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ABSTRACT Nowadays, agricultural and food technology require the integration of advanced computer
technology and sophisticated computational approach for enhancing the characterization and quality of
produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed
with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing
methods are the most important parts of the overall system. Particle filtering has been recognized as an
efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian
dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory
of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for
spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance
of the method. The estimating results from the PF were compared to the conventional estimation techniques
widely used in literature. From the experimental and computational results, we found that the particle
filtering method delivers higher accuracy, outperforming the existing conventional regression method and
the extended Kalman filter.

INDEX TERMS Particle filter, Bayesian filtering, spinach, respiration, Michaelis-Menten model.

I. INTRODUCTION
Spinach (Spinacia oleracea L.), one of leafy vegetables,
is ranked as a high nutrients food [1]. Its demand and pro-
duction has been increasing recently. It is classified as a high
respiration rate vegetable and susceptible to deterioration
during transportation and storage. Respiration is an important
metabolism causing the deterioration of fruits and vegetables
after harvest. This process consumes O2 in a series of enzy-
matic reactions to produce CO2 and water, with release of
energy. Therefore, this process must be reduced or controlled
in order to diminish fresh produces deterioration. Modified
atmosphere package (MAP) is a method used to reduce res-
piration rate and prolong shelf-life of fruits and vegetables.
This technique relies on the modification of the atmosphere
inside the package, typically into low level of O2 and high
level of CO2, resulting from respiration and gases exchange
through packaging material [2]–[4]. However, the drawback
of low O2 packages is that a shift from aerobic respiration
to fermentation when the O2 concentration becomes lower
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than lower O2 limit and this leads to undesirable reactions
[5], [6]. Therefore, modified atmosphere package should be
carefully designed. In designing the MAP, respiration rate
modelling is crucial depending on several factors, such as
the produce characteristics, its mass, atmosphere composi-
tion, temperature and also permeability of the packaging
materials; these factors should be taken into consideration
[2], [7]. In this work, we consider aMichaelis-Menten model,
an enzyme kinetics based model, that is generally used to
describe the respiration of fresh fruits and vegetables. In this
model, the reaction rate is controlled by one limiting enzyme
reaction where O2 is considered as a limiting substrate and
CO2 is a product of the reaction [2], [6], [8]. In MAP, this
model is used to predict the dynamic change of gas compo-
sition in the package during storage and distribution chain.
Therefore, Michaelis-Menten model can be used as a model
of high respiration rate sample for capturing the respiration
rate of spinach in this study [9], [10].

Particle filtering (PF) can be often referred to as data
assimilation technique to seek for estimating the posterior
probability density of the parameters where the observation
or measurement data related to the estimating parameters
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is available. It has been received a great attention by
researchers from various disciplines including the agriculture
and food industry. Its popularity for parameter estimation
and tracking problems can be found from many applications
ranging from ocean acoustics, hydrology, speech process-
ing, finance, and agricultures [11]–[16]. Efficient parame-
ter estimation is important for tackling the challenges of
model-based smart agriculture which is the crucial part of
agricultural systems in the era of big data analytic over the
intelligent system.

In literature, respiration rate models can be either
theoretical-based or empirical best fitted models.
Theoretical-based model method is frequently considered in
respiration problems [17], [18]. To obtain the parameters
involving the respiration of the produces, this approach is
conventionally employed via regression analysis [7], [8],
[17], [19]. To the best of our knowledge, a PF approach
for spinach respiratory prediction has not been seen in lit-
erature. Therefore, the novelty of this work is the analysis
and implementation of a PF for the prediction of spinach
respiratory parameters in order to achieve better prediction
results, respiration rate and O2 concentration, in particular.
The rest of this paper is organized as follows. Section II

describes a general concept of sequential Bayesian filter-
ing and particle filtering, followed by a particle filtering.
In section III, a particle filtering implementation for respira-
tion rate and O2 concentration estimation will be explained.
Simulation results are discussed in Section IV. Conclusions
can be found in Section V.

