector
when modeling the relation between whispering and its nor-
mal speech counterpart in the SEQ2SEQ method.

FIGURE 6. Comparison of spectrograms. (a) target speech; (b) GMM;
(c) DNN; (d) DBLSTM; (e) SEQ2SEQ.

From Table 1, one can see that an objective evaluation
of the proposed SEQ2SEQ method outperforms the GMM,
DNN and DBLSTM methods. Note that the SEQ2SEQ
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TABLE 2. MOS and MDD of converted speech using different conversion
methods.

TABLE 3. RMSE of estimated F0 and ground truth F0.

method also adopted LSTM as the encoder and decoder,
so the proposed SEQ2SEQ method has similar interframe
characterizing ability to DBLSTM. However, the SEQ2SEQ
method does not require preprocessed speech time-aligning,
which is required in the DBLSTM method. Specifically,
the SEQ2SEQ method adopts the auditory attention princi-
ple to implement adaptive feature mapping between paral-
lel whispered and normal speech corpuses. We attribute the
improvement of performance to the adaptive feature map-
ping. In addition, the naive DTW-based feature aligning may
reduce the speech quality and speech intelligibility of the
converted normal speech.

Table 2 shows the MOS and MDD values of converted
speeches using different conversion methods. It is obvious
that the converted speech using SEQ2SEQ achieves the high-
est MOS and lowest MDD.

We also plotted spectrograms of normal speech, with the
converted speeches using different conversion models for
subjective evaluation. One can see in Fig. 6 (a)-(e) that the
proposed SEQ2SEQ approach obtains the most similar spec-
trum of the converted speech to the target normal speech,
compared with the GMM, DNN and DBLSTM methods.

Note that the LSTM in the SEQ2SEQ method was used
only to map the relationship of the MFCC features of
whispered and normal speech. For the STRAIGHT model,
the F0 and aperiodic component are also necessary for
reconstructing target normal speech. As aforementioned,
we adopted two DBLSTMs for estimating F0 and the ape-
riodic component from MFCC features estimated by the
SEQ2SEQ method. Once the MFCCs of the normal speech
are obtained, the F0 and aperiodic component can be esti-
mated by these two DBLSTM models, respectively.

The RMSE between the estimated F0 and ground truth
F0 is shown in Table 3 One can find that the RMSE value of
the proposed SEQ2SEQ method is lowest. Note that the only
difference between the SEQ2SEQ method and the DBLSTM
method is that the proposed SEQ2SEQ method uses the esti-
mated MFCC of the converted speech, while the DBLSTM
method uses the spectrum of the source whisper. This verifies
the effectiveness of using the estimated MFCC to estimate
F0 of the converted speech.

Table 4 shows the ABX preference test score of the voiced
speech converted by different methods. The results in the first

FIGURE 7. Comparison of F0. (a) reference normal speech; (b) GMM;
(c) DNN; (d) DBLSTM; (e) SEQ2SEQ.

row indicate that the speech converted by DNN is more simi-
lar to the target normal speech than that by the GMMmethod.
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TABLE 4. ABX test results of the converted speech obtained by using
different conversion methods.

The results in Table 4 show that the converted speech using
F0 estimated by the proposed SEQ2SEQ method is more
similar to the target ground truth speech than that converted
by the other three methods.

For subjective evaluation, Fig. 7 plots F0 of the refer-
ence normal speech and F0 estimated by different conversion
models. In Fig. 7 (b)-(d), we can see that all methods can
estimate F0 well through the spectral envelope. Specifically,
F0 estimated by the SEQ2SEQ method is closest to the F0 of
the reference target speech.