II. MATERIALS AND METHODS
A. SEQUENTIAL BAYESIAN FILTERING
The first step in sequential Bayesian framework is to repre-
sent the parameters of interest and the measurement data by
the state-space transition and observation equations as

xn = fn(xn−1)+ vn−1, (1)

and

yn = gn(xn)+ wn, (2)

where n is time. The functions fn and gn are called the
state transition or system function, and observation or mea-
surement function, respectively. It should be noted that both
functions are typically available. In practice, they are mostly
nonlinear functions. Quantities vn and wn are process and
measurement noise vectors. Both noise characteristics are
known. Vectors xn and yn represent state and measurement
vectors, respectively. Equation (1) describes how the state
vector is updated from the previous time step, while Eq. (2)
projects the relationship of the state vector and the measured
data. In agriculture and especially for the produce properties,
the state vector contains the parameters of the investigating
model that we wish to estimate. The goal is to estimate the
state vector xn using the measurement data yn obtained from
the fields, farm, laboratory, or sensors at the working place.

In this work, the data was gathered from the experiments in
the laboratory.

Let p(·|·) stands for a generic conditional probability dis-
tribution, and symbol ∼ for ’distributed as’. In the Bayesian
approach, the transition equation is the evolution of the state
and we can consider it as

xn ∼ p(xn|xn−1). (3)

Moreover, the measurement equation that constructs the
likelihood function is given by

yn ∼ p(yn|xn). (4)

Equation (3) is referred to the transition density, the prop-
agation of the state vector xn is propagated according to this
density. PF takes this density as the importance density which
can be considered as the prior for importance sampling. Let
Yn = [y1, y2, . . . , yn] contains the measurement data up
to time n. Equations (3) and (4) allow us to compute the
probability density function of the state xn, i.e., p(xn|Yn) by
using Chapman-Kolmogorov equation and Bayes’ rule as

p(xn|Yn−1) =
∫
p(xn|xn−1,Yn−1)p(xn−1|Yn−1)dxn−1

=

∫
p(xn|xn−1)p(xn−1|Yn−1)dxn−1, (5)

then,

p(xn|Yn) =
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
, (6)

where p(yn|xn) is the likelihood at time step n, p(xn|Yn−1)
is the prior distribution, and p(yn|Yn−1) is the normalization
factor and it can be computed as

p(yn|Yn−1) =
∫
p(yn|xn)p(xn|Yn−1)dxn (7)

The posterior probability density function (PDF) of the
state variable is available from the sequential update given
above, the interferences on the state can then be employed
from this distribution. The expected value of the function and
the covariance matrix Cxx

n of the state can be computed by

ẑ(xn) = Ep(xn|Yn)[z(xn)|Yn]

=

∫
z(xn)p(xn|Yn)dxn, (8)

and

Cxx
n =

∫
(xn − x̂n)(xn − x̂n)T p(xn|Yn)dxn, (9)

respectively. The feasibility in computing the multi-
dimensional integration to obtain the closed form of Eq. (6) is
very limited for only the cases of linear systems and Gaussian
noise assumption.

The Kalman filter (KF), a filter that is known as the
very first filter designed for sequential Bayesian filtering
under the linear and Gaussian assumption fails to deliver a
successful parameter estimation [20], [21]. It is not a case
that the problem that is investigating falls in the linear and
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Gaussian category. Although KF variants were implemented
[22]–[25] to handle these difficulties, KF family cannot pro-
vide satisfactory results for most cases. For practical treat-
ment of utilizing the sequential Bayesian framework, a set of
samples within the range of estimation is used to approximate
the posterior distribution. Alternatively, the technique that
represents a probability distribution using a set of random
numbers with their associated weights, known as particle
filteringmethod, was proposed to overcome these limitations.
We will discuss this approach in the next subsection.

B. PARTICLE FILTERING
For particle filtering, the recursive propagation of the
posterior density can be done using a discrete random
measurements to approximate the continuous distribution.
Let 0 =

{
xin,w

i
n
}N
i=1 be a set of random vector and scalar,

where N is number of particles; xin is the ith particle and
win is its corresponding weight. The weight of each particle
corresponds to its probability. From Eq. (5), we have

p(xn|Yn−1) =
∫
p(xn|xn−1, yn−1)p(xn−1|yn−1)dxn−1

=

∫
p(xn|xn−1)p(xn−1|yn−1)dxn−1

=

∫
p(xn|xn−1)

N∑
i=1

win−1δ(xn−1 − xin−1)dxn−1

=

N∑
i=1

win−1

∫
p(xn|xn−1)δ(xn−1 − xin−1)dxn−1

=

N∑
i=1

win−1p(xn|x
i
n−1). (10)

Using this setting, the posterior PDF can be approximated
by [26], [27]

p(xn|yn) ≈
N∑
i=1

winδ(xn − xin), (11)

where δ(·) denotes the Dirac delta function. It can be seen
obviously that the expectation of the state vector is obtained
as

x̂n =
N∑
i=1

winx
i
n. (12)