Although the F0 estimation method of the proposed
sequence-to-sequence framework is similar to that of the
DBLSTMmethod, the estimated F0 of the SEQ2SEQmethod
is more similar to the normal reference speech than that of the
DBLSTMmethod. The reason may be that, for the DBLSTM
method, the F0 estimationmodel considers the relationship of
the whispered spectrum and F0 of the normal speech. How-
ever, in the proposed SEQ2SEQ method, the F0 estimation
model considers the relationship of the normal MFCC fea-
tures estimated by the SEQ2SEQ model and F0 of the refer-
ence normal speech. The F0 estimation results show that the
MFCC features estimated by the proposed SEQ2SEQ model
are more accurate and have a stronger correlation of F0 than
the raw MFCC features of whispered speech.

To evaluate the spectrum envelope estimation performance
of different conversion methods, the F0 estimation models in
the GMM, DNN, DBLSTM, and SEQ2SEQ methods were
replaced by the true F0 of reference normal speech. We plot-
ted spectrograms of normal speech, the converted speech
based on different conversion models without F0 estimation,
in Fig. 8 for subjective evaluation.

We can see in Fig. 8 (a)-(e) that the spectrum estimated
by the GMM method is over-smooth and details of the
high-frequency components are unclear, resulting in blurred
speech content, thus resulting in unsatisfactory speech nat-
uralness. Although the spectrum estimated by the DNN
method retains more high-frequency contents than that by the
GMM method, the spectrum of converted speech is still not
clear enough. Compared with the spectrum estimated by the
DBLSTM method, the spectrum estimated by the proposed
SEQ2SEQ method is closer to that of the target reference
normal speech.

To further evaluate the performance of the proposed
sequence-to-sequence whisper-to-normal speech conversion
framework, the SEQ2SEQ method, the SEQ2seq_pre
method, and the DBLSTM_dynamic method were evaluated
on the TIMIT corpus database. The experimental results
are shown in Table 5, where the SEQ2SEQ_pre method
used the speech feature of the previous frame estimated by

FIGURE 8. Speech spectrum estimated using different method with true
F0. (a) reference normal speech; (b) GMM; (c) DNN; (d) DBLSTM;
(e) SEQ2SEQ.

the sequence-to-sequence framework to estimate the speech
feature of the current frame; i.e., the speech feature of each
frame of the target speech was estimated by the sequence-to-
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TABLE 5. Performance evaluations of different models with the TIMIT
corpus database.

TABLE 6. Performance evaluations of different models with our corpus
database.

sequence framework. However, the converted performance of
SEQ2SEQ_pre decreased compared to DBLSTM_dynamic.
We attribute this to the limited size of training data in the
TIMIT corpus database, which comprises only 420 utterances
of whispered speech, 348 utterances of which were selected
for our model training.

To verify the effectiveness of the SEQ2SEQ_pre method,
1000 sentences from the TIMIT corpus database were
selected and pronounced by a female to obtain 1000 utter-
ances of normal speech and 1000 utterances of whispered
speech. All 2000 sentences from the corpus can be accessed at
ftp://210.45.212.96/ with username: download and password:
download. The speech conversion experimental results are
shown in Table 6. As seen in Table 6, SEQ2SEQ_pre achieved
better conversion performance than the DBLSTM_dynamic
method.

IV. CONCLUSION
We proposed a sequence-to-sequence whisper-to-normal
speech conversion framework with an auditory atten-
tion mechanism. Unlike existing whisper-to-normal speech
conversion models where whispered and normal speech
corpuses need time-aligning before model training and
speech conversion, the proposed sequence-to-sequence
whisper-to-normal speech conversion framework does not
require feature-aligning features. The proposed sequence-
to-sequence framework adopts an additional full connection
neural network (FCNN) to simulate the perception attention
principle and generate context-adaptive encoding informa-
tion for normal speech feature estimation. To characterize
the interframe relationship of successive frames, the encoder
and decoder of the proposed sequence-to-sequence speech
conversion method adopts long-short term memory. In addi-
tion, better F0 estimation can be obtained from the precisely
estimated normal speech spectrum than from the raw whis-
pered speech spectrum. The proposed sequence-to-sequence
framework has the ability of adaptive nonlinear mapping
between whispered and normal speech. It can also be used
for normal speech conversion.
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