According to Eq. (3), we take a sample xin from p(xin|x
i
n−1)

which is equivalent to propagating the state vector at time
n− 1, xin−1, to the new value at time n. Taking samples from
the posterior is not feasible, an alternative way is to use a
sequential proposal density to produce a set of particles in
such a way that the ratio between the posterior density and the
proposal density is defined as win. Therefore, to approximate
p(xn|yn) using

{
xin
}N
i=1, we draw samples from an importance

density q(xn|yn) and their weights can be defined as

win ∝
p(xin|yn)
q(xin|yn)

. (13)

If we use the results from the previous step, and select the
following importance density

q(xn|yn) = q(xn|xn−1, yn)q(xn−1, yn−1), (14)

we can then obtain the posterior PDF as:

p(xn|yn) =
p(yn|xn)p(xn|xn−1)

p(yn|yn−1)
p(xn−1, yn−1). (15)

By substituting Eqs. (14)-(15) into Eq. (13), the weight of
the ith particle at time step n can be given as [27]:

win ∝
p(xin−1|yn−1)

q(xin−1|yn−1)

p(yn|xin)p(xn|x
i
n−1)

q(xin|x
i
n−1, yn)

, (16)

or

win ∝ win−1
p(yn|xin)p(x

i
n|x

i
n−1)

q(xin|x
i
n−1, yn)

. (17)

In the sequential importance sampling (SIS) PF, the impor-
tance density q(xn|xn−1, yn) = p(xn|xn−1) is chosen to mini-
mize the importance sampling error [28]. A simple variant of
the SIS can be obtained by choosing the transition density as:

q(xn|xn−1, yn) = p(xn|xn−1), (18)

which is independent of the current observation yn [29]. From
this choice, the weight of Eq. (17) is finally expressed as

win ∝ p(yn|xin)w
i
n−1, (19)

with the condition
∑N

i=1 w
i
n = 1. The process just described

above is referred to sequential importance sampling (SIS)
algorithm.

A common problem with the SIS particle filter is that, after
a few iterations, the weights of most particles are negligible
and few particles with large weights are survived. The vari-
ance of the importance weights always increase over time,
causing the problem of degeneracy [30]. This loss of sample
diversity may result in poor filtering performance. To remedy
this problem, a second sampling stage called resampling is
used. It creates more significant weight particles from the
original set of particles to obtain a better quality set of parti-
cles, this process is called sequential importance resampling
(SIR) [31]–[33], and this stage is widely used in most PF
applications. A block diagram of the SIR particle filter is
shown in Fig. 1.

III. PARTICLE FILTER FOR RESPIRATION RATE MODEL
A. THE MICHAELIS-MENTEN MODEL
Based on the performance in describing the spinach respi-
ration as reported in [6], the Michaelis-Menten Model with-
out Inhibition is considered for interpreting the respiratory
metabolism and employed for the validation of the particle
filtering method. The model is given by

rO2 =
rmax[O2]
K + [O2]

, (20)

where rO2 is oxygen consumption rate in mmols/kg-hour,
[O2] is oxygen concentration in mmols/l, rmax represents
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FIGURE 1. SIR particle filtering structure (N particles): Particle initialization, particle prediction (state
transition), particle weight calculation (likelihood), and resampling.

maximum O2 consumption rate in mmols/kg-hour, K is
Michaelis-Menten constant in mmols/l. The parameters rmax
and K are what we desire to estimate using the PF. These
parameters are typically considered as constant quantities in
conventional model fitting. For particle filtering, in contrast,
we estimate them recursively and the PF is capable of captur-
ing the uncertainty of these parameters, resulting in obtaining
the better estimates of these parameters than the convention
regression model fitting, under the noisy dynamical system.
Consequently, the prediction of oxygen concentration can be
more accurate than a conventional method and this results in
better description and characterization of spinach respiration.
Therefore environmental and packaging design for spinach
can be employed more effectively.

The respiration rate can be computed by the rate of oxygen
consumption that was determined by gas concentration per
unit time and sample mass W between two measurements.
The oxygen consumption rate in Eq. (20) can be calculated as:

rO2 =
[O2](n)− [O2](n− 1)

τ

V
W
, (21)

where [O2](n) and [O2](n − 1) are oxygen concentrations at
time steps n and n − 1, respectively. The quantity τ is time
between the two samples. V stands for the void volume of the
storage chamber in liters, and W represents spinach sample
mass in kilograms.

For sequential filtering framework, the first order Markov
chain is applied to the state space model, so do the state
equations in this work. This stems from the fact that the
parameters to be estimated evolve with time and themeasured
data in this work is actually the time-series of the oxygen
concentration. To formulate the state equations from the res-
piratory models, assuming that the measurement noise in the
experiment is additive, a set of state equations for particle
filtering according to the respiratory models is now ready to
be created.

The state transition equation andmeasurement equation for
this model are given by:

[
rmax(n)
K (n)

]
=

[
rmax(n− 1)
K (n− 1)

]
+

[
vr (n− 1)
vK (n− 1)

]
(22)

and

[O2](n) =
rO2 (n)K (n)

rmax(n)− rO2 (n)
+ w(n). (23)

Quantities vr (n) and vK (n) represent the state perturba-
tions, they dictate the momentum of the state movement.
In this work we assume these quantities to be additive white
Gaussian perturbations. Next, w(n) is the additive white
Gaussian noise in the measurement equation and this quantity
leads us to formulate likelihood function and the update of
particle weight. In addition, most practical consideration of
the noise characteristics is found to be a Gaussian type, this is
a reasonable assumption for this problem as well. Therefore,
the likelihood for rmax and K is expressed as:

l(O2(n)|rmax(n),K (n))

∝ exp
(
−

1
2σ 2

w

{
[O2](n)−

rO2 (n)K (n)
rmax(n)− rO2 (n)

}2)
, (24)

where σ 2
w is the noise variance of w(n).

B. FILTER IMPLEMENTATION
In this part, we outline the steps for parameter estimation
according to the analysis provided above. Given the obser-
vation [O2](n), a set of noisy oxygen concentration along
with the underlying state-space models of Eqs. (22) and (23),
we implement the PF to determine maximum O2 consump-
tion rate rmax and Michaelis-Menten constant K . Since the
model of measurement equation is highly non-linear struc-
ture, the KFs are not suitable. To implement a PF, the follow-
ing steps are needed.
• Initialization At the beginning, n = 0, the PDFs of
parameters are unknown. To form the joint PDF of all
unknown parameters, the prior densities of the estimat-
ing parameters must be initiated at the beginning of the
filtering process. The initial particles are sampled from
these prior PDFs. Using Bayes theorem, the likelihood
of Eq. (24) must be multiplied by the priors of all
unknown parameters. In this work, prior densities for
rmax , and K are chosen as uniform distributions.

• Prediction The prediction step begins with a set of uni-
form weight particles obtained from the previous time.
The particles from the precedent step are propagated
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via Eq. (22), two Gaussian densities act as small per-
turbations in the transition density, i.e. vr ∼ N (0, σ 2

vr )
and vK ∼ N (0, σ 2

vK ). It should be noted that this stage
corresponds to the implementation of Eq. (5).

• Updating Updating process begins with a set of equal
weight particles, win−1 = 1/N . From the measurement
equation and the noise in the data acquisition process,
the weight of each particle is evaluated using the data
just arrived and then normalized by

win =
p(yn|xin|n−1)∑N
i=1 p(yn|x

i
n|n−1)

(25)

where p(yn|xin|n−1) is the likelihood function computed
using Eq. (24). Therefore, we can calculate the weight
of ith particle as

win =
l(O2(n)|r imax(n),K

i(n))∑N
i=1 l(O2(n)|r imax(n),K i(n))

. (26)

• Resample This is a crucial step, introduced to rem-
edy the sampling degeneracy. A new set of parti-

cles
{
xjn,w

j
n = 1/N

}N
j=1

are sampled from an approx-

imated density p(xn|Yn) computed at the updating
stage. Resampling creates new particles according to
the weights of their parent particles win by generating
more particles where the parents have high weights and
removing low weight particles. After resampling, all
particles occupy the same weight and will be used for
the next time step.

C. RESPIRATION RATE MEASUREMENT
AND PARAMETER ESTIMATION
The data in this work is based on the experiment detailed
in [6]. An experiment was operated to compute the baseline
parameters, Spinach sample was stored in a closed storage
chamber with initial condition of 21% Oxygen, 299 mmol
O2/ kg spinach, controlling at 25◦C for 77 h. To generate a
uniform storage atmosphere in a storage chamber, the need
of a circular fan is necessary. During the storage, the change
of O2 concentration inside the chamber was measured using
optical sensor (21G Foxy-R sensor, Ocean optics, Inc., USA)
and respiration rate was calculated by O2 concentration
change per unit time and sample weight every 4 h time inter-
val. TheO2 consumption rate andO2 concentration were then
used to estimate the model parameters (K and rmax) using
nonlinear regression. This experiment acts as the baseline
results for this work since the nonlinear regression method is
a conventional technique widely used in many model fitting
problems including foods and agricultures [34], [35]. Results
from this experiment will be presented in Section IV.

IV. RESULTS AND DISCUSSION
This section provides results from nonlinear regression anal-
ysis, estimating results obtained from the PF using the experi-
mental data, and performance comparison between nonlinear
regression, extended Kalman filter, and PF.

TABLE 1. Estimated parameters from nonlinear regression analysis.

FIGURE 2. Measured and simulated O2 concentration during storage for
77 hours at 25◦C .

A. BASELINE PARAMETER: RESULTS FROM
CONVENTIONAL NON-LINEAR REGRESSION
An experimental condition containing initial condition
of 21% Oxygen, 299 mmol O2/ kg spinach at 25◦C was
used to conduct gas concentration measurement. This initial
condition can be converted into 8.69 mmol/l of O2/ con-
centration in storage chamber head space [6]. This setting
was employed to acquire the data for nonlinear regression
obtaining the seeking parameters K and rmax of the model.
The fitted parameters are present in Table 1. The R2 of this
fitting is 0.96.

Figure 2 shows the measured and simulated O2 concentra-
tion during storage for 77 hours at 25◦C . Fourteen data points
were used in the regression analysis as displayed using the
dots, and a solid line displays the estimatedO2 concentrations
obtained from the nonlinear regression.

B. RESULTS FROM PARTICLE FILTER
A particle filtering method was implemented based on the
data from the experimental setting described in section III-B.
The parameter initialization is based on the values obtained
from nonlinear regression analysis. As mentioned, the uni-
form distribution was applied in this work. i.e.,

K (n = 0) = U[Kreg − 0.5,Kreg + 0.5] (27)

and

rmax(n = 0) = U[rmax,reg − 0.5, rmax,reg + 0.5] (28)

where U[a, b] is a uniform density with parameters a and
b. The quantities Kreg and rmax,reg are obtained from the
nonlinear regression found in Table 1, therefore,

K (n = 0) = U[0.71, 1.71], (29)

VOLUME 7, 2019 131563



S. Saenmuang, N. Aunsri: New Spinach Respiratory Prediction Method Using Particle Filtering Approach

FIGURE 3. Michaelis-Menten constant; calculated from nonlinear
regression is plotted by a solid line, and obtained by MAP estimator from
the PF are plotted by markers.

and

rmax(n = 0) = U[5.29, 6.29]. (30)

These distributions are reasonable and dictate the initial set
of particles used in the PF. It should be noted that the param-
eters of the uniform distributions can be different from these
values, but this selection can save time consumption of the PF.
In addition, number of particles used for computation can be
tremendously reduced by choosing the initialized parameters
that are closed to the true values.

In practice, the parameters K and rmax vary with time.
By view of conventional non-linear regression analysis, each
of theses parameters is considered as a constant and valid
for any experimental condition. The PF, on the other hand,
relaxes this assumption. The nature of Bayesian framework
allows the parameters to evolve with time, the justification of
the parameter validity is done via the likelihood function. The
PF can capture the uncertainty of these parameters, therefore
we do not need them to be fixed and this aim is the essential
in using the PF approach to obtain more accurate parameters.

We show in Figs. 3 and 4 the parameters K and rmax
obtained by the PF, respectively. Each quantity for a specific
time was obtained from the maximum a posteriori (MAP)
estimator by using the posterior PDF generated by PF.We see
in the figures that the filter took a few time steps to acquire
enough information in order to achieve the values that are
almost closed to the parameters provided by non-linear
regression analysis. As mentioned earlier, the fluctuations
occur because of capturing process behavior of the filter to
follow the variations of the parameters which is the result
of measurement uncertainty and noise process during the
experiment. By view of PF, these fluctuations trace the valid
values K and rmax by means of minimizing the prediction
error. The number of particles used in this computation was
5,000.

In addition to the parameter estimates displayed in Figs. 3
and 4. The main feature of the sequential Bayesian filtering

FIGURE 4. Maximum O2 consumption rate; calculated from nonlinear
regression is plotted by a solid line, and obtained by MAP estimator from
the PF are plotted by markers.

FIGURE 5. The PDFs of the estimated parameters (a) Michaelis-Menten
constant and (b) maximum O2 consumption rate. Number of particles
used to obtain the PDFs was 5,000.

framework is the ability to provide the PDF of the estimating
parameter. The approximated PDFs for the two parameters at
time 40.5 h are given in Fig. 5. As observed in the figure that
the PDF of each parameter has normal-like distribution but
not exactly. This stems from the fact that the true PDFs of
both parameters are not exactly Gaussian distributions, and
the variation in errors of the measurement data, therefore the
PF reveals the approximated PDFs via this results. The MAP
estimates of the PDFs at this time step are 1.2103 mmol/l and
5.7899 mmol/kg-hour, respectively.

C. O2 CONCENTRATION PREDICTION
To show how the method is applicable in practice, we illus-
trate the prediction performance of the PF as compared
to the nonlinear regression analysis in Fig. 6. As demon-
strated in the figure, the PF prediction outperforms the fit-
ted model obtained from the nonlinear regression analysis.
The predicted O2 concentrations from PF coincide with the
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FIGURE 6. Measured and predicted O2 concentrations during storage for
77 hours at 25◦C . The predicted O2 concentrations as obtained by a PF
are plotted by orange circle, and red solid line is the fitted model from
nonlinear regression analysis.

measured values from the experiment. It can be seen from the
figure that the errors from nonlinear regression arise severely
after 60 hours of experiment, but the PF can deliver excellent
prediction in that period of time.

To validate the method, five different storage conditions
were set and operated for gathering the data. To specific,
each condition contains different initial oxygen concentra-
tions. TheO2 concentration inside the chamber wasmeasured
according to the method already described in Section III-C.
Nonlinear regression analysis was performed to obtain the
Michaelis-Menten constant and the maximum consumption
rate for each case. A PF was employed for each storage
conditions and the estimates from the PF forO2 concentration
prediction at the different storage conditions were computed.

In addition to demonstrating the performance of the PF via
O2 concentration prediction, we also employed the PF for
O2 concentration prediction for various initial O2 concentra-
tion and compared the predicted results to the conventional
method. In this work, not only nonlinear regression analysis
which is widely used in the analysis of respiratory of produces
was considered, we also compared the performance of the
PF with another sequential Bayesian filtering framework.
In particular, the extended KF (EKF) was implemented to
estimate the two parameters of the model, and prediction
of O2 concentration was also conducted for performance
comparison. Predicted values of the O2 concentration from
these methods will then be evaluated by comparing to the
measured data.

The predicted O2 concentration was evaluated by the root
mean squared error (RMSE) which is defined by

RMSE =

√√√√ 1
D

D∑
k=1

||Cmeas,k − Cest,k ||2, (31)

where Cmeas,k is the measured gas concentration, Cpre,k is the
predicted gas concentration, and D is number of data points.

TABLE 2. The RMSE for O2 concentration at different storage conditions.

Shown in Table 2 are the RMSE for O2 concentration
predictions from nonlinear regression analysis, EKF, and PF.
From the table, it is obviously seen that the performance of
the PF is superior to that of the regression analysis and the
EKF at all conditions. The results emphasize the reliability
of the filter that it could achieve better predictions than
the nonlinear regression analysis which is the conventional
method in literature. Moreover, as mentioned previously that
the EKF can only handle mildly nonlinear system, but the
Michaelis-Menten model is not a linear model and leads to
the highly nonlinear observation equation. Therefore, the KF
prediction performance is lower than that of the PF.

V. CONCLUSION
In this paper, we presented a particle filtering approach for the
prediction of spinach respiratory metabolism. The approach
proposed in this work relies on the sequential Bayesian filter-
ing method where the estimating parameters are considered
to evolve with time. The main goal was to accurately estimate
the Michaelis-Menten constant and maximum O2 consump-
tion rate in the Michaelis-Menten model without inhibition.
The key feature of the approach is that the posterior PDFs
of the estimating parameters can be obtained, resulting in a
better interpretation of the estimates computed by the filter,
and the uncertainty of the parameters can be revealed via
these distributions. We showed a practical utilization of the
proposed method for predicting the O2 concentration, and
the results illustrate the excellent prediction performance
of the PF over the nonlinear regression analysis. Moreover,
the estimates of the O2 concentration for various initial con-
ditions were obtained by the PF and the performance of
the proposed method was validated by the RMSE. Results
confirmed a superior performance of the proposed method
to that of the conventional nonlinear regression analysis and
the EKF, a benchmark filter in sequential Bayesian filtering
framework.
